1
|
Sinha A, Tony AMC, Roy S. How fingers affect folding of a thumb: Inter-subdomain cooperation in the folding of SARS-CoV-2 RdRp protein. Biophys Chem 2024; 316:107342. [PMID: 39490134 DOI: 10.1016/j.bpc.2024.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a critical enzyme essential for the virus's replication and transcription, making it a key therapeutic target. The RdRp protein exhibits a characteristic cupped right-hand shaped structure with two vital subdomains: the fingers and the thumb. Despite being distinct, biophysical experiments suggest that these subdomains cooperate to facilitate RNA accommodation, ensuring RdRp functionality. To investigate the structure-based mechanisms underlying the fingers-thumb interaction in both apo and RNA-bound RdRp, we constructed a coarse-grained structure-based model based on recent cryo-electron microscopy data. The simulations reveal frequent open-to-closed conformational transitions in apo RdRp, akin to a breathing-like motion. These conformational changes are regulated by the fingers-thumb association and the folding dynamics of the thumb subdomain. The thumb adopts a stable fold only when tethered by the fingers-thumb interface; when these subdomains are disconnected, the thumb transitions into an open state. A significant number of open-to-closed transition events were analyzed to generate a transition contact probability map, which highlights a few specific residues at the thumb-fingers interface, distant from the RNA accommodation sites, as essential for inducing the thumb's folding process. Given that thumb subdomain folding is critical for RNA binding and viral replication, the study proposes that these interfacial residues may function as remote regulatory switches and could be targeted for the development of allosteric drugs against SARS-CoV-2 and similar RNA viruses.
Collapse
Affiliation(s)
- Anushree Sinha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| | - Angel Mary Chiramel Tony
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India.
| |
Collapse
|
2
|
Jaafari H, Bueno C, Schafer NP, Martin J, Morcos F, Wolynes PG. The physical and evolutionary energy landscapes of devolved protein sequences corresponding to pseudogenes. Proc Natl Acad Sci U S A 2024; 121:e2322428121. [PMID: 38739795 PMCID: PMC11127006 DOI: 10.1073/pnas.2322428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Protein evolution is guided by structural, functional, and dynamical constraints ensuring organismal viability. Pseudogenes are genomic sequences identified in many eukaryotes that lack translational activity due to sequence degradation and thus over time have undergone "devolution." Previously pseudogenized genes sometimes regain their protein-coding function, suggesting they may still encode robust folding energy landscapes despite multiple mutations. We study both the physical folding landscapes of protein sequences corresponding to human pseudogenes using the Associative Memory, Water Mediated, Structure and Energy Model, and the evolutionary energy landscapes obtained using direct coupling analysis (DCA) on their parent protein families. We found that generally mutations that have occurred in pseudogene sequences have disrupted their native global network of stabilizing residue interactions, making it harder for them to fold if they were translated. In some cases, however, energetic frustration has apparently decreased when the functional constraints were removed. We analyzed this unexpected situation for Cyclophilin A, Profilin-1, and Small Ubiquitin-like Modifier 2 Protein. Our analysis reveals that when such mutations in the pseudogene ultimately stabilize folding, at the same time, they likely alter the pseudogenes' former biological activity, as estimated by DCA. We localize most of these stabilizing mutations generally to normally frustrated regions required for binding to other partners.
Collapse
Affiliation(s)
- Hana Jaafari
- Center for Theoretical Biophysics, Rice University, Houston, TX77005
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
| | - Carlos Bueno
- Center for Theoretical Biophysics, Rice University, Houston, TX77005
| | | | - Jonathan Martin
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX75080
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX75080
| | - Peter G. Wolynes
- Center for Theoretical Biophysics, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX77005
| |
Collapse
|
3
|
Swint-Kruse L, Fenton AW. Rheostats, toggles, and neutrals, Oh my! A new framework for understanding how amino acid changes modulate protein function. J Biol Chem 2024; 300:105736. [PMID: 38336297 PMCID: PMC10914490 DOI: 10.1016/j.jbc.2024.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Advances in personalized medicine and protein engineering require accurately predicting outcomes of amino acid substitutions. Many algorithms correctly predict that evolutionarily-conserved positions show "toggle" substitution phenotypes, which is defined when a few substitutions at that position retain function. In contrast, predictions often fail for substitutions at the less-studied "rheostat" positions, which are defined when different amino acid substitutions at a position sample at least half of the possible functional range. This review describes efforts to understand the impact and significance of rheostat positions: (1) They have been observed in globular soluble, integral membrane, and intrinsically disordered proteins; within single proteins, their prevalence can be up to 40%. (2) Substitutions at rheostat positions can have biological consequences and ∼10% of substitutions gain function. (3) Although both rheostat and "neutral" (defined when all substitutions exhibit wild-type function) positions are nonconserved, the two classes have different evolutionary signatures. (4) Some rheostat positions have pleiotropic effects on function, simultaneously modulating multiple parameters (e.g., altering both affinity and allosteric coupling). (5) In structural studies, substitutions at rheostat positions appear to cause only local perturbations; the overall conformations appear unchanged. (6) Measured functional changes show promising correlations with predicted changes in protein dynamics; the emergent properties of predicted, dynamically coupled amino acid networks might explain some of the complex functional outcomes observed when substituting rheostat positions. Overall, rheostat positions provide unique opportunities for using single substitutions to tune protein function. Future studies of these positions will yield important insights into the protein sequence/function relationship.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Sinha A, Roy S. Intrinsically Disordered Regions Function as a Cervical Collar to Remotely Regulate the Nodding Dynamics of SARS-CoV-2 Prefusion Spike Heads. J Phys Chem B 2023; 127:8393-8405. [PMID: 37738458 DOI: 10.1021/acs.jpcb.3c05338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The SARS-CoV-2 prefusion spike heads (receptor binding domains, RBDs) frequently nod down and up to interact with host cell receptors. As the spike protein is a trimeric unit of significant size, to understand its large-scale structural dynamics associated with the nodding mechanism and the mutational impact on the same, we develop a topological symmetry-information-loaded coarse-grained structure-based model of a spike trimer using recent cryo-EM structural data. Our study reveals the control of two distant intrinsically disordered regions (IDRs), namely, 630 and FPPR loops, over the nodding dynamics of spike heads. We find that the order-disorder transition of IDRs becomes more evident in the variants of concern (VOCs) that are associated with the characteristic mutation, D614G, in the proximity of these IDRs. In some VOCs, the two other mutations A570D and S982A also show an integral effect. The driver mutation D614G instigates a salt-bridge disruption, altering the order-disorder dynamics of both 630 and FPPR loops and their interaction with the C-terminal domains (CTD1/CTD2). This altered connectivity in these mutants allows the two IDRs to act collectively as a "cervical collar" for the RBD, supporting various spike head postures, consistent with cryo-EM results available for specific cases. The IDRs' control over the spike structure and dynamics presents an exciting opportunity where they can be targeted as remote operational switches to artificially maneuver the nod for effective therapeutic interventions.
Collapse
Affiliation(s)
- Anushree Sinha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
5
|
Galaz‐Davison P, Ferreiro DU, Ramírez‐Sarmiento CA. Coevolution-derived native and non-native contacts determine the emergence of a novel fold in a universally conserved family of transcription factors. Protein Sci 2022; 31:e4337. [PMID: 35634768 PMCID: PMC9123645 DOI: 10.1002/pro.4337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/07/2022]
Abstract
The NusG protein family is structurally and functionally conserved in all domains of life. Its members directly bind RNA polymerases and regulate transcription processivity and termination. RfaH, a divergent sub-family in its evolutionary history, is known for displaying distinct features than those in NusG proteins, which allows them to regulate the expression of virulence factors in enterobacteria in a DNA sequence-dependent manner. A striking feature is its structural interconversion between an active fold, which is the canonical NusG three-dimensional structure, and an autoinhibited fold, which is distinctively novel. How this novel fold is encoded within RfaH sequence to encode a metamorphic protein remains elusive. In this work, we used publicly available genomic RfaH protein sequences to construct a complete multiple sequence alignment, which was further augmented with metagenomic sequences and curated by predicting their secondary structure propensities using JPred. Coevolving pairs of residues were calculated from these sequences using plmDCA and GREMLIN, which allowed us to detect the enrichment of key metamorphic contacts after sequence filtering. Finally, we combined our coevolutionary predictions with molecular dynamics to demonstrate that these interactions are sufficient to predict the structures of both native folds, where coevolutionary-derived non-native contacts may play a key role in achieving the compact RfaH novel fold. All in all, emergent coevolutionary signals found within RfaH sequences encode the autoinhibited and active folds of this protein, shedding light on the key interactions responsible for the action of this metamorphic protein.
Collapse
Affiliation(s)
- Pablo Galaz‐Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET)Universidad de Buenos AiresBuenos AiresArgentina
| | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
6
|
Kazan IC, Sharma P, Rahman MI, Bobkov A, Fromme R, Ghirlanda G, Ozkan SB. Design of novel cyanovirin-N variants by modulation of binding dynamics through distal mutations. eLife 2022; 11:67474. [PMID: 36472898 PMCID: PMC9725752 DOI: 10.7554/elife.67474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
We develop integrated co-evolution and dynamic coupling (ICDC) approach to identify, mutate, and assess distal sites to modulate function. We validate the approach first by analyzing the existing mutational fitness data of TEM-1 β-lactamase and show that allosteric positions co-evolved and dynamically coupled with the active site significantly modulate function. We further apply ICDC approach to identify positions and their mutations that can modulate binding affinity in a lectin, cyanovirin-N (CV-N), that selectively binds to dimannose, and predict binding energies of its variants through Adaptive BP-Dock. Computational and experimental analyses reveal that binding enhancing mutants identified by ICDC impact the dynamics of the binding pocket, and show that rigidification of the binding residues compensates for the entropic cost of binding. This work suggests a mechanism by which distal mutations modulate function through dynamic allostery and provides a blueprint to identify candidates for mutagenesis in order to optimize protein function.
Collapse
Affiliation(s)
- I Can Kazan
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States,School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Prerna Sharma
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | | | - Andrey Bobkov
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - S Banu Ozkan
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States
| |
Collapse
|
7
|
Sanchez-Pulido L, Ponting CP. Extending the Horizon of Homology Detection with Coevolution-based Structure Prediction. J Mol Biol 2021; 433:167106. [PMID: 34139218 PMCID: PMC8527833 DOI: 10.1016/j.jmb.2021.167106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Traditional sequence analysis algorithms fail to identify distant homologies when they lie beyond a detection horizon. In this review, we discuss how co-evolution-based contact and distance prediction methods are pushing back this homology detection horizon, thereby yielding new functional insights and experimentally testable hypotheses. Based on correlated substitutions, these methods divine three-dimensional constraints among amino acids in protein sequences that were previously devoid of all annotated domains and repeats. The new algorithms discern hidden structure in an otherwise featureless sequence landscape. Their revelatory impact promises to be as profound as the use, by archaeologists, of ground-penetrating radar to discern long-hidden, subterranean structures. As examples of this, we describe how triplicated structures reflecting longin domains in MON1A-like proteins, or UVR-like repeats in DISC1, emerge from their predicted contact and distance maps. These methods also help to resolve structures that do not conform to a "beads-on-a-string" model of protein domains. In one such example, we describe CFAP298 whose ubiquitin-like domain was previously challenging to perceive owing to a large sequence insertion within it. More generally, the new algorithms permit an easier appreciation of domain families and folds whose evolution involved structural insertion or rearrangement. As we exemplify with α1-antitrypsin, coevolution-based predicted contacts may also yield insights into protein dynamics and conformational change. This new combination of structure prediction (using innovative co-evolution based methods) and homology inference (using more traditional sequence analysis approaches) shows great promise for bringing into view a sea of evolutionary relationships that had hitherto lain far beyond the horizon of homology detection.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
8
|
Fernández Del Río B, Rey A. Behavior of Proteins under Pressure from Experimental Pressure-Dependent Structures. J Phys Chem B 2021; 125:6179-6191. [PMID: 34100621 PMCID: PMC8478274 DOI: 10.1021/acs.jpcb.1c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure-based models are coarse-grained representations of the interactions responsible for the protein folding process. In their simplest form, they use only the native contact map of a given protein to predict the main features of its folding process by computer simulation. Given their limitations, these models are frequently complemented with sequence-dependent contributions or additional information. Specifically, to analyze the effect of pressure on the folding/unfolding transition, special forms of these interaction potentials are employed, which may a priori determine the outcome of the simulations. In this work, we have tried to keep the original simplicity of structure-based models. Therefore, we have used folded structures that have been experimentally determined at different pressures to define native contact maps and thus interactions dependent on pressure. Despite the apparently tiny structural differences induced by pressure, our simulation results provide different thermodynamic and kinetic behaviors, which roughly correspond to experimental observations (when there is a possible comparison) of two proteins used as benchmarks, hen egg-white lysozyme and dihydrofolate reductase. Therefore, this work shows the feasibility of using experimental native structures at different pressures to analyze the global effects of this physical property on the protein folding process.
Collapse
Affiliation(s)
- Beatriz Fernández Del Río
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Antonio Rey
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
9
|
Zou T, Woodrum BW, Halloran N, Campitelli P, Bobkov AA, Ghirlanda G, Ozkan SB. Local Interactions That Contribute Minimal Frustration Determine Foldability. J Phys Chem B 2021; 125:2617-2626. [PMID: 33687216 DOI: 10.1021/acs.jpcb.1c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Earlier experiments suggest that the evolutionary information (conservation and coevolution) encoded in protein sequences is necessary and sufficient to specify the fold of a protein family. However, there is no computational work to quantify the effect of such evolutionary information on the folding process. Here we explore the role of early folding steps for sequences designed using coevolution and conservation through a combination of computational and experimental methods. We simulated a repertoire of native and designed WW domain sequences to analyze early local contact formation and found that the N-terminal β-hairpin turn would not form correctly due to strong non-native local contacts in unfoldable sequences. Through a maximum likelihood approach, we identified five local contacts that play a critical role in folding, suggesting that a small subset of amino acid pairs can be used to solve the "needle in the haystack" problem to design foldable sequences. Thus, using the contact probability of those five local contacts that form during the early stage of folding, we built a classification model that predicts the foldability of a WW sequence with 81% accuracy. This classification model was used to redesign WW domain sequences that could not fold due to frustration and make them foldable by introducing a few mutations that led to the stabilization of these critical local contacts. The experimental analysis shows that a redesigned sequence folds and binds to polyproline peptides with a similar affinity as those observed for native WW domains. Overall, our analysis shows that evolutionary-designed sequences should not only satisfy the folding stability but also ensure a minimally frustrated folding landscape.
Collapse
Affiliation(s)
- Taisong Zou
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Brian W Woodrum
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Halloran
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Andrey A Bobkov
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sefika Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Crippa M, Andreghetti D, Capelli R, Tiana G. Evolution of frustrated and stabilising contacts in reconstructed ancient proteins. EUROPEAN BIOPHYSICS JOURNAL 2021; 50:699-712. [PMID: 33569610 PMCID: PMC8260555 DOI: 10.1007/s00249-021-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
Energetic properties of a protein are a major determinant of its evolutionary fitness. Using a reconstruction algorithm, dating the reconstructed proteins and calculating the interaction network between their amino acids through a coevolutionary approach, we studied how the interactions that stabilise 890 proteins, belonging to five families, evolved for billions of years. In particular, we focused our attention on the network of most strongly attractive contacts and on that of poorly optimised, frustrated contacts. Our results support the idea that the cluster of most attractive interactions extends its size along evolutionary time, but from the data, we cannot conclude that protein stability or that the degree of frustration tends always to decrease.
Collapse
Affiliation(s)
- Martina Crippa
- Department of Physics and Center for Complexity and Biosystems, Università degli Studi di Milano and INFN, via Celoria 16, 20133, Milan, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Damiano Andreghetti
- Department of Physics and Center for Complexity and Biosystems, Università degli Studi di Milano and INFN, via Celoria 16, 20133, Milan, Italy
| | - Riccardo Capelli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Guido Tiana
- Department of Physics and Center for Complexity and Biosystems, Università degli Studi di Milano and INFN, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
11
|
Abdelsattar AS, Mansour Y, Aboul-Ela F. The Perturbed Free-Energy Landscape: Linking Ligand Binding to Biomolecular Folding. Chembiochem 2021; 22:1499-1516. [PMID: 33351206 DOI: 10.1002/cbic.202000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The effects of ligand binding on biomolecular conformation are crucial in drug design, enzyme mechanisms, the regulation of gene expression, and other biological processes. Descriptive models such as "lock and key", "induced fit", and "conformation selection" are common ways to interpret such interactions. Another historical model, linked equilibria, proposes that the free-energy landscape (FEL) is perturbed by the addition of ligand binding energy for the bound population of biomolecules. This principle leads to a unified, quantitative theory of ligand-induced conformation change, building upon the FEL concept. We call the map of binding free energy over biomolecular conformational space the "binding affinity landscape" (BAL). The perturbed FEL predicts/explains ligand-induced conformational changes conforming to all common descriptive models. We review recent experimental and computational studies that exemplify the perturbed FEL, with emphasis on RNA. This way of understanding ligand-induced conformation dynamics motivates new experimental and theoretical approaches to ligand design, structural biology and systems biology.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Youssef Mansour
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Fareed Aboul-Ela
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| |
Collapse
|
12
|
Roy S, Jaiswar A, Sarkar R. Dynamic Asymmetry Exposes 2019-nCoV Prefusion Spike. J Phys Chem Lett 2020; 11:7021-7027. [PMID: 32787330 PMCID: PMC7427122 DOI: 10.1021/acs.jpclett.0c01431] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The novel coronavirus (2019-nCoV) spike protein is a smart molecular machine that instigates the entry of coronavirus to the host cell causing the COVID-19 pandemic. In this study, a symmetry-information-loaded structure-based Hamiltonian is developed using recent Cryo-EM structural data to explore the complete conformational energy landscape of the full-length prefusion spike protein. The study finds the 2019-nCoV prefusion spike to adopt a unique strategy by undertaking a dynamic conformational asymmetry that results in two prevalent asymmetric structures of spike where one or two spike heads rotate up to provide better exposure to the host-cell receptor. A few unique interchain interactions are identified at the interface of closely associated N-terminal domain (NTD) and receptor binding domain (RBD) playing a crucial role in the thermodynamic stabilization of the up conformation of the RBD in the case of the 2019-nCoV spike. The interaction-level information decoded in this study may provide deep insight into developing effective therapeutic targets.
Collapse
Affiliation(s)
- Susmita Roy
- Department of Chemical Sciences,
Indian Institute of Science Education and Research
Kolkata, Campus Road, Mohanpur, West Bengal
741246, India
| | - Akhilesh Jaiswar
- Department of Chemical Sciences,
Indian Institute of Science Education and Research
Kolkata, Campus Road, Mohanpur, West Bengal
741246, India
| | - Raju Sarkar
- Department of Chemical Sciences,
Indian Institute of Science Education and Research
Kolkata, Campus Road, Mohanpur, West Bengal
741246, India
| |
Collapse
|
13
|
Epistatic contributions promote the unification of incompatible models of neutral molecular evolution. Proc Natl Acad Sci U S A 2020; 117:5873-5882. [PMID: 32123092 PMCID: PMC7084075 DOI: 10.1073/pnas.1913071117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mathematical models of evolution help us understand mechanisms driving protein-sequence change. Previous models recapitulate a disjoint subset of statistical features of natural sequences. We present a neutral evolution model that unifies features including extreme variance of the molecular clock’s tick rate and the observation of an evolutionary Stokes shift, an irreversible effect of mutations in the fitness landscape during sequence evolution. We show that interactions between amino acid sites, which inform our fitness metric, are required to observe these features. These interactions are inferred by using direct coupling analysis, which has been successfully utilized to predict protein structures, dynamics, and complexes from coevolutionary information. We anticipate our model will have applications in phylogenetics, ancestral reconstruction of sequences, and protein design. We introduce a model of amino acid sequence evolution that accounts for the statistical behavior of real sequences induced by epistatic interactions. We base the model dynamics on parameters derived from multiple sequence alignments analyzed by using direct coupling analysis methodology. Known statistical properties such as overdispersion, heterotachy, and gamma-distributed rate-across-sites are shown to be emergent properties of this model while being consistent with neutral evolution theory, thereby unifying observations from previously disjointed evolutionary models of sequences. The relationship between site restriction and heterotachy is characterized by tracking the effective alphabet dynamics of sites. We also observe an evolutionary Stokes shift in the fitness of sequences that have undergone evolution under our simulation. By analyzing the structural information of some proteins, we corroborate that the strongest Stokes shifts derive from sites that physically interact in networks near biochemically important regions. Perspectives on the implementation of our model in the context of the molecular clock are discussed.
Collapse
|
14
|
Dutta M, Jana B. Role of AAA3 Domain in Allosteric Communication of Dynein Motor Proteins. ACS OMEGA 2019; 4:21921-21930. [PMID: 31891071 PMCID: PMC6933798 DOI: 10.1021/acsomega.9b02946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Cytoplasmic dynein, an AAA+ motif containing motor, generates force and movement along the microtubule to execute important biological functions including intracellular material transport and cell division by hydrolyzing ATP. Among the six AAA+ domains, AAA1 is the primary ATPase site where a single ATP hydrolysis generates a single step. Nucleotide states in AAA3 gate dynein's activity, suggesting that AAA3 acts as a regulatory switch. However, the comprehensive structural perspective of AAA3 in dynein's mechanochemical cycle remains unclear. Here, we explored the allosteric transition path of dynein involving AAA3 using a coarse-grained structure-based model. ATP binding to the AAA1 domain creates a cascade of conformational changes through the other domains of the ring, which leads to the pre-power stroke formation. The linker domain, which is the mechanical element of dynein, shifts from a straight to a bent conformation during this process. In our present study, we observe that AAA3 gates the allosteric communication from AAA1 to the microtubule binding domain (MTBD) through AAA4 and AAA5. The MTBD is linked to the AAA+ ring via a coiled-coil stalk and a buttress domain, which are extended from AAA4 and AAA5, respectively. Further analysis also uncovers the role of AAA3 in the linker movement. The free energy calculation shows that the linker prefers the straight conformation when AAA3 remains in the ATP-bound condition. As AAA3 restricts the motion of AAA4 and AAA5, the linker/AAA5 interactions get stabilized, and the linker cannot move to the pre-power stroke state that halts the complete structural transition required for the mechanochemical cycle. Therefore, we suggest that AAA3 governs dynein's mechanochemical cycle and motility by controlling the AAA4 and AAA5 domains that further regulate the linker movement and the power stroke formation.
Collapse
|
15
|
Rajagopal N, Irudayanathan FJ, Nangia S. Computational Nanoscopy of Tight Junctions at the Blood-Brain Barrier Interface. Int J Mol Sci 2019; 20:E5583. [PMID: 31717316 PMCID: PMC6888702 DOI: 10.3390/ijms20225583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The selectivity of the blood-brain barrier (BBB) is primarily maintained by tight junctions (TJs), which act as gatekeepers of the paracellular space by blocking blood-borne toxins, drugs, and pathogens from entering the brain. The BBB presents a significant challenge in designing neurotherapeutics, so a comprehensive understanding of the TJ architecture can aid in the design of novel therapeutics. Unraveling the intricacies of TJs with conventional experimental techniques alone is challenging, but recently developed computational tools can provide a valuable molecular-level understanding of TJ architecture. We employed the computational methods toolkit to investigate claudin-5, a highly expressed TJ protein at the BBB interface. Our approach started with the prediction of claudin-5 structure, evaluation of stable dimer conformations and nanoscale assemblies, followed by the impact of lipid environments, and posttranslational modifications on these claudin-5 assemblies. These led to the study of TJ pores and barriers and finally understanding of ion and small molecule transport through the TJs. Some of these in silico, molecular-level findings, will need to be corroborated by future experiments. The resulting understanding can be advantageous towards the eventual goal of drug delivery across the BBB. This review provides key insights gleaned from a series of state-of-the-art nanoscale simulations (or computational nanoscopy studies) performed on the TJ architecture.
Collapse
Affiliation(s)
| | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
16
|
Li Y, De la Paz JA, Jiang X, Liu R, Pokkulandra AP, Bleris L, Morcos F. Coevolutionary Couplings Unravel PAM-Proximal Constraints of CRISPR-SpCas9. Biophys J 2019; 117:1684-1691. [PMID: 31648792 DOI: 10.1016/j.bpj.2019.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system, an immune system analog found in prokaryotes, allows a single-guide RNA to direct a CRISPR-associated protein (Cas) with combined helicase and nuclease activity to DNA. The presence of a specific protospacer adjacent motif (PAM) next to the DNA target site plays a crucial role in determining both efficacy and specificity of gene editing. Herein, we introduce a coevolutionary framework to computationally unveil nonobvious molecular interactions in CRISPR systems and experimentally probe their functional role. Specifically, we use direct coupling analysis, a statistical inference framework used to infer direct coevolutionary couplings, in the context of protein/nucleic acid interactions. Applied to Streptococcus pyogenes Cas9, a Hamiltonian metric obtained from coevolutionary relationships reveals, to our knowledge, novel PAM-proximal nucleotide preferences at the seventh position of S. pyogenes Cas9 PAM (5'-NGRNNNT-3'), which was experimentally confirmed by in vitro and functional assays in human cells. We show that coevolved and conserved interactions point to specific clues toward rationally engineering new generations of Cas9 systems and may eventually help decipher the diversity of this family of proteins.
Collapse
Affiliation(s)
- Yi Li
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas; Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas
| | - José A De la Paz
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Xianli Jiang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Richard Liu
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas
| | - Adarsha P Pokkulandra
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Leonidas Bleris
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas; Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas; Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas.
| | - Faruck Morcos
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas; Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas; Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
17
|
Roy S, Hennelly SP, Lammert H, Onuchic JN, Sanbonmatsu KY. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch. Nucleic Acids Res 2019; 47:3158-3170. [PMID: 30605518 PMCID: PMC6451092 DOI: 10.1093/nar/gky1311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 12/23/2022] Open
Abstract
Investigations of most riboswitches remain confined to the ligand-binding aptamer domain. However, during the riboswitch mediated transcription regulation process, the aptamer domain and the expression platform compete for a shared strand. If the expression platform dominates, an anti-terminator helix is formed, and the transcription process is active (ON state). When the aptamer dominates, transcription is terminated (OFF state). Here, we use an expression platform switching experimental assay and structure-based electrostatic simulations to investigate this ON-OFF transition of the full length SAM-I riboswitch and its magnesium concentration dependence. Interestingly, we find the ratio of the OFF population to the ON population to vary non-monotonically as magnesium concentration increases. Upon addition of magnesium, the aptamer domain pre-organizes, populating the OFF state, but only up to an intermediate magnesium concentration level. Higher magnesium concentration preferentially stabilizes the anti-terminator helix, populating the ON state, relatively destabilizing the OFF state. Magnesium mediated aptamer-expression platform domain closure explains this relative destabilization of the OFF state at higher magnesium concentration. Our study reveals the functional potential of magnesium in controlling transcription of its downstream genes and underscores the importance of a narrow concentration regime near the physiological magnesium concentration ranges, striking a balance between the OFF and ON states in bacterial gene regulation.
Collapse
Affiliation(s)
- Susmita Roy
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Scott P Hennelly
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Heiko Lammert
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, TX 77005, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
18
|
The role of coevolutionary signatures in protein interaction dynamics, complex inference, molecular recognition, and mutational landscapes. Curr Opin Struct Biol 2019; 56:179-186. [PMID: 31029927 DOI: 10.1016/j.sbi.2019.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
Abstract
Evolution imposes constraints at the interface of interacting biomolecules in order to preserve function or maintain fitness. This pressure may have a direct effect on the sequence composition of interacting biomolecules. As a result, statistical patterns of amino acid or nucleotide covariance that encode for physical and functional interactions are observed in sequences of extant organisms. In recent years, global pairwise models of amino acid and nucleotide coevolution from multiple sequence alignments have been developed and utilized to study molecular interactions in structural biology. In proteins, for which the energy landscape is funneled and minimally frustrated, a direct connection between the physical and sequence space landscapes can be established. Estimating coevolutionary information from sequences of interacting molecules has a broad impact in molecular biology. Applications include the accurate determination of 3D structures of molecular complexes, inference of protein interaction partners, models of protein-protein interaction specificity, the elucidation, and design of protein-nucleic acid recognition as well as the discovery of genome-wide epistatic effects. The current state of the art of coevolutionary analysis includes biomedical applications ranging from mutational landscapes and drug-design to vaccine development.
Collapse
|
19
|
Coevolutionary Signals and Structure-Based Models for the Prediction of Protein Native Conformations. Methods Mol Biol 2019; 1851:83-103. [PMID: 30298393 DOI: 10.1007/978-1-4939-8736-8_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The analysis of coevolutionary signals from families of evolutionarily related sequences is a recent conceptual framework that provides valuable information about unique intramolecular interactions and, therefore, can assist in the elucidation of biomolecular conformations. It is based on the idea that compensatory mutations at specific residue positions in a sequence help preserve stability of protein architecture and function and leave a statistical signature related to residue-residue interactions in the 3D structure of the protein. Consequently, statistical analysis of these correlated mutations in subsets of protein sequence alignments can be used to predict which residue pairs should be in spatial proximity in the native functional protein fold. These predicted signals can be then used to guide molecular dynamics (MD) simulations to predict the three-dimensional coordinates of a functional amino acid chain. In this chapter, we introduce a general and efficient methodology to perform coevolutionary analysis on protein sequences and to use this information in combination with computational physical models to predict the native 3D conformation of functional polypeptides. We present a step-by-step methodology that includes the description and application of software tools and databases required to infer tertiary structures of a protein fold. The general pipeline includes instructions on (1) how to obtain direct amino acid couplings from protein sequences using direct coupling analysis (DCA), (2) how to incorporate such signals as interaction potentials in Cα structure-based models (SBMs) to drive protein-folding MD simulations, (3) a procedure to estimate secondary structure and how to include such estimates in the topology files required in the MD simulations, and (4) how to build full atomic models based on the top Cα candidates selected in the pipeline. The information presented in this chapter is self-contained and sufficient to allow a computational scientist to predict structures of proteins using publicly available algorithms and databases.
Collapse
|
20
|
Butler BM, Kazan IC, Kumar A, Ozkan SB. Coevolving residues inform protein dynamics profiles and disease susceptibility of nSNVs. PLoS Comput Biol 2018; 14:e1006626. [PMID: 30496278 PMCID: PMC6289467 DOI: 10.1371/journal.pcbi.1006626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/11/2018] [Accepted: 11/09/2018] [Indexed: 11/18/2022] Open
Abstract
The conformational dynamics of proteins is rarely used in methodologies used to predict the impact of genetic mutations due to the paucity of three-dimensional protein structures as compared to the vast number of available sequences. Until now a three-dimensional (3D) structure has been required to predict the conformational dynamics of a protein. We introduce an approach that estimates the conformational dynamics of a protein, without relying on structural information. This de novo approach utilizes coevolving residues identified from a multiple sequence alignment (MSA) using Potts models. These coevolving residues are used as contacts in a Gaussian network model (GNM) to obtain protein dynamics. B-factors calculated using sequence-based GNM (Seq-GNM) are in agreement with crystallographic B-factors as well as theoretical B-factors from the original GNM that utilizes the 3D structure. Moreover, we demonstrate the ability of the calculated B-factors from the Seq-GNM approach to discriminate genomic variants according to their phenotypes for a wide range of proteins. These results suggest that protein dynamics can be approximated based on sequence information alone, making it possible to assess the phenotypes of nSNVs in cases where a 3D structure is unknown. We hope this work will promote the use of dynamics information in genetic disease prediction at scale by circumventing the need for 3D structures. Proteins are dynamic machines that undergo atomic fluctuations, side chain rotations, and collective domain movements that are required for biological function. There is, therefore, a need for quantitative metrics that capture the dynamic fluctuations per position to understand the critical role of protein dynamics in shaping biological functions. A limiting factor in incorporating structural dynamics information in the classification of non-synonymous single nucleotide variants (nSNVs) is the limited number of known 3D structures compared to the vast number of available sequences. We have developed a new sequence-based GNM method, termed Seq-GNM, which uses co-evolving amino acid positions based on the multiple sequence alignment of a given query sequence to estimate the thermal motions of C-alpha atoms. In this paper, we have demonstrated that the predicted thermal motions using Seq-GNM are in reasonable agreement with experimental B-factors as well as B-factors computed using 3D crystal structures. We also provide evidence that B-factors predicted by Seq-GNM are capable of distinguishing between disease-associated and neutral nSNVs.
Collapse
Affiliation(s)
- Brandon M. Butler
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, United States of America
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, United States of America
| | - Avishek Kumar
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, United States of America
- Harris School of Public Policy and Center for Data Science and Public Policy, University of Chicago, Chicago, IL, United States of America
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, United States of America
- * E-mail:
| |
Collapse
|
21
|
Structural consequences of hereditary spastic paraplegia disease-related mutations in kinesin. Proc Natl Acad Sci U S A 2018; 115:E10822-E10829. [PMID: 30366951 DOI: 10.1073/pnas.1810622115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide range of mutations in the kinesin motor Kif5A have been linked to a neuronal disorder called hereditary spastic paraplegia (HSP). The position of these mutations can vary, and a range of different motile behaviors have been observed, indicating that the HSP mutants can alter distinct aspects of kinesin mechanochemistry. While focusing on four key HSP-associated mutants, this study examined the structural and dynamic perturbations that arise from these mutations using a series of different computational methods, ranging from bioinformatics analyses to all-atom simulations, that account for solvent effects explicitly. We show that two catalytic domain mutations (R280S and K253N) reduce the microtubule (MT) binding affinity of the kinesin head domains appreciably, while N256S has a much smaller impact. Bioinformatics analysis suggests that the stalk mutation A361V perturbs motor dimerization. Subsequent integration of these effects into a coarse-grained structure-based model of dimeric kinesin revealed that the order-disorder transition of the neck linker is substantially affected, indicating a hampered directionality and processivity of kinesin. The present analyses therefore suggest that, in addition to kinesin-MT binding and coiled-coil dimerization, HSP mutations affecting motor stepping transitions and processivity can lead to disease.
Collapse
|
22
|
Wang Y, Tian P, Boomsma W, Lindorff-Larsen K. Monte Carlo Sampling of Protein Folding by Combining an All-Atom Physics-Based Model with a Native State Bias. J Phys Chem B 2018; 122:11174-11185. [DOI: 10.1021/acs.jpcb.8b06335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Wang
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Pengfei Tian
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
23
|
dos Santos RN, Khan S, Morcos F. Characterization of C-ring component assembly in flagellar motors from amino acid coevolution. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171854. [PMID: 29892378 PMCID: PMC5990795 DOI: 10.1098/rsos.171854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Bacterial flagellar motility, an important virulence factor, is energized by a rotary motor localized within the flagellar basal body. The rotor module consists of a large framework (the C-ring), composed of the FliG, FliM and FliN proteins. FliN and FliM contacts the FliG torque ring to control the direction of flagellar rotation. We report that structure-based models constrained only by residue coevolution can recover the binding interface of atomic X-ray dimer complexes with remarkable accuracy (approx. 1 Å RMSD). We propose a model for FliM-FliN heterodimerization, which agrees accurately with homologous interfaces as well as in situ cross-linking experiments, and hence supports a proposed architecture for the lower portion of the C-ring. Furthermore, this approach allowed the identification of two discrete and interchangeable homodimerization interfaces between FliM middle domains that agree with experimental measurements and might be associated with C-ring directional switching dynamics triggered upon binding of CheY signal protein. Our findings provide structural details of complex formation at the C-ring that have been difficult to obtain with previous methodologies and clarify the architectural principle that underpins the ultra-sensitive allostery exhibited by this ring assembly that controls the clockwise or counterclockwise rotation of flagella.
Collapse
Affiliation(s)
- Ricardo Nascimento dos Santos
- Institute of Chemistry and Center for Computational Engineering and Science, University of Campinas, Campinas, SP, Brazil
| | - Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
24
|
Mandalaparthy V, Sanaboyana VR, Rafalia H, Gosavi S. Exploring the effects of sparse restraints on protein structure prediction. Proteins 2017; 86:248-262. [DOI: 10.1002/prot.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Varun Mandalaparthy
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| | - Venkata Ramana Sanaboyana
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| | - Hitesh Rafalia
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
- Manipal University, Madhav Nagar; Manipal 576104 India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road; Bangalore 560065 India
| |
Collapse
|
25
|
Abstract
Co-evolution techniques were originally conceived to assist in protein structure prediction by inferring pairs of residues that share spatial proximity. However, the functional relationships that can be extrapolated from co-evolution have also proven to be useful in a wide array of structural bioinformatics applications. These techniques are a powerful way to extract structural and functional information in a sequence-rich world.
Collapse
|
26
|
Simkovic F, Ovchinnikov S, Baker D, Rigden DJ. Applications of contact predictions to structural biology. IUCRJ 2017; 4:291-300. [PMID: 28512576 PMCID: PMC5414403 DOI: 10.1107/s2052252517005115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Evolutionary pressure on residue interactions, intramolecular or intermolecular, that are important for protein structure or function can lead to covariance between the two positions. Recent methodological advances allow much more accurate contact predictions to be derived from this evolutionary covariance signal. The practical application of contact predictions has largely been confined to structural bioinformatics, yet, as this work seeks to demonstrate, the data can be of enormous value to the structural biologist working in X-ray crystallo-graphy, cryo-EM or NMR. Integrative structural bioinformatics packages such as Rosetta can already exploit contact predictions in a variety of ways. The contribution of contact predictions begins at construct design, where structural domains may need to be expressed separately and contact predictions can help to predict domain limits. Structure solution by molecular replacement (MR) benefits from contact predictions in diverse ways: in difficult cases, more accurate search models can be constructed using ab initio modelling when predictions are available, while intermolecular contact predictions can allow the construction of larger, oligomeric search models. Furthermore, MR using supersecondary motifs or large-scale screens against the PDB can exploit information, such as the parallel or antiparallel nature of any β-strand pairing in the target, that can be inferred from contact predictions. Contact information will be particularly valuable in the determination of lower resolution structures by helping to assign sequence register. In large complexes, contact information may allow the identity of a protein responsible for a certain region of density to be determined and then assist in the orientation of an available model within that density. In NMR, predicted contacts can provide long-range information to extend the upper size limit of the technique in a manner analogous but complementary to experimental methods. Finally, predicted contacts can distinguish between biologically relevant interfaces and mere lattice contacts in a final crystal structure, and have potential in the identification of functionally important regions and in foreseeing the consequences of mutations.
Collapse
Affiliation(s)
- Felix Simkovic
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Sergey Ovchinnikov
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98195, USA
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
27
|
Roy S, Lammert H, Hayes RL, Chen B, LeBlanc R, Dayie TK, Onuchic JN, Sanbonmatsu KY. A magnesium-induced triplex pre-organizes the SAM-II riboswitch. PLoS Comput Biol 2017; 13:e1005406. [PMID: 28248966 PMCID: PMC5352136 DOI: 10.1371/journal.pcbi.1005406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/15/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.
Collapse
Affiliation(s)
- Susmita Roy
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Heiko Lammert
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Ryan L. Hayes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Regan LeBlanc
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JNO); (KYS)
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- New Mexico Consortium, Los Alamos, New Mexico, United States of America
- * E-mail: (JNO); (KYS)
| |
Collapse
|
28
|
Haglund E, Pilko A, Wollman R, Jennings PA, Onuchic JN. Pierced Lasso Topology Controls Function in Leptin. J Phys Chem B 2017; 121:706-718. [PMID: 28035835 DOI: 10.1021/acs.jpcb.6b11506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein engineering is a powerful tool in drug design and therapeutics, where disulphide bridges are commonly introduced to stabilize proteins. However, these bonds also introduce covalent loops, which are often neglected. These loops may entrap the protein backbone on opposite sides, leading to a "knotted" topology, forming a so-called Pierced Lasso (PL). In this elegant system, the "knot" is held together with a single disulphide bridge where part of the polypeptide chain is threaded through. The size and position of these covalent loops can be manipulated through protein design in vitro, whereas nature uses polymorphism to switch the PL topology. The PL protein leptin shows genetic modification of an N-terminal residue, adding a third cysteine to the same sequence. In an effort to understand the mechanism of threading of these diverse topologies, we designed three loop variants to mimic the polymorphic sequence. This adds elegance to the system under study, as it allows the generation of three possible covalent loops; they are the original wild-type C-terminal loop protein, the fully circularized unthreaded protein, and the N-terminal loop protein, responsible for different lasso topologies. The size of the loop changes the threading mechanism from a slipknotting to a plugging mechanism, with increasing loop size. Interestingly, the ground state of the native protein structure is largely unaffected, but biological assays show that the activity is maximized by properly controlled dynamics in the threaded state. A threaded topology with proper conformational dynamics is important for receptor interaction and activation of the signaling pathways in vivo.
Collapse
Affiliation(s)
- Ellinor Haglund
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biosciences, Rice University , Houston, Texas, United States
| | - Anna Pilko
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - Roy Wollman
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California, San Diego (UCSD) , La Jolla, California, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics (CTBP) and Departments of Physics and Astronomy, Chemistry and Biosciences, Rice University , Houston, Texas, United States
| |
Collapse
|
29
|
Jana B, Onuchic JN. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity. PLoS Comput Biol 2016; 12:e1005035. [PMID: 27494025 PMCID: PMC4975490 DOI: 10.1371/journal.pcbi.1005035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/25/2016] [Indexed: 11/18/2022] Open
Abstract
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. Molecular motors are perhaps the most important proteins present in the cell. The importance specifically lies with the fact that these proteins use the chemical energy source (such as ATP) of the cell to generate mechanical work and perform a wide range of functionalities. In this article, we generalize the idea of using structure-based models to explore the mechanochemistry of myosin molecular motors in structural terms. We find that a structural adaptation of the motor head domain in post-powerstroke state signals faster ADP release from the trailing head to maintain its processivity while directionality arises from a careful design of peripheral structural elements. These results along with our earlier results on other motors provide a general rule for motor activity.
Collapse
Affiliation(s)
- Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
- * E-mail: (BJ); (JNO)
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- * E-mail: (BJ); (JNO)
| |
Collapse
|
30
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
31
|
Livi L, Maiorino E, Giuliani A, Rizzi A, Sadeghian A. A generative model for protein contact networks. J Biomol Struct Dyn 2016; 34:1441-54. [DOI: 10.1080/07391102.2015.1077736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Lorenzo Livi
- Department of Computer Science, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3Canada
| | - Enrico Maiorino
- Department of Information Engineering, Electronics, and Telecommunications, SAPIENZA University of Rome, Via Eudossiana 18, 00184Rome, Italy
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161Rome, Italy
| | - Antonello Rizzi
- Department of Information Engineering, Electronics, and Telecommunications, SAPIENZA University of Rome, Via Eudossiana 18, 00184Rome, Italy
| | - Alireza Sadeghian
- Department of Computer Science, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3Canada
| |
Collapse
|
32
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
33
|
SMOG 2: A Versatile Software Package for Generating Structure-Based Models. PLoS Comput Biol 2016; 12:e1004794. [PMID: 26963394 PMCID: PMC4786265 DOI: 10.1371/journal.pcbi.1004794] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/07/2016] [Indexed: 12/01/2022] Open
Abstract
Molecular dynamics simulations with coarse-grained or simplified Hamiltonians have proven to be an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Originally developed in the context of protein folding, structure-based models (SBMs) have since been extended to probe a diverse range of biomolecular processes, spanning from protein and RNA folding to functional transitions in molecular machines. The hallmark feature of a structure-based model is that part, or all, of the potential energy function is defined by a known structure. Within this general class of models, there exist many possible variations in resolution and energetic composition. SMOG 2 is a downloadable software package that reads user-designated structural information and user-defined energy definitions, in order to produce the files necessary to use SBMs with high performance molecular dynamics packages: GROMACS and NAMD. SMOG 2 is bundled with XML-formatted template files that define commonly used SBMs, and it can process template files that are altered according to the needs of each user. This computational infrastructure also allows for experimental or bioinformatics-derived restraints or novel structural features to be included, e.g. novel ligands, prosthetic groups and post-translational/transcriptional modifications. The code and user guide can be downloaded at http://smog-server.org/smog2.
Collapse
|
34
|
Noel JK, Morcos F, Onuchic JN. Sequence co-evolutionary information is a natural partner to minimally-frustrated models of biomolecular dynamics. F1000Res 2016; 5. [PMID: 26918164 PMCID: PMC4755392 DOI: 10.12688/f1000research.7186.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
Experimentally derived structural constraints have been crucial to the implementation of computational models of biomolecular dynamics. For example, not only does crystallography provide essential starting points for molecular simulations but also high-resolution structures permit for parameterization of simplified models. Since the energy landscapes for proteins and other biomolecules have been shown to be minimally frustrated and therefore funneled, these structure-based models have played a major role in understanding the mechanisms governing folding and many functions of these systems. Structural information, however, may be limited in many interesting cases. Recently, the statistical analysis of residue co-evolution in families of protein sequences has provided a complementary method of discovering residue-residue contact interactions involved in functional configurations. These functional configurations are often transient and difficult to capture experimentally. Thus, co-evolutionary information can be merged with that available for experimentally characterized low free-energy structures, in order to more fully capture the true underlying biomolecular energy landscape.
Collapse
Affiliation(s)
- Jeffrey K Noel
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
35
|
Kravats AN, Tonddast-Navaei S, Stan G. Coarse-Grained Simulations of Topology-Dependent Mechanisms of Protein Unfolding and Translocation Mediated by ClpY ATPase Nanomachines. PLoS Comput Biol 2016; 12:e1004675. [PMID: 26734937 PMCID: PMC4703411 DOI: 10.1371/journal.pcbi.1004675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/25/2015] [Indexed: 01/30/2023] Open
Abstract
Clp ATPases are powerful ring shaped nanomachines which participate in the degradation pathway of the protein quality control system, coupling the energy from ATP hydrolysis to threading substrate proteins (SP) through their narrow central pore. Repetitive cycles of sequential intra-ring ATP hydrolysis events induce axial excursions of diaphragm-forming central pore loops that effect the application of mechanical forces onto SPs to promote unfolding and translocation. We perform Langevin dynamics simulations of a coarse-grained model of the ClpY ATPase-SP system to elucidate the molecular details of unfolding and translocation of an α/β model protein. We contrast this mechanism with our previous studies which used an all-α SP. We find conserved aspects of unfolding and translocation mechanisms by allosteric ClpY, including unfolding initiated at the tagged C-terminus and translocation via a power stroke mechanism. Topology-specific aspects include the time scales, the rate limiting steps in the degradation pathway, the effect of force directionality, and the translocase efficacy. Mechanisms of ClpY-assisted unfolding and translocation are distinct from those resulting from non-allosteric mechanical pulling. Bulk unfolding simulations, which mimic Atomic Force Microscopy-type pulling, reveal multiple unfolding pathways initiated at the C-terminus, N-terminus, or simultaneously from both termini. In a non-allosteric ClpY ATPase pore, mechanical pulling with constant velocity yields larger effective forces for SP unfolding, while pulling with constant force results in simultaneous unfolding and translocation. Cell survival is critically dependent on tightly regulated protein quality control, which includes chaperone-mediated folding and degradation. In the degradation pathway, AAA+ nanomachines, such as bacterial Clp proteases, use ATP-driven mechanisms to mechanically unfold, translocate, and destroy excess or defective proteins. Understanding these remodeling mechanisms is of central importance for deciphering the details of essential cellular processes. We perform coarse-grained computer simulations to extensively probe the effect of substrate protein topology on unfolding and translocation actions of the ClpY ATPase nanomachine. We find that, independent of SP topology, unfolding proceeds from the tagged C-terminus, which is engaged by the ATPase, and translocation involves coordinated steps. Topology-specific aspects include more complex unfolding and translocation pathways of the α/β SP compared with the all-α SP due to high stability of β-hairpins and interplay of tertiary contacts. In addition, directionality of the mechanical force applied by the Clp ATPase gives rise to distinct unfolding pathways.
Collapse
Affiliation(s)
- Andrea N. Kravats
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sam Tonddast-Navaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dutta M, Jana B. Exploring the mechanochemical cycle of dynein motor proteins: structural evidence of crucial intermediates. Phys Chem Chem Phys 2016; 18:33085-33093. [DOI: 10.1039/c6cp04496d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploration of the biologically relevant pathways of dynein's mechanochemical cycle using structure based models.
Collapse
Affiliation(s)
- Mandira Dutta
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Biman Jana
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
37
|
Cheng RR, Raghunathan M, Noel JK, Onuchic JN. Constructing sequence-dependent protein models using coevolutionary information. Protein Sci 2016; 25:111-22. [PMID: 26223372 PMCID: PMC4815312 DOI: 10.1002/pro.2758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022]
Abstract
Recent developments in global statistical methodologies have advanced the analysis of large collections of protein sequences for coevolutionary information. Coevolution between amino acids in a protein arises from compensatory mutations that are needed to maintain the stability or function of a protein over the course of evolution. This gives rise to quantifiable correlations between amino acid sites within the multiple sequence alignment of a protein family. Here, we use the maximum entropy-based approach called mean field Direct Coupling Analysis (mfDCA) to infer a Potts model Hamiltonian governing the correlated mutations in a protein family. We use the inferred pairwise statistical couplings to generate the sequence-dependent heterogeneous interaction energies of a structure-based model (SBM) where only native contacts are considered. Considering the ribosomal S6 protein and its circular permutants as well as the SH3 protein, we demonstrate that these models quantitatively agree with experimental data on folding mechanisms. This work serves as a new framework for generating coevolutionary data-enriched models that can potentially be used to engineer key functional motions and novel interactions in protein systems.
Collapse
Affiliation(s)
- Ryan R Cheng
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
| | - Mohit Raghunathan
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
- Department of Physics & Astronomy, Rice University, Houston, Texas, 77005
| | - Jeffrey K Noel
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
- Department of Physics & Astronomy, Rice University, Houston, Texas, 77005
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
- Department of Physics & Astronomy, Rice University, Houston, Texas, 77005
| |
Collapse
|
38
|
Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition. PLoS One 2015; 10:e0143374. [PMID: 26629896 PMCID: PMC4667898 DOI: 10.1371/journal.pone.0143374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15) derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F) was equally well tolerated as the wild type glutamine (Q) at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine) was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology). Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.
Collapse
|
39
|
dos Santos RN, Morcos F, Jana B, Andricopulo AD, Onuchic JN. Dimeric interactions and complex formation using direct coevolutionary couplings. Sci Rep 2015; 5:13652. [PMID: 26338201 PMCID: PMC4559900 DOI: 10.1038/srep13652] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/13/2015] [Indexed: 11/09/2022] Open
Abstract
We develop a procedure to characterize the association of protein structures into homodimers using coevolutionary couplings extracted from Direct Coupling Analysis (DCA) in combination with Structure Based Models (SBM). Identification of dimerization contacts using DCA is more challenging than intradomain contacts since direct couplings are mixed with monomeric contacts. Therefore a systematic way to extract dimerization signals has been elusive. We provide evidence that the prediction of homodimeric complexes is possible with high accuracy for all the cases we studied which have rich sequence information. For the most accurate conformations of the structurally diverse dimeric complexes studied the mean and interfacial RMSDs are 1.95Å and 1.44Å, respectively. This methodology is also able to identify distinct dimerization conformations as for the case of the family of response regulators, which dimerize upon activation. The identification of dimeric complexes can provide interesting molecular insights in the construction of large oligomeric complexes and be useful in the study of aggregation related diseases like Alzheimer's or Parkinson's.
Collapse
Affiliation(s)
- Ricardo N. dos Santos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, São Carlos, 13563-120, Brazil
| | - Faruck Morcos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, São Carlos, 13563-120, Brazil
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
| |
Collapse
|
40
|
Malinverni D, Marsili S, Barducci A, De Los Rios P. Large-Scale Conformational Transitions and Dimerization Are Encoded in the Amino-Acid Sequences of Hsp70 Chaperones. PLoS Comput Biol 2015; 11:e1004262. [PMID: 26046683 PMCID: PMC4457872 DOI: 10.1371/journal.pcbi.1004262] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/01/2015] [Indexed: 12/30/2022] Open
Abstract
Hsp70s are a class of ubiquitous and highly conserved molecular chaperones playing a central role in the regulation of proteostasis in the cell. Hsp70s assist a myriad of cellular processes by binding unfolded or misfolded substrates during a complex biochemical cycle involving large-scale structural rearrangements. Here we show that an analysis of coevolution at the residue level fully captures the characteristic large-scale conformational transitions of this protein family, and predicts an evolutionary conserved–and thus functional–homo-dimeric arrangement. Furthermore, we highlight that the features encoding the Hsp70 dimer are more conserved in bacterial than in eukaryotic sequences, suggesting that the known Hsp70/Hsp110 hetero-dimer is a eukaryotic specialization built on a pre-existing template. Molecular chaperones are a class of proteins that are crucial for the correct functioning of cells. They play central housekeeping roles in the normal cell cycle, and are major actors of the protection system of the cell against cell stress conditions. In this study, we apply statistical inference methods to analyse the structure and function of the Hsp70 molecular chaperone, one of the main members of chaperones. We use the correlated amino acid coevolutions in protein sequences to identify directly interacting amino acids. Our results show that coevolutions capture an appreciable fraction of native contacts throughout the protein. Furthermore, amino acid coevolution predicts previously hypothesized functional dimer interactions between Hsp70s, thus giving a theoretical contribution to this debate.
Collapse
Affiliation(s)
- Duccio Malinverni
- Laboratoire de Biophysique Statistique, École Polytechnique Fédérale de Lausanne, Faculté de Sciences de Base, Lausanne, Switzerland
| | - Simone Marsili
- Structural Computational Biology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alessandro Barducci
- Laboratoire de Biophysique Statistique, École Polytechnique Fédérale de Lausanne, Faculté de Sciences de Base, Lausanne, Switzerland
| | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, École Polytechnique Fédérale de Lausanne, Faculté de Sciences de Base, Lausanne, Switzerland
| |
Collapse
|
41
|
Ghosh S, Ghosh C, Nandi S, Bhattacharyya K. Unfolding and refolding of a protein by cholesterol and cyclodextrin: a single molecule study. Phys Chem Chem Phys 2015; 17:8017-27. [DOI: 10.1039/c5cp00385g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cholesterol induced unfolding of a globular protein, human serum albumin (HSA), and β-cyclodextrin induced refolding of the unfolded protein is demonstrated in this study.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Physical Chemistry
- Indian Association For The cultivation of Science
- Kolkata 700 032
- India
| | - Catherine Ghosh
- Department of Physical Chemistry
- Indian Association For The cultivation of Science
- Kolkata 700 032
- India
| | - Somen Nandi
- Department of Physical Chemistry
- Indian Association For The cultivation of Science
- Kolkata 700 032
- India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry
- Indian Association For The cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
42
|
Tamir S, Paddock ML, Darash-Yahana-Baram M, Holt SH, Sohn YS, Agranat L, Michaeli D, Stofleth JT, Lipper CH, Morcos F, Cabantchik IZ, Onuchic JN, Jennings PA, Mittler R, Nechushtai R. Structure-function analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1294-315. [PMID: 25448035 DOI: 10.1016/j.bbamcr.2014.10.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 12/31/2022]
Abstract
A novel family of 2Fe-2S proteins, the NEET family, was discovered during the last decade in numerous organisms, including archea, bacteria, algae, plant and human; suggesting an evolutionary-conserved function, potentially mediated by their CDGSH Iron-Sulfur Domain. In human, three NEET members encoded by the CISD1-3 genes were identified. The structures of CISD1 (mitoNEET, mNT), CISD2 (NAF-1), and the plant At-NEET uncovered a homodimer with a unique "NEET fold", as well as two distinct domains: a beta-cap and a 2Fe-2S cluster-binding domain. The 2Fe-2S clusters of NEET proteins were found to be coordinated by a novel 3Cys:1His structure that is relatively labile compared to other 2Fe-2S proteins and is the reason of the NEETs' clusters could be transferred to apo-acceptor protein(s) or mitochondria. Positioned at the protein surface, the NEET's 2Fe-2S's coordinating His is exposed to protonation upon changes in its environment, potentially suggesting a sensing function for this residue. Studies in different model systems demonstrated a role for NAF-1 and mNT in the regulation of cellular iron, calcium and ROS homeostasis, and uncovered a key role for NEET proteins in critical processes, such as cancer cell proliferation and tumor growth, lipid and glucose homeostasis in obesity and diabetes, control of autophagy, longevity in mice, and senescence in plants. Abnormal regulation of NEET proteins was consequently found to result in multiple health conditions, and aberrant splicing of NAF-1 was found to be a causative of the neurological genetic disorder Wolfram Syndrome 2. Here we review the discovery of NEET proteins, their structural, biochemical and biophysical characterization, and their most recent structure-function analyses. We additionally highlight future avenues of research focused on NEET proteins and propose an essential role for NEETs in health and disease. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Sagi Tamir
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Mark L Paddock
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Merav Darash-Yahana-Baram
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Sarah H Holt
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Yang Sung Sohn
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Lily Agranat
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Dorit Michaeli
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jason T Stofleth
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Colin H Lipper
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Faruck Morcos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Ioav Z Cabantchik
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77050, USA; Department of Physics and Astronomy, Rice University, Houston, TX 77050, USA; Department of Chemistry, Rice University, Houston, TX 77050, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77050, USA
| | - Patricia A Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ron Mittler
- Department of Biology, University of North Texas, Denton, TX 76203, USA
| | - Rachel Nechushtai
- The Alexander Silberman Life Science Institute and the Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
43
|
Abstract
Biological physics is clearly becoming one of the leading sciences of the 21st century. This field involves the cross-fertilization of ideas and methods from biology and biochemistry on the one hand and the physics of complex and far from equilibrium systems on the other. Here I want to discuss how biological physics is a new area of physics and not simply applications of known physics to biological problems. I will focus in particular on the new advances in theoretical physics that are already flourishing today. They will become central pieces in the creation of this new frontier of science.
Collapse
Affiliation(s)
- José N Onuchic
- Center for Theoretical Biological Physics (CTBP), Rice University, Houston, TX 77005, USA
| |
Collapse
|
44
|
Abstract
The kinase-inducible domain interacting (KIX) domain of the CREB binding protein (CBP) is capable of simultaneously binding two intrinsically disordered transcription factors, such as the mixed-lineage leukemia (MLL) and c-Myb peptides, at isolated interaction sites. In vitro, the affinity for binding c-Myb is approximately doubled when KIX is in complex with MLL, which suggests a positive cooperative binding mechanism, and the affinity for MLL is also slightly increased when KIX is first bound by c-Myb. Expanding the scope of recent NMR and computational studies, we explore the allosteric mechanism at a detailed molecular level that directly connects the microscopic structural dynamics to the macroscopic shift in binding affinities. To this end, we have performed molecular dynamics simulations of free KIX, KIX-c-Myb, MLL-KIX, and MLL-KIX-c-Myb using a topology-based Gō-like model. Our results capture an increase in affinity for the peptide in the allosteric site when KIX is prebound by a complementary effector and both peptides follow an effector-independent folding-and-binding mechanism. More importantly, we discover that MLL binding lowers the entropic cost for c-Myb binding, and vice versa, by stabilizing the L12-G2 loop and the C-terminal region of the α3 helix on KIX. This work demonstrates the importance of entropy in allosteric signaling between promiscuous molecular recognition sites and can inform the rational design of small molecule stabilizers to target important regions of conformationally dynamic proteins.
Collapse
|
45
|
Tetchner S, Kosciolek T, Jones DT. Opportunities and limitations in applying coevolution-derived contacts to protein structure prediction. BIO-ALGORITHMS AND MED-SYSTEMS 2014. [DOI: 10.1515/bams-2014-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe prospect of identifying contacts in protein structures purely from aligned protein sequences has lured researchers for a long time, but progress has been modest until recently. Here, we reviewed the most successful methods for identifying structural contacts from sequence and how these methods differ and made an initial assessment of the overlap of predicted contacts by alternative approaches. We then discussed the limitations of these methods and possibilities for future development and highlighted the recent applications of contacts in tertiary structure prediction, identifying the residues at the interfaces of protein-protein interactions, and the use of these methods in disentangling alternative conformational states. Finally, we identified the current challenges in the field of contact prediction, concentrating on the limitations imposed by available data, dependencies on the sequence alignments, and possible future developments.
Collapse
|