1
|
Jiao Y, Xiang W, Xia Y, Xie Q, Yu Y, Yang Z. The Side-chain design of rhodamine dye and the performance research of photocatalytic hydrogen production system by the first principles. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Sowmya S, Vijaikanth V. Electrochemistry and Electrocatalytic Activity of Cobaloxime Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202104044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Subramanian Sowmya
- Department of Applied Chemistry Karunya Institute of Technology and Sciences Coimbatore 641114 Tamil Nadu India
| | - Vijendran Vijaikanth
- Department of Applied Chemistry Karunya Institute of Technology and Sciences Coimbatore 641114 Tamil Nadu India
| |
Collapse
|
3
|
Kanyan D, Horacek-Glading M, Wildervanck MJ, Söhnel T, Ware DC, Brothers PJ. O-BODIPYs as fluorescent labels for sugars: glucose, xylose and ribose. Org Chem Front 2022. [DOI: 10.1039/d1qo01418h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent 1 : 1, 1 : 2 and 1 : 3 sugar-O-BODIPY conjugates of glucose, xylose and ribose were characterised by 1H–11B HMBC and 11B NMR to discriminate between boron bound to 1,2-, 1,3- or 1,4-diol sites and furanose/pyranose sugar forms.
Collapse
Affiliation(s)
- Deepika Kanyan
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Miriana Horacek-Glading
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Martijn J. Wildervanck
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David C. Ware
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Penelope J. Brothers
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Research School of Chemistry, Australian National University, 137 Sullivan's Creek Road, Canberra ACT 2601, Australia
| |
Collapse
|
4
|
Sia RCE, Arellano-Reyes RA, Keyes TE, Guthmuller J. Radiative lifetime of a BODIPY dye as calculated by TDDFT and EOM-CCSD methods: solvent and vibronic effects. Phys Chem Chem Phys 2021; 23:26324-26335. [PMID: 34787616 DOI: 10.1039/d1cp03775g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radiative emission lifetime and associated S1 excited state properties of a BODIPY dye are investigated with TDDFT and EOM-CCSD calculations. The effects of a solvent are described with the polarizable continuum model using the linear response (LR) approach as well as state-specific methods. The Franck-Condon (FC), Herzberg-Teller (HT) and Duschinsky vibronic effects are evaluated for the absorption and emission spectra, and for the radiative lifetime. The transition energies, spectra shapes and radiative lifetime are assessed with respect to experimental results. It is found that the TDDFT transition energies are overestimated by about 0.4-0.5 eV, whereas EOM-CCSD improves the vertical emission energy by about 0.1 eV in comparison to TDDFT. The solvatochromic and Stokes shifts are better reproduced by the state-specific solvation methods, which show that these methods are more suited than the LR model to describe the solvent effects on the BODIPY dye. The vibronic effects lead to an increase of the radiative lifetime of about 0.4 to 1.0 ns depending on the theoretical approach, which highlights the importance of such effects. Moreover, the HT effects are negligible on both the spectra and lifetime, which demonstrates that the FC approximation is accurate for the BODIPY dye. Finally, the comparison with experimental data shows that the radiative lifetimes predicted by EOM-CCSD and TDDFT have comparable accuracy.
Collapse
Affiliation(s)
- Rengel Cane E Sia
- Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland.
| | - Ruben Arturo Arellano-Reyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Julien Guthmuller
- Institute of Physics and Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland.
| |
Collapse
|
5
|
Wasif Baig M, Pederzoli M, Kývala M, Cwiklik L, Pittner J. Theoretical Investigation of the Effect of Alkylation and Bromination on Intersystem Crossing in BODIPY-Based Photosensitizers. J Phys Chem B 2021; 125:11617-11627. [PMID: 34661408 DOI: 10.1021/acs.jpcb.1c05236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Halogenated and alkylated BODIPY derivatives are reported as suitable candidates for their use as photosensitizers in photodynamic therapy due to their efficient intersystem crossing (ISC) between states of different spin multiplicities. Spin-orbit couplings (SOCs) are evaluated using an effective one-electron spin-orbit Hamiltonian for brominated and alkylated BODIPY derivatives to investigate the quantitative effect of alkyl and bromine substituents on ISC. BODIPY derivatives containing bromine atoms have been found to have significantly stronger SOCs than alkylated BODIPY derivatives outside the Frank-Condon region while they are nearly the same at local minima. Based on calculated time-dependent density functional theory (TD-DFT) vertical excitation energies and SOCs, excited-state dynamics of three BODIPY derivatives were further explored with TD-DFT surface hopping molecular dynamics employing a simple accelerated approach. Derivatives containing bromine atoms have been found to have very similar lifetimes, which are much shorter than those of the derivatives possessing just the alkyl moieties. However, both bromine atoms and alkyl moieties reduce the HOMO/LUMO gap, thus assisting the derivatives to behave as efficient photosensitizers.
Collapse
Affiliation(s)
- Mirza Wasif Baig
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic.,Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 8, Prague 12840, Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic
| | - Mojmír Kývala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovonám. 2, Prague 16610, Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovonám. 2, Prague 16610, Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, Prague 18223, Czech Republic
| |
Collapse
|
6
|
Bassan E, Gualandi A, Cozzi PG, Ceroni P. Design of BODIPY dyes as triplet photosensitizers: electronic properties tailored for solar energy conversion, photoredox catalysis and photodynamic therapy. Chem Sci 2021; 12:6607-6628. [PMID: 34040736 PMCID: PMC8132938 DOI: 10.1039/d1sc00732g] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 12/22/2022] Open
Abstract
BODIPYs are renowned fluorescent dyes with strong and tunable absorption in the visible region, high thermal and photo-stability and exceptional fluorescence quantum yields. Transition metal complexes are the most commonly used triplet photosensitisers, but, recently, the use of organic dyes has emerged as a viable and more sustainable alternative. By proper design, BODIPY dyes have been turned from highly fluorescent labels into efficient triplet photosensitizers with strong absorption in the visible region (from green to orange). In this perspective, we report three design strategies: (i) halogenation of the dye skeleton, (ii) donor-acceptor dyads and (iii) BODIPY dimers. We compare pros and cons of these approaches in terms of optical and electrochemical properties and synthetic viability. The potential applications of these systems span from energy conversion to medicine and key examples are presented.
Collapse
Affiliation(s)
- Elena Bassan
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| | - Andrea Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna Italy
| |
Collapse
|
7
|
Cullen AA, Heintz K, O'Reilly L, Long C, Heise A, Murphy R, Karlsson J, Gibson E, Greetham GM, Towrie M, Pryce MT. A Time-Resolved Spectroscopic Investigation of a Novel BODIPY Copolymer and Its Potential Use as a Photosensitiser for Hydrogen Evolution. Front Chem 2020; 8:584060. [PMID: 33195076 PMCID: PMC7604388 DOI: 10.3389/fchem.2020.584060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
A novel 4,4-difuoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) copolymer with diethynylbenzene has been synthesised, and its ability to act as a photosensitiser for the photocatalytic generation of hydrogen was investigated by time-resolved spectroscopic techniques spanning the ps- to ns-timescales. Both transient absorption and time-resolved infrared spectroscopy were used to probe the excited state dynamics of this photosensitising unit in a variety of solvents. These studies indicated how environmental factors can influence the photophysics of the BODIPY polymer. A homogeneous photocatalytic hydrogen evolution system has been developed using the BODIPY copolymer and cobaloxime which provides hydrogen evolution rates of 319 μmol h−1 g−1 after 24 h of visible irradiation.
Collapse
Affiliation(s)
- Aoibhín A Cullen
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Katharina Heintz
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Laura O'Reilly
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Conor Long
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| | - Andreas Heise
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Murphy
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joshua Karlsson
- Energy Materials Laboratory, Department of Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Gibson
- Energy Materials Laboratory, Department of Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gregory M Greetham
- Central Laser Facility, Science & Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Science & Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Mary T Pryce
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
8
|
Dolui D, Khandelwal S, Majumder P, Dutta A. The odyssey of cobaloximes for catalytic H 2 production and their recent revival with enzyme-inspired design. Chem Commun (Camb) 2020; 56:8166-8181. [PMID: 32555820 DOI: 10.1039/d0cc03103h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobaloxime complexes gained attention for their intrinsic ability of catalytic H2 production despite their initial emergence as a vitamin B12 model. The simple, robust, and synthetically manoeuvrable cobaloxime core represents a model catalyst molecule for the investigation of optimal conditions for both photo- and electrocatalytic H2 production catalytic assemblies. Cobaloxime is one of the rare catalysts that finds equal applications in the analysis of homogeneous and heterogeneous catalytic conditions. However, the poor aqueous solubility and long-term instability of cobaloximes have severely impeded their growth. Lately, interest in the cobaloxime-based catalysts has been resuscitated with the rational use of extended enzymatic features. This unique enzyme-inspired catalyst design strategy has instigated the formation of a new genre of cobaloxime molecules that exhibit enhanced photo- and electrocatalytic H2 evolution with improved aqueous and air stability.
Collapse
Affiliation(s)
- Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj 382355, India
| | | | | | | |
Collapse
|
9
|
Bartelmess J, Valderrey V, Rurack K. Development of a "Turn-on" Fluorescent Probe-Based Sensing System for Hydrogen Sulfide in Liquid and Gas Phase. Front Chem 2019; 7:641. [PMID: 31616654 PMCID: PMC6763594 DOI: 10.3389/fchem.2019.00641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
A “turn-on” fluorescence sensing system based on a BODIPY-cobaloxime complex for the detection of H2S in liquid and gas phase was developed. To that aim, two cobaloxime complexes bearing an axial pyridyl-BODIPY ligand were initially evaluated as sensitive fluorescent HS− indicators in aqueous solution. The sensing mechanism involves the selective substitution of the BODIPY ligand by the HS− anion at the cobalt center, which is accompanied by a strong fluorescence enhancement. The selection of a complex with an ideal stability and reactivity profile toward HS− relied on the optimal interaction between the cobalt metal-center and two different pyridyl BODIPY ligands. Loading the best performing BODIPY-cobaloxime complex onto a polymeric hydrogel membrane allowed us to study the selectivity of the probe for HS− against different anions and cysteine. Successful detection of H2S by the fluorescent “light-up” membrane was not only accomplished for surface water but could also be demonstrated for relevant H2S concentrations in gas phase.
Collapse
Affiliation(s)
- Juergen Bartelmess
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Virginia Valderrey
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Knut Rurack
- Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| |
Collapse
|
10
|
Luo GG, Pan ZH, Lin JQ, Sun D. Tethered sensitizer-catalyst noble-metal-free molecular devices for solar-driven hydrogen generation. Dalton Trans 2018; 47:15633-15645. [PMID: 30299443 DOI: 10.1039/c8dt02831a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inspired by natural photosynthesis in an organized assembly, compact H2-evolving molecular devices, which tether sensitizer and catalyst modules in one single molecule, present an opportunity to overcome the diffusion limit required for multi-component molecular systems, and increase intramolecular electron transfer rates from the photoactivated unit to the catalytic center to improve H2-evolving efficiency. Thereinto absolutely noble-metal free H2-evolving molecular devices are of particular interest because they don't contain precious and scarce noble-metal based components. This Frontier article focuses specifically on the recent advances in the design, synthesis, and photocatalytic properties of all-abundant-element molecular devices for photoinduced H2 generation via intramolecular processes. Some challenges and suggestions for future directions in this field are also illustrated.
Collapse
Affiliation(s)
- Geng-Geng Luo
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P.R. China.
| | | | | | | |
Collapse
|
11
|
Photo-Induced Charge Separation vs. Degradation of a BODIPY-Based Photosensitizer Assessed by TDDFT and RASPT2. Catalysts 2018. [DOI: 10.3390/catal8110520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A meso-mesityl-2,6-iodine substituted boron dipyrromethene (BODIPY) dye is investigated using a suite of computational methods addressing its functionality as photosensitizer, i.e., in the scope of light-driven hydrogen evolution in a two-component approach. Earlier reports on the performance of the present iodinated BODIPY dye proposed a significantly improved catalytic turn-over compared to its unsubstituted parent compound based on the population of long-lived charge-separated triplet states, accessible due to an enhanced spin-orbit coupling (SOC) introduced by the iodine atoms. The present quantum chemical study aims at elucidating the mechanisms of both the higher catalytic performance and the degradation pathways. Time-dependent density functional theory (TDDFT) and multi-state restricted active space perturbation theory through second-order (MS-RASPT2) simulations allowed identifying excited-state channels correlated to iodine dissociation. No evidence for an improved catalytic activity via enhanced SOCs among the low-lying states could be determined. However, the computational analysis reveals that the activation of the dye proceeds via pathways of the (prior chemically) singly-reduced species, featuring a pronounced stabilization of charge-separated species, while low barriers for carbon-iodine bond breaking determine the photostability of the BODIPY dye.
Collapse
|
12
|
Gueret R, Poulard L, Oshinowo M, Chauvin J, Dahmane M, Dupeyre G, Lainé PP, Fortage J, Collomb MN. Challenging the [Ru(bpy)3]2+ Photosensitizer with a Triazatriangulenium Robust Organic Dye for Visible-Light-Driven Hydrogen Production in Water. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04000] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robin Gueret
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Laurélie Poulard
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | | | - Jérôme Chauvin
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Mustapha Dahmane
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | - Grégory Dupeyre
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | - Philippe P. Lainé
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J-A de Baïf, 75013 Paris, France
| | - Jérôme Fortage
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | | |
Collapse
|
13
|
Zhang YQ, Liao RZ. Reaction mechanism of hydrogen evolution catalysed by Co and Fe complexes containing a tetra-dentate phosphine ligand - a DFT study. Phys Chem Chem Phys 2018; 19:32589-32596. [PMID: 29192296 DOI: 10.1039/c7cp06222b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism of the electro-catalytic proton reduction in neutral phosphate buffer enabled by mononuclear cobalt and iron complexes containing a tetra-dentate phosphine ligand (MP4N2, M = Fe, Co) has been elucidated by density functional calculations. The phosphate from the buffer was found to play a crucial role by coordinating to the metal and delivering a proton to the metal hydride in the H-H bond formation. For the more efficient cobalt catalyst, the starting species is a CoII complex with a hydrogen phosphate and a water molecule ligated at the two vacant coordination sites. Two sequential proton-coupled electron transfer reductions lead to the formation of a CoII-H intermediate with a dihydrogen phosphate ligand, and the reduction potentials for these two steps were calculated to be -0.58 V and -0.72 V, respectively. Subsequently, the H-H bond formation takes place via coupling of the CoII-H and the proton from the dihydrogen phosphate ligand. The total barrier was calculated to be 18.2 kcal mol-1 with an applied potential of -0.5 V, which can further decrease to only 11.2 kcal mol-1 with an applied potential of -0.8 V. When the phosphate is displaced by a water molecule, the total barrier for the dihydrogen formation increases by 7.3 kcal mol-1. For the iron catalyst, the overall mechanism is essentially the same; however, the first reduction (FeII/FeI, potential of -1.13 V) is likely the rate-limiting step. The calculated results are in good agreement with the experimental data, which showed an onset potential of -0.50 V for the cobalt complex and -1.03 V for the iron complex.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medic Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | |
Collapse
|
14
|
Photophysics of BODIPY Dyes as Readily-Designable Photosensitisers in Light-Driven Proton Reduction. INORGANICS 2017. [DOI: 10.3390/inorganics5020021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
|
16
|
Yamuna R, Sarath S, Kubandiran K, Umadevi M, Chakkaravarthi G. Synthesis, characterization and thermal studies of 1,3-bis(4-pyridyl)propane bridged dicobaloximes. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Sabatini RP, Lindley B, McCormick TM, Lazarides T, Brennessel WW, McCamant DW, Eisenberg R. Efficient Bimolecular Mechanism of Photochemical Hydrogen Production Using Halogenated Boron-Dipyrromethene (Bodipy) Dyes and a Bis(dimethylglyoxime) Cobalt(III) Complex. J Phys Chem B 2016; 120:527-34. [DOI: 10.1021/acs.jpcb.5b11035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Randy P. Sabatini
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Brian Lindley
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Theresa M. McCormick
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Theodore Lazarides
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - David W. McCamant
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Richard Eisenberg
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
18
|
McMahon S, Amirjalayer S, Buma WJ, Halpin Y, Long C, Rooney AD, Woutersen S, Pryce MT. An investigation into the photochemistry of, and the electrochemically induced CO-loss from, [(CO)5MC(OMe)Me](M = Cr or W) using low-temperature matrix isolation, picosecond infrared spectroscopy, cyclic voltammetry, and time-dependent density functional theory. Dalton Trans 2015; 44:15424-34. [PMID: 26089130 DOI: 10.1039/c5dt01568e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysics and photochemistry of [(CO)5MC(OMe)Me] (M = Cr or W) were investigated using picosecond time-resolved infrared spectroscopy (M = Cr or W), low-temperature matrix isolation techniques (M = Cr), and time-dependent density functional calculations (M = Cr or W). These studies provide unambiguous evidence for the photochemical formation of a long-lived, 18-electron metallaketene species capable of acting as a synthetically useful intermediate. For the Cr complex, an intermediate metallacyclopropanone singlet excited state was detected on the reaction path to the metallaketene species. This metallacyclopropanone excited state species has a lifetime of less than 100 ps and a characteristic bridging carbonyl band at 1770 cm(-1). The tungsten ketene species was also detected but in contrast to the chromium system, this forms directly from a low-lying triplet excited state. The electrochemical release of CO showed a greater efficiency for the chromium complex when compared to the tungsten.
Collapse
Affiliation(s)
- Suzanne McMahon
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Li M, Yao Y, Ding J, Liu L, Qin J, Zhao Y, Hou H, Fan Y. Spectroscopic and crystallographic investigations of novel BODIPY-derived metal-organic frameworks. Inorg Chem 2015; 54:1346-53. [PMID: 25587884 DOI: 10.1021/ic502219y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To explore new 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-derived metal-organic frameworks (MOFs), we employed 2,6-dicarboxyl-1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindacene (H2L) as a ligand to successfully synthesize five coordination polymers, namely, {[Zn2(L)2(bpp)]·2H2O·2EtOH}n (1), {[Cd2(L)2(bpp)]·2H2O·EtOH}n (2), {[Cd2(L)(bpe)3(NO3)2]·2H2O·DMF·EtOH}n (3), {[Cd(L)(bpe)0.5(DMF)(H2O)]}n (4), and {[Cd(L)(bpe)0.5]·1.5H2O·DMF}n (5) (bpp = 1,3-bi(4-pyridyl)propane, bpe = 1,2-bi(4-pyridyl)ethane). Except for two 2D-layer coordination polymers 3 and 4, the rest samples exhibit 3D metal-organic frameworks with certain pore sizes, especially MOFs 1 and 5. Spectroscopic and crystallographic investigations demonstrate that the absorption and emission energies of the BODIPY chromophores are sensitive to the coordination modes. Moreover, in case 2, the transition metal centers coordinated with the dicarboxylate ligands L(2-) are capable of forming the two BODIPY units in coplanar arrangements (θ = 37.9°), simultaneously suppressing the uncommon J-dimer absorption band centered at 705 nm with a long tail into the near-infrared region at room temperature. On the other hand, in comparison with the ligand H2L, the emission of monomer-like BODIPY in case 3 is enhanced in the solid state by a considerably long distance between the parallel BODIPY planes (about 14.0 Å).
Collapse
Affiliation(s)
- Ming Li
- College of Chemistry and Molecular Engineering, Zhengzhou University , Henan 450001, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang J, Li C, Zhou Q, Wang W, Hou Y, Zhang B, Wang X. Enhanced photocatalytic hydrogen production by introducing the carboxylic acid group into cobaloxime catalysts. Dalton Trans 2015; 44:17704-11. [DOI: 10.1039/c5dt02645h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Co(iii)(dmgH)2(py-m-CH2CH2COOH)Cl] showed a much improved photocatalytic H2 production activity compared to Co(iii)(dmgH)2(py)Cl], and the COOH group may serve as a proton relay to account for its promising performance.
Collapse
Affiliation(s)
- Junfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qianxiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Weibo Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuanjun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Baowen Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xuesong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
22
|
Chopin N, Médebielle M, Maury O, Novitchi G, Pilet G. Quenching of Fluorescence in Bodipy-Derived Trifluoromethyl Enaminone Ligands upon Coordination to Copper(II). Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Bartelmess J, Francis AJ, El Roz KA, Castellano FN, Weare WW, Sommer RD. Light-Driven Hydrogen Evolution by BODIPY-Sensitized Cobaloxime Catalysts. Inorg Chem 2014; 53:4527-34. [DOI: 10.1021/ic500218q] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Juergen Bartelmess
- Department of Chemistry, North Carolina State University, Campus Box 8204, Raleigh, North Carolina 27695-8204, United States
| | - Aaron J. Francis
- Department of Chemistry, North Carolina State University, Campus Box 8204, Raleigh, North Carolina 27695-8204, United States
| | - Karim A. El Roz
- Department of Chemistry, North Carolina State University, Campus Box 8204, Raleigh, North Carolina 27695-8204, United States
| | - Felix N. Castellano
- Department of Chemistry, North Carolina State University, Campus Box 8204, Raleigh, North Carolina 27695-8204, United States
| | - Walter W. Weare
- Department of Chemistry, North Carolina State University, Campus Box 8204, Raleigh, North Carolina 27695-8204, United States
| | - Roger D. Sommer
- Department of Chemistry, North Carolina State University, Campus Box 8204, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|