1
|
Cho YS, Gwak SJ. Novel Sensing Technique for Stem Cells Differentiation Using Dielectric Spectroscopy of Their Proteins. SENSORS (BASEL, SWITZERLAND) 2023; 23:2397. [PMID: 36904601 PMCID: PMC10007102 DOI: 10.3390/s23052397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Dielectric spectroscopy (DS) is the primary technique to observe the dielectric properties of biomaterials. DS extracts complex permittivity spectra from measured frequency responses such as the scattering parameters or impedances of materials over the frequency band of interest. In this study, an open-ended coaxial probe and vector network analyzer were used to characterize the complex permittivity spectra of protein suspensions of human mesenchymal stem cells (hMSCs) and human osteogenic sarcoma (Saos-2) cells in distilled water at frequencies ranging from 10 MHz to 43.5 GHz. The complex permittivity spectra of the protein suspensions of hMSCs and Saos-2 cells revealed two major dielectric dispersions, β and γ, offering three distinctive features for detecting the differentiation of stem cells: the distinctive values in the real and imaginary parts of the complex permittivity spectra as well as the relaxation frequency in the β-dispersion. The protein suspensions were analyzed using a single-shell model, and a dielectrophoresis (DEP) study was performed to determine the relationship between DS and DEP. In immunohistochemistry, antigen-antibody reactions and staining are required to identify the cell type; in contrast, DS eliminates the use of biological processes, while also providing numerical values of the dielectric permittivity of the material-under-test to detect differences. This study suggests that the application of DS can be expanded to detect stem cell differentiation.
Collapse
Affiliation(s)
- Young Seek Cho
- Department of Electronic Engineering, Wonkwang University, Iksan 54538, Jeollabuk-do, Republic of Korea
| | - So-Jung Gwak
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeollabuk-do, Republic of Korea
| |
Collapse
|
2
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Abstract
In this study, we examine the spectral dielectric properties of liquid water in charged nanopores over a wide range of frequencies (0.3 GHz to 30 THz) and pore widths (0.3 to 5 nm). This has been achieved using classical molecular dynamics simulations of hydrated Na-smectite, the prototypical swelling clay mineral. We observe a drastic (20-fold) and anisotropic decrease in the static relative permittivity of the system as the pore width decreases. This large decrement in static permittivity reflects a strong attenuation of the main Debye relaxation mode of liquid water. Remarkably, this strong attenuation entails very little change in the time scale of the collective relaxation. Our results indicate that water confined in charged nanopores is a distinct solvent with a much weaker collective nature than bulk liquid water, in agreement with recent observations of water in uncharged nanopores. Finally, we observe remarkable agreement between the dielectric properties of the simulated clay system against a compiled set of soil samples at various volumetric water contents. This implies that saturation may not be the sole property dictating the dielectric properties of soil samples, rather that the pore-size distribution of fully saturated nanopores may also play a critically important role.
Collapse
Affiliation(s)
- Thomas R Underwood
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.,High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Simple, Fast, and Accurate Broadband Complex Permittivity Characterization Algorithm: Methodology and Experimental Validation from 140 GHz up to 220 GHz. ELECTRONICS 2022. [DOI: 10.3390/electronics11030366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Accurate permittivity characterization has attracted a lot of attention in various areas. Resonant characterization methods are well-known for their accuracy, but they are restricted in very narrow frequency ranges, and thus, they are normally not recommended to be used for dispersive or high-loss materials. Transmission line characterization techniques are outstanding for being inexpensive, accurate, and broadband, but the algorithms are often complex to perform. This paper proposes a fast, simple, and accurate broadband permittivity characterization algorithm, which is mainly suitable for millimeter-wave applications. It combines a general line–line method and a closed-form algorithm, extracting the complex permittivity of the material under test (MUT) without the need for calculating any intermediate parameters. Validation measurements on de-ionized water in the frequency range from 140 to 220 GHz are in very good agreement with the literature data, which successfully indicates that the proposed algorithm is reliable and accurate for millimeter wave permittivity characterization.
Collapse
|
5
|
Singh AK, Wen C, Cheng S, Vinh NQ. Long-range DNA-water interactions. Biophys J 2021; 120:4966-4979. [PMID: 34687717 DOI: 10.1016/j.bpj.2021.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
DNA functions only in aqueous environments and adopts different conformations depending on the hydration level. The dynamics of hydration water and hydrated DNA leads to rotating and oscillating dipoles that, in turn, give rise to a strong megahertz to terahertz absorption. Investigating the impact of hydration on DNA dynamics and the spectral features of water molecules influenced by DNA, however, is extremely challenging because of the strong absorption of water in the megahertz to terahertz frequency range. In response, we have employed a high-precision megahertz to terahertz dielectric spectrometer, assisted by molecular dynamics simulations, to investigate the dynamics of water molecules within the hydration shells of DNA as well as the collective vibrational motions of hydrated DNA, which are vital to DNA conformation and functionality. Our results reveal that the dynamics of water molecules in a DNA solution is heterogeneous, exhibiting a hierarchy of four distinct relaxation times ranging from ∼8 ps to 1 ns, and the hydration structure of a DNA chain can extend to as far as ∼18 Å from its surface. The low-frequency collective vibrational modes of hydrated DNA have been identified and found to be sensitive to environmental conditions including temperature and hydration level. The results reveal critical information on hydrated DNA dynamics and DNA-water interfaces, which impact the biochemical functions and reactivity of DNA.
Collapse
Affiliation(s)
- Abhishek K Singh
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia
| | - Chengyuan Wen
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia
| | - Shengfeng Cheng
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia; Macromolecules Innovation Institute, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
| | - Nguyen Q Vinh
- Department of Physics and Center for Soft Matter and Biological Physics, Blacksburg, Virginia; Macromolecules Innovation Institute, Blacksburg, Virginia; Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
6
|
Elsaesser T, Schauss J, Kundu A, Fingerhut BP. Phosphate Vibrations Probe Electric Fields in Hydrated Biomolecules: Spectroscopy, Dynamics, and Interactions. J Phys Chem B 2021; 125:3899-3908. [PMID: 33834783 PMCID: PMC8154594 DOI: 10.1021/acs.jpcb.1c01502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Electric interactions
have a strong impact on the structure and
dynamics of biomolecules in their native water environment. Given
the variety of water arrangements in hydration shells and the femto-
to subnanosecond time range of structural fluctuations, there is a
strong quest for sensitive noninvasive probes of local electric fields.
The stretching vibrations of phosphate groups, in particular the asymmetric
(PO2)− stretching vibration νAS(PO2)−, allow for a quantitative
mapping of dynamic electric fields in aqueous environments via a field-induced
redshift of their transition frequencies and concomitant changes of
vibrational line shapes. We present a systematic study of νAS(PO2)− excitations in molecular
systems of increasing complexity, including dimethyl phosphate (DMP),
short DNA and RNA duplex structures, and transfer RNA (tRNA) in water.
A combination of linear infrared absorption, two-dimensional infrared
(2D-IR) spectroscopy, and molecular dynamics (MD) simulations gives
quantitative insight in electric-field tuning rates of vibrational
frequencies, electric field and fluctuation amplitudes, and molecular
interaction geometries. Beyond neat water environments, the formation
of contact ion pairs of phosphate groups with Mg2+ ions
is demonstrated via frequency upshifts of the νAS(PO2)− vibration, resulting in a distinct
vibrational band. The frequency positions of contact geometries are
determined by an interplay of attractive electric and repulsive exchange
interactions.
Collapse
Affiliation(s)
- Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Jakob Schauss
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Achintya Kundu
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| | - Benjamin P Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin 12489, Germany
| |
Collapse
|
7
|
Measuring ion-pairing and hydration in variable charge supramolecular cages with microwave microfluidics. Commun Chem 2019. [DOI: 10.1038/s42004-019-0157-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Stelson AC, Liu M, Little CAE, Long CJ, Orloff ND, Stephanopoulos N, Booth JC. Label-free detection of conformational changes in switchable DNA nanostructures with microwave microfluidics. Nat Commun 2019; 10:1174. [PMID: 30862776 PMCID: PMC6414672 DOI: 10.1038/s41467-019-09017-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/11/2019] [Indexed: 01/23/2023] Open
Abstract
Detection of conformational changes in biomolecular assemblies provides critical information into biological and self-assembly processes. State-of-the-art in situ biomolecular conformation detection techniques rely on fluorescent labels or protein-specific binding agents to signal conformational changes. Here, we present an on-chip, label-free technique to detect conformational changes in a DNA nanomechanical tweezer structure with microwave microfluidics. We measure the electromagnetic properties of suspended DNA tweezer solutions from 50 kHz to 110 GHz and directly detect two distinct conformations of the structures. We develop a physical model to describe the electrical properties of the tweezers, and correlate model parameters to conformational changes. The strongest indicator for conformational changes in DNA tweezers are the ionic conductivity, while shifts in the magnitude of the cooperative water relaxation indicate the addition of fuel strands used to open the tweezer. Microwave microfluidic detection of conformational changes is a generalizable, non-destructive technique, making it attractive for high-throughput measurements. Methods to study conformational changes in biomolecules are limited in resolution and require labelling or other modifications of target analytes. Here the authors present a label-free, microwave microfluidic approach to detect conformational changes of DNA nanostructures based on ionic conductivity.
Collapse
Affiliation(s)
- Angela C Stelson
- National Institute of Standards and Technology, Radio Frequency Electronics Group, Boulder CO 325 Broadway St, Boulder, CO, 80305, USA
| | - Minghui Liu
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281, USA.,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 727 E. Tyler St., Tempe, AZ, 85281, USA
| | - Charles A E Little
- National Institute of Standards and Technology, Radio Frequency Electronics Group, Boulder CO 325 Broadway St, Boulder, CO, 80305, USA
| | - Christian J Long
- National Institute of Standards and Technology, Radio Frequency Electronics Group, Boulder CO 325 Broadway St, Boulder, CO, 80305, USA
| | - Nathan D Orloff
- National Institute of Standards and Technology, Radio Frequency Electronics Group, Boulder CO 325 Broadway St, Boulder, CO, 80305, USA
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281, USA. .,Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 727 E. Tyler St., Tempe, AZ, 85281, USA.
| | - James C Booth
- National Institute of Standards and Technology, Radio Frequency Electronics Group, Boulder CO 325 Broadway St, Boulder, CO, 80305, USA.
| |
Collapse
|
9
|
Little CAE, Orloff ND, Hanemann IE, Long CJ, Bright VM, Booth JC. Modeling electrical double-layer effects for microfluidic impedance spectroscopy from 100 kHz to 110 GHz. LAB ON A CHIP 2017; 17:2674-2681. [PMID: 28702651 DOI: 10.1039/c7lc00347a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.
Collapse
Affiliation(s)
- Charles A E Little
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kashpur VA, Khorunzhaya OV, Pesina DA, Shestopalova AV, Maleev VY. Hydration effects accompanying the formation of DNA complexes with some ligands. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|