1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Wang J, Zhu R, Zou J, Liu H, Meng H, Zhen Z, Li W, Wang Z, Chen H, Pu Y, Weng Y. Incoherent ultrafast energy transfer in phycocyanin 620 from Thermosynechococcus vulcanus revealed by polarization-controlled two dimensional electronic spectroscopy. J Chem Phys 2024; 161:085101. [PMID: 39171718 DOI: 10.1063/5.0222587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phycocyanin 620 (PC620) is the outermost light-harvesting complex in phycobilisome of cyanobacteria, engaged in light collection and energy transfer to the core antenna, allophycocyanin. Recently, long-lived exciton-vibrational coherences have been observed in allophycocyanin, accounting for the coherent energy transfer [Zhu et al., Nat. Commun. 15, 3171 (2024)]. PC620 has a nearly identical spatial location of three α84-β84 phycocyanobilin pigment pairs to those in allophycocyanin, inferring an existence of possible coherent energy transfer pathways. However, whether PC620 undergoes coherent or incoherent energy transfer remains debated. Furthermore, accurate determination of energy transfer rates in PC620 is still necessary owing to the spectral overlap and broadening in conventional time-resolved spectroscopic measurements. In this work, the energy transfer process within PC620 was directly resolved by polarization-controlled two dimensional electronic spectroscopy (2DES) and global analysis. The results show that the energy transfer from α84 to the adjacent β84 has a lifetime constant of 400 fs, from β155 to β84 of 6-8 ps, and from β155 to α84 of 66 ps, fully conforming to the Förster resonance energy transfer mechanism. The circular dichroism spectrum also reveals that the α84-β84 pigment pair does not form excitonic dimer, and the observed oscillatory signals are confirmed to be vibrational coherence, excluding the exciton-vibrational coupling. Nodal line slope analysis of 2DES further reveals that all the vibrational modes participate in the energy dissipation of the excited states. Our results consolidate that the ultrafast energy transfer process in PC620 is incoherent, where the twisted conformation of α84 is suggested as the main cause for preventing the formation of α84-β84 excitonic dimer in contrast to allophycocyanin.
Collapse
Affiliation(s)
- Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiading Zou
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Heyuan Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hanting Meng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, People's Republic of China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Jing Y, Liang K, Muir NS, Zhou H, Li Z, Palasz JM, Sorbie J, Wang C, Cushing SK, Kubiak CP, Sofer Z, Li S, Xiong W. Ultrafast Formation of Charge Transfer Trions at Molecular-Functionalized 2D MoS 2 Interfaces. Angew Chem Int Ed Engl 2024; 63:e202405123. [PMID: 38714495 DOI: 10.1002/anie.202405123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/10/2024]
Abstract
In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.
Collapse
Affiliation(s)
- Yuancheng Jing
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Kangkai Liang
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Nicole S Muir
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Hao Zhou
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Zhehao Li
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Jonathan Sorbie
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Chenglai Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 127-72, Pasadena, California, 91125, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| |
Collapse
|
4
|
Lama B, Sarma M. Ultrafast Hot Exciton Nonadiabatic Excited-State Dynamics in Green Fluorescent Protein Chromophore Analogue. J Phys Chem B 2024; 128:6786-6796. [PMID: 38959128 DOI: 10.1021/acs.jpcb.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The ultrafast high-energy nonadiabatic excited-state dynamics of the benzylidenedimethylimidazolinone chromophore dimer has been investigated using an electronic structure method coupled with on-the-fly quantitative wave function analysis to gain insight into the photophysics of hot excitons in biological systems. The dynamical simulation provides a rationalization of the behavior of the exciton in a dimer after the photoabsorption of light to higher-energy states. The results suggest that hot exciton localization within the manifold of excited states is caused by the hindrance of torsional rotation due to imidazolinone (I) or phenolate (P) bonds i.e., ΦI- or ΦP-dihedral rotation, in the monomeric units of a dimer. This hindrance arises due to weak π-π stacking interaction in the dimer, resulting in an energetically uphill excited-state barrier for ΦI- and ΦP-twisted rotation, impeding the isomerization process in the chromophore. Thus, this study highlights the potential impact of the weak π-π interaction in regulating the photodynamics of the green fluorescent protein chromophore derivatives.
Collapse
Affiliation(s)
- Bittu Lama
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Zhu R, Li W, Zhen Z, Zou J, Liao G, Wang J, Wang Z, Chen H, Qin S, Weng Y. Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas. Nat Commun 2024; 15:3171. [PMID: 38609379 PMCID: PMC11015008 DOI: 10.1038/s41467-024-47560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.
Collapse
Affiliation(s)
- Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
| | - Jiading Zou
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guohong Liao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China.
| |
Collapse
|
6
|
Marcolin G, Tumbarello F, Fresch E, Agostini A, Büchel C, Carbonera D, Collini E. Two-Dimensional Electronic Spectroscopy Characterization of Fucoxanthin-Chlorophyll Protein Reveals Excitonic Carotenoid-Chlorophyll Interactions. J Phys Chem Lett 2024; 15:2392-2399. [PMID: 38394035 DOI: 10.1021/acs.jpclett.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Fucoxanthin Chlorophyll Protein (FCP) is a Light Harvesting Complex found in diatoms and brown algae. It is particularly interesting for its efficiency in capturing the blue-green part of the light spectrum due to the presence of specific chromophores (fucoxanthin, chlorophyll a, and chlorophyll c). Recently, the crystallographic structure of FCP was solved, revealing the 3D arrangement of the pigments in the protein scaffold. While this information is helpful for interpreting the spectroscopic features of FCP, it has also raised new questions about the potential interactions between fucoxanthin and chlorophyll c. These interactions were suggested by their spatial closeness but have never been experimentally observed. To investigate this possible interaction mechanism, in this work, two-dimensional electronic spectroscopy (2DES) has been applied to study the ultrafast relaxation dynamics of FCP. The experiments captured an instantaneous delocalization of the excitation among fucoxanthin and chlorophyll c, suggesting the presence of a non-negligible coupling between the chromophores.
Collapse
Affiliation(s)
- Giampaolo Marcolin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Francesco Tumbarello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Claudia Büchel
- Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt, Germany
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
7
|
Deckert T, Vanderhaegen A, Brida D. Sub-8-fs pulses in the visible to near-infrared by a degenerate optical parametric amplifier. OPTICS LETTERS 2023; 48:4496-4499. [PMID: 37656537 DOI: 10.1364/ol.498291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
This work presents a single-stage optical parametric amplifier (OPA) operating at degeneracy (DOPA) and pumped by the third harmonic of a Yb:KGW laser system. This DOPA exploits the broad amplification bandwidth that occurs with type-I phase-matching in β-barium borate (BBO) when signal and idler overlap in the spectrum. The output pulses span from 590 to 780 nm (1.59-2.10 eV) with 7.75-fs duration after compression. Ultrashort pulses with similar bandwidths in this spectral window complement the existing array of optical parametric amplifiers that cover either the visible or the near-IR spectral regions with sub-10-fs pulses. This source of ultrashort optical pulses will enable the application of sophisticated spectroscopy techniques to the study of electronic coherences and energy migration pathways in biological, chemical, and condensed matter systems.
Collapse
|
8
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
9
|
Bettmann LP, Kewming MJ, Goold J. Thermodynamics of a continuously monitored double-quantum-dot heat engine in the repeated interactions framework. Phys Rev E 2023; 107:044102. [PMID: 37198837 DOI: 10.1103/physreve.107.044102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
Understanding the thermodynamic role of measurement in quantum mechanical systems is a burgeoning field of study. In this article, we study a double quantum dot (DQD) connected to two macroscopic fermionic thermal reservoirs. We assume that the DQD is continuously monitored by a quantum point contact (QPC), which serves as a charge detector. Starting from a minimalist microscopic model for the QPC and reservoirs, we show that the local master equation of the DQD can alternatively be derived in the framework of repeated interactions and that this framework guarantees a thermodynamically consistent description of the DQD and its environment (including the QPC). We analyze the effect of the measurement strength and identify a regime in which particle transport through the DQD is both assisted and stabilized by dephasing. We also find that in this regime the entropic cost of driving the particle current with fixed relative fluctuations through the DQD is reduced. We thus conclude that under continuous measurement a more constant particle current may be achieved at a fixed entropic cost.
Collapse
Affiliation(s)
| | - Michael J Kewming
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
10
|
Fridman H, Levy HM, Meir A, Casotto A, Malkinson R, Dehnel J, Yochelis S, Lifshitz E, Bar-Gill N, Collini E, Paltiel Y. Ultrafast Coherent Delocalization Revealed in Multilayer QDs under a Chiral Potential. J Phys Chem Lett 2023; 14:2234-2240. [PMID: 36820505 PMCID: PMC11139383 DOI: 10.1021/acs.jpclett.2c03743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In recent years, it was found that current passing through chiral molecules exhibits spin preference, an effect known as Chiral Induced Spin Selectivity (CISS). The effect also enables the reduction of scattering and therefore enhances delocalization. As a result, the delocalization of an exciton generated in the dots is not symmetric and relates to the electronic and hole excited spins. In this work utilizing fast spectroscopy on hybrid multilayered QDs with a chiral polypeptide linker system, we probed the interdot chiral coupling on a short time scale. Surprisingly, we found strong coherent coupling and delocalization despite having long 4-nm chiral linkers. We ascribe the results to asymmetric delocalization that is controlled by the electron spin. The effect is not measured when using shorter nonchiral linkers. As the system mimics light-harvesting antennas, the results may shed light on a mechanism of fast and efficient energy transfer in these systems.
Collapse
Affiliation(s)
- Hanna
T. Fridman
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Manis Levy
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Amitai Meir
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Andrea Casotto
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Rotem Malkinson
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Joanna Dehnel
- Nancy
and Stephen Grand Technion Energy Program, Russell Berrie Nanotechnology
Institute, Quantum Information Center, Schulich Faculty of Chemistry,
Solid State Institute, Technion Israel Institute
of Technology, Solid Stat, IL-3200003 Haifa, Israel
| | - Shira Yochelis
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Efrat Lifshitz
- Nancy
and Stephen Grand Technion Energy Program, Russell Berrie Nanotechnology
Institute, Quantum Information Center, Schulich Faculty of Chemistry,
Solid State Institute, Technion Israel Institute
of Technology, Solid Stat, IL-3200003 Haifa, Israel
| | - Nir Bar-Gill
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
- The Racah
Institute of Physics, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
- The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Yossi Paltiel
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
- The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Liang W, Pei Z, Mao Y, Shao Y. Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges. J Chem Phys 2022; 156:210901. [PMID: 35676148 PMCID: PMC9162785 DOI: 10.1063/5.0088271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/15/2022] [Indexed: 01/04/2023] Open
Abstract
Time-dependent density functional theory (TDDFT) based approaches have been developed in recent years to model the excited-state properties and transition processes of the molecules in the gas-phase and in a condensed medium, such as in a solution and protein microenvironment or near semiconductor and metal surfaces. In the latter case, usually, classical embedding models have been adopted to account for the molecular environmental effects, leading to the multi-scale approaches of TDDFT/polarizable continuum model (PCM) and TDDFT/molecular mechanics (MM), where a molecular system of interest is designated as the quantum mechanical region and treated with TDDFT, while the environment is usually described using either a PCM or (non-polarizable or polarizable) MM force fields. In this Perspective, we briefly review these TDDFT-related multi-scale models with a specific emphasis on the implementation of analytical energy derivatives, such as the energy gradient and Hessian, the nonadiabatic coupling, the spin-orbit coupling, and the transition dipole moment as well as their nuclear derivatives for various radiative and radiativeless transition processes among electronic states. Three variations of the TDDFT method, the Tamm-Dancoff approximation to TDDFT, spin-flip DFT, and spin-adiabatic TDDFT, are discussed. Moreover, using a model system (pyridine-Ag20 complex), we emphasize that caution is needed to properly account for system-environment interactions within the TDDFT/MM models. Specifically, one should appropriately damp the electrostatic embedding potential from MM atoms and carefully tune the van der Waals interaction potential between the system and the environment. We also highlight the lack of proper treatment of charge transfer between the quantum mechanics and MM regions as well as the need for accelerated TDDFT modelings and interpretability, which calls for new method developments.
Collapse
Affiliation(s)
- WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
12
|
Rammler T, Wackenhut F, Zur Oven-Krockhaus S, Rapp J, Forchhammer K, Harter K, Meixner AJ. Strong coupling between an optical microcavity and photosystems in single living cyanobacteria. JOURNAL OF BIOPHOTONICS 2022; 15:e202100136. [PMID: 34761529 DOI: 10.1002/jbio.202100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The first step in photosynthesis is an extremely efficient energy transfer mechanism that led to the debate to which extent quantum coherence may be involved in the energy transfer between the photosynthetic pigments. In search of such a coherent behavior, we have embedded living cyanobacteria between the parallel mirrors of an optical microresonator irradiated with low intensity white light. As a consequence, we observe vacuum Rabi splitting in the transmission and fluorescence spectra as a result of strong light matter coupling of the chlorophyll a molecules in the photosystems (PSs) and the cavity modes. The Rabi-splitting scales with the number of the PSs chlorophyll a pigments involved in strong coupling indicating a delocalized polaritonic state. Our data provide evidence that a delocalized polaritonic state can be established between the chlorophyll a molecule of the PSs in living cyanobacterial cells at ambient conditions in a microcavity.
Collapse
Affiliation(s)
- Tim Rammler
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Frank Wackenhut
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
| | - Sven Zur Oven-Krockhaus
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Johanna Rapp
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Collini E. 2D Electronic Spectroscopic Techniques for Quantum Technology Applications. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:13096-13108. [PMID: 34276867 PMCID: PMC8282191 DOI: 10.1021/acs.jpcc.1c02693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/22/2021] [Indexed: 05/14/2023]
Abstract
2D electronic spectroscopy (2DES) techniques have gained particular interest given their capability of following ultrafast coherent and noncoherent processes in real-time. Although the fame of 2DES is still majorly linked to the investigation of energy and charge transport in biological light-harvesting complexes, 2DES is now starting to be recognized as a particularly valuable tool for studying transport processes in artificial nanomaterials and nanodevices. Particularly meaningful is the possibility of assessing coherent mechanisms active in the transport of excitation energy in these materials toward possible quantum technology applications. The diverse nature of these new target samples poses significant challenges and calls for a critical rethinking of the technique and its different realizations. With the confluence of promising new applications and rapidly developing technical capabilities, the enormous potential of 2DES techniques to impact the field of nanosystems, quantum technologies, and quantum devices is here delineated.
Collapse
Affiliation(s)
- Elisabetta Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Peruffo N, Gil G, Corni S, Mancin F, Collini E. Selective switching of multiple plexcitons in colloidal materials: directing the energy flow at the nanoscale. NANOSCALE 2021; 13:6005-6015. [PMID: 33710244 DOI: 10.1039/d1nr00775k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coupling of molecular emitters to plasmon resonances in metal nanostructures has long been investigated to control the light-matter interaction at the nanoscale. The emergence of different coupling behaviors can be governed by the various combinations of emitters and plasmonic substrates, as well as the spatial arrangement of the individual components. Here colloidal assembly methods are exploited to prepare a responsive nanosystem where two sets of plexcitonic resonances in different coupling regimes can be selectively switched on and off, acting on external conditions such as concentration and presence of anions. The two sets of plexciton resonances are built exploiting the strong coupling between cationic gold nanoparticles and the same molecular moiety, an anionic porphyrin, in different aggregation states. When both plexciton resonances are simultaneously activated in the system, evidence for a plexciton relaxation cascade has been found in photoluminescence experiments. These findings have fundamental implications for achieving control over energy flow at the nanoscale.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
15
|
Fortino M, Collini E, Bloino J, Pedone A. Unraveling the internal conversion process within the Q-bands of a chlorophyll-like-system through surface-hopping molecular dynamics simulations. J Chem Phys 2021; 154:094110. [PMID: 33685164 DOI: 10.1063/5.0039949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The non-radiative relaxation process within the Q-bands of chlorophylls represents a crucial preliminary step during the photosynthetic mechanism. Despite several experimental and theoretical efforts performed in order to clarify the complex dynamics characterizing this stage, a complete understanding of this mechanism is still far to be reached. In this study, non-adiabatic excited-state molecular dynamic simulations have been performed to model the non-radiative process within the Q-bands for a model system of chlorophylls. This system has been considered in the gas phase and then, to have a more representative picture of the environment, with implicit and mixed implicit-explicit solvation models. In the first part of this analysis, absorption spectra have been simulated for each model in order to guide the setup for the non-adiabatic excited-state molecular dynamic simulations. Then, non-adiabatic excited-state molecular dynamic simulations have been performed on a large set of independent trajectories and the population of the Qx and Qy states has been computed as the average of all the trajectories, estimating the rate constant for the process. Finally, with the aim of investigating the possible role played by the solvent in the Qx-Qy crossing mechanism, an essential dynamic analysis has been performed on the generated data, allowing one to find the most important motions during the simulated dynamics.
Collapse
Affiliation(s)
| | | | | | - Alfonso Pedone
- Università di Modena e Reggio Emilia, Modena 45125, Italy
| |
Collapse
|
16
|
Fresch E, Peruffo N, Trapani M, Cordaro M, Bella G, Castriciano MA, Collini E. The effect of hydrogen bonds on the ultrafast relaxation dynamics of a BODIPY dimer. J Chem Phys 2021; 154:084201. [PMID: 33639732 DOI: 10.1063/5.0038242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The influence of hydrogen bonds (H-bonds) in the structure, dynamics, and functionality of biological and artificial complex systems is the subject of intense investigation. In this broad context, particular attention has recently been focused on the ultrafast H-bond dependent dynamical properties in the electronic excited state because of their potentially dramatic consequences on the mechanism, dynamics, and efficiency of photochemical reactions and photophysical processes of crucial importance for life and technology. Excited-state H-bond dynamics generally occur on ultrafast time scales of hundreds of femtoseconds or less, making the characterization of associated mechanisms particularly challenging with conventional time-resolved techniques. Here, 2D electronic spectroscopy is exploited to shed light on this still largely unexplored dynamic mechanism. An H-bonded molecular dimer prepared by self-assembly of two boron-dipyrromethene dyes has been specifically designed and synthesized for this aim. The obtained results confirm that upon formation of H-bonds and the dimer, a new ultrafast relaxation channel is activated in the ultrafast dynamics, mediated by the vibrational motions of the hydrogen donor and acceptor groups. This relaxation channel also involves, beyond intra-molecular relaxations, an inter-molecular transfer process. This is particularly significant considering the long distance between the centers of mass of the two molecules. These findings suggest that the design of H-bonded structures is a particularly powerful tool to drive the ultrafast dynamics in complex materials.
Collapse
Affiliation(s)
- Elisa Fresch
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Nicola Peruffo
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Bella
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Elisabetta Collini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
17
|
Coccia E, Fregoni J, Guido CA, Marsili M, Pipolo S, Corni S. Hybrid theoretical models for molecular nanoplasmonics. J Chem Phys 2020; 153:200901. [PMID: 33261492 DOI: 10.1063/5.0027935] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multidisciplinary nature of the research in molecular nanoplasmonics, i.e., the use of plasmonic nanostructures to enhance, control, or suppress properties of molecules interacting with light, led to contributions from different theory communities over the years, with the aim of understanding, interpreting, and predicting the physical and chemical phenomena occurring at molecular- and nano-scale in the presence of light. Multiscale hybrid techniques, using a different level of description for the molecule and the plasmonic nanosystems, permit a reliable representation of the atomistic details and of collective features, such as plasmons, in such complex systems. Here, we focus on a selected set of topics of current interest in molecular plasmonics (control of electronic excitations in light-harvesting systems, polaritonic chemistry, hot-carrier generation, and plasmon-enhanced catalysis). We discuss how their description may benefit from a hybrid modeling approach and what are the main challenges for the application of such models. In doing so, we also provide an introduction to such models and to the selected topics, as well as general discussions on their theoretical descriptions.
Collapse
Affiliation(s)
- E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universit di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universit di Modena e Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - C A Guido
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - M Marsili
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - S Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - S Corni
- Istituto Nanoscienze-CNR, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
18
|
Meneghin E, Biscaglia F, Volpato A, Bolzonello L, Pedron D, Frezza E, Ferrarini A, Gobbo M, Collini E. Biomimetic Nanoarchitectures for Light Harvesting: Self-Assembly of Pyropheophorbide-Peptide Conjugates. J Phys Chem Lett 2020; 11:7972-7980. [PMID: 32886518 PMCID: PMC8011917 DOI: 10.1021/acs.jpclett.0c02138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/04/2020] [Indexed: 05/27/2023]
Abstract
The biological light-harvesting process offers an unlimited source of inspiration. The high level of control, adaptation capability, and efficiency challenge humankind to create artificial biomimicking nanoarchitectures with the same performances to respond to our energy needs. Here, in the extensive search for design principles at the base of efficient artificial light harvesters, an approach based on self-assembly of pigment-peptide conjugates is proposed. The solvent-driven and controlled aggregation of the peptide moieties promotes the formation of a dense network of interacting pigments, giving rise to an excitonic network characterized by intense and spectrally wide absorption bands. The ultrafast dynamics of the nanosystems studied through two-dimensional electronic spectroscopy reveals that the excitation energy is funneled in an ultrafast time range (hundreds of femtoseconds) to a manifold of long-living dark states, thus suggesting the considerable potentiality of the systems as efficient harvesters.
Collapse
Affiliation(s)
- Elena Meneghin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Francesca Biscaglia
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Andrea Volpato
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Luca Bolzonello
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Danilo Pedron
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisa Frezza
- Université
de Paris, CiTCoM, CNRS, F-75006 Paris, France
| | - Alberta Ferrarini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marina Gobbo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
19
|
Massively parallel classical logic via coherent dynamics of an ensemble of quantum systems with dispersion in size. Proc Natl Acad Sci U S A 2020; 117:21022-21030. [PMID: 32817545 DOI: 10.1073/pnas.2008170117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Quantum parallelism can be implemented on a classical ensemble of discrete level quantum systems. The nanosystems are not quite identical, and the ensemble represents their individual variability. An underlying Lie algebraic theory is developed using the closure of the algebra to demonstrate the parallel information processing at the level of the ensemble. The ensemble is addressed by a sequence of laser pulses. In the Heisenberg picture of quantum dynamics the coherence between the N levels of a given quantum system can be handled as an observable. Thereby there are N 2 logic variables per N level system. This is how massive parallelism is achieved in that there are N 2 potential outputs for a quantum system of N levels. The use of an ensemble allows simultaneous reading of such outputs. Due to size dispersion the expectation values of the observables can differ somewhat from system to system. We show that for a moderate variability of the systems one can average the N 2 expectation values over the ensemble while retaining closure and parallelism. This allows directly propagating in time the ensemble averaged values of the observables. Results of simulations of electronic excitonic dynamics in an ensemble of quantum dot (QD) dimers are presented. The QD size and interdot distance in the dimer are used to parametrize the Hamiltonian. The dimer N levels include local and charge transfer excitons within each dimer. The well-studied physics of semiconducting QDs suggests that the dimer coherences can be probed at room temperature.
Collapse
|
20
|
Dall'Osto G, Coccia E, Guido CA, Corni S. Investigating ultrafast two-pulse experiments on single DNQDI fluorophores: a stochastic quantum approach. Phys Chem Chem Phys 2020; 22:16734-16746. [PMID: 32658228 DOI: 10.1039/d0cp02557g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ultrafast two-pulse experiments on single molecules are invaluable tools to investigate the microscopic dynamics of a fluorophore. The first pulse generates electronic or vibronic coherence and the second pulse probes the time-evolution of the coherence. A protocol that is able to simulate ultrafast experiments on single molecules is applied in this study. It is based on a coupled quantum-mechanical description of the fluorophore and real-time dynamics of the system vibronic wave packet interacting with an electric field, described by means of the stochastic Schrödinger equation within the Markovian limit. This approach is applied to the DNQDI fluorophore, previously investigated experimentally [D. Brinks et al., Nature, 2010, 465, 905-908]. We find this to be in good agreement with the experimental outcomes and provide microscopic and atomistic interpretation.
Collapse
Affiliation(s)
- Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy.
| | | | | | | |
Collapse
|
21
|
Zhou L, Tian L, Zhang WK. Experimental consideration of two-dimensional Fourier transform spectroscopy. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2007125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Lie Tian
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Wen-kai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Fresch E, Collini E. Relaxation Dynamics of Chlorophyll b in the Sub-ps Ultrafast Timescale Measured by 2D Electronic Spectroscopy. Int J Mol Sci 2020; 21:ijms21082836. [PMID: 32325770 PMCID: PMC7215592 DOI: 10.3390/ijms21082836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
A thorough characterization of the early time sub-100 fs relaxation dynamics of biologically relevant chromophores is of crucial importance for a complete understanding of the mechanisms regulating the ultrafast dynamics of the relaxation processes in more complex multichromophoric light-harvesting systems. While chlorophyll a has already been the object of several investigations, little has been reported on chlorophyll b, despite its pivotal role in many functionalities of photosynthetic proteins. Here the relaxation dynamics of chlorophyll b in the ultrafast regime have been characterized using 2D electronic spectroscopy. The comparison of experimental measurements performed at room temperature and 77 K allows the mechanisms and the dynamics of the sub-100 fs relaxation dynamics to be characterized, including spectral diffusion and fast internal conversion assisted by a specific set of vibrational modes.
Collapse
|
23
|
Fresch E, Meneghin E, Agostini A, Paulsen H, Carbonera D, Collini E. How the Protein Environment Can Tune the Energy, the Coupling, and the Ultrafast Dynamics of Interacting Chlorophylls: The Example of the Water-Soluble Chlorophyll Protein. J Phys Chem Lett 2020; 11:1059-1067. [PMID: 31952446 PMCID: PMC7995254 DOI: 10.1021/acs.jpclett.9b03628] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The interplay between active molecules and the protein environment in light-harvesting complexes tunes the photophysics and the dynamical properties of pigment-protein complexes in a subtle way, which is not fully understood. Here we characterized the photophysics and the ultrafast dynamics of four variants of the water-soluble chlorophyll protein (WSCP) as an ideal model system to study the behavior of strongly interacting chlorophylls. We found that when coordinated by the WSCP protein, the presence of the formyl group in chlorophyll b replacing the methyl group in chlorophyll a strongly affects the exciton energy and the dynamics of the system, opening up the possibility of tuning the photophysics and the transport properties of multichromophores by engineering specific interactions with the surroundings.
Collapse
Affiliation(s)
- Elisa Fresch
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padua, Italy
| | - Elena Meneghin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padua, Italy
| | - Alessandro Agostini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padua, Italy
- Institute
of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Harald Paulsen
- Institute
of Molecular Physiology, Johannes Gutenberg-University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Donatella Carbonera
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padua, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padua, Italy
| |
Collapse
|
24
|
Segatta F, Cupellini L, Garavelli M, Mennucci B. Quantum Chemical Modeling of the Photoinduced Activity of Multichromophoric Biosystems. Chem Rev 2019; 119:9361-9380. [PMID: 31276384 PMCID: PMC6716121 DOI: 10.1021/acs.chemrev.9b00135] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 01/21/2023]
Abstract
Multichromophoric biosystems represent a broad family with very diverse members, ranging from light-harvesting pigment-protein complexes to nucleic acids. The former are designed to capture, harvest, efficiently transport, and transform energy from sunlight for photosynthesis, while the latter should dissipate the absorbed radiation as quickly as possible to prevent photodamages and corruption of the carried genetic information. Because of the unique electronic and structural characteristics, the modeling of their photoinduced activity is a real challenge. Numerous approaches have been devised building on the theoretical development achieved for single chromophores and on model Hamiltonians that capture the essential features of the system. Still, a question remains: is a general strategy for the accurate modeling of multichromophoric systems possible? By using a quantum chemical point of view, here we review the advancements developed so far highlighting differences and similarities with the single chromophore treatment. Finally, we outline the important limitations and challenges that still need to be tackled to reach a complete and accurate picture of their photoinduced properties and dynamics.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
25
|
Yang F, Yang S, You L. Quantum Transport of Rydberg Excitons with Synthetic Spin-Exchange Interactions. PHYSICAL REVIEW LETTERS 2019; 123:063001. [PMID: 31491153 DOI: 10.1103/physrevlett.123.063001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/16/2019] [Indexed: 06/10/2023]
Abstract
We present a scheme for engineering quantum transport dynamics of spin excitations in a chain of laser-dressed Rydberg atoms, mediated by synthetic spin exchange arising from diagonal van der Waals interaction. The dynamic tunability and long-range interaction feature of our scheme allows for the exploration of transport physics unattainable in conventional spin systems. As two concrete examples, we first demonstrate a topological exciton pumping protocol that facilitates quantized entanglement transfer, and second we discuss a highly nonlocal correlated transport phenomenon which persists even in the presence of dephasing. Unlike previous schemes, our proposal requires neither resonant dipole-dipole interaction nor off-diagonal van der Waals interaction. It can be readily implemented in existing experimental systems.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shuo Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Li You
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Cupellini L, Bondanza M, Nottoli M, Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148049. [PMID: 31386831 DOI: 10.1016/j.bbabio.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
| |
Collapse
|
27
|
Bösch CD, Abay E, Langenegger SM, Nazari M, Cannizzo A, Feurer T, Häner R. DNA‐Organized Light‐Harvesting Antennae: Energy Transfer in Polyaromatic Stacks Proceeds through Interposed Nucleobase Pairs. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Caroline D. Bösch
- Department of Chemistry and BiochemistryUniversity of Bern, Freiestrasse 3 CH-3012 Bern, Switzerland
| | - Elif Abay
- Department of Chemistry and BiochemistryUniversity of Bern, Freiestrasse 3 CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and BiochemistryUniversity of Bern, Freiestrasse 3 CH-3012 Bern, Switzerland
| | - Maryam Nazari
- Institute for Applied PhysicsUniversity of Bern Sidlerstrasse 5 CH-3012 Bern
| | - Andrea Cannizzo
- Institute for Applied PhysicsUniversity of Bern Sidlerstrasse 5 CH-3012 Bern
| | - Thomas Feurer
- Institute for Applied PhysicsUniversity of Bern Sidlerstrasse 5 CH-3012 Bern
| | - Robert Häner
- Department of Chemistry and BiochemistryUniversity of Bern, Freiestrasse 3 CH-3012 Bern, Switzerland
| |
Collapse
|
28
|
|
29
|
Volpato A, Collini E. Optimization and selection of time-frequency transforms for wave-packet analysis in ultrafast spectroscopy. OPTICS EXPRESS 2019; 27:2975-2987. [PMID: 30732326 DOI: 10.1364/oe.27.002975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The analysis of quantum beats in time-resolved spectroscopic signals is becoming a task of primary importance because it is now clear that they bring crucial information about chemical reactivity, transport, and relaxation processes. Here we describe how to exploit the wide family of time-frequency transform methodologies to obtain information not only about the frequency but also about the dynamics of the oscillating components contributing to the overall beating signal. Several linear and bilinear transforms have been considered, and a general and easy procedure to judge in a non-arbitrary way the performances of different transforms has been outlined.
Collapse
|
30
|
Nazari M, Bösch CD, Rondi A, Francés-Monerris A, Marazzi M, Lognon E, Gazzetto M, Langenegger SM, Häner R, Feurer T, Monari A, Cannizzo A. Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Phys Chem Chem Phys 2019; 21:16981-16988. [DOI: 10.1039/c9cp03147b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proper interpretation of phenanthrene's and similar PAHs’ photocycle relies on two higher excited state relaxations due to the simultaneous presence of non-adiabatic and adiabatic transitions.
Collapse
Affiliation(s)
- M. Nazari
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - C. D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - A. Rondi
- Institute of Applied Physics
- University of Bern
- Switzerland
| | | | - M. Marazzi
- Université de Lorraine & CNRS
- Nancy
- France
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
| | - E. Lognon
- Université de Lorraine & CNRS
- Nancy
- France
| | - M. Gazzetto
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - S. M. Langenegger
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - R. Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - T. Feurer
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - A. Monari
- Université de Lorraine & CNRS
- Nancy
- France
| | - A. Cannizzo
- Institute of Applied Physics
- University of Bern
- Switzerland
| |
Collapse
|
31
|
Fregoni J, Granucci G, Coccia E, Persico M, Corni S. Manipulating azobenzene photoisomerization through strong light-molecule coupling. Nat Commun 2018; 9:4688. [PMID: 30409994 PMCID: PMC6224570 DOI: 10.1038/s41467-018-06971-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The formation of hybrid light–molecule states (polaritons) offers a new strategy to manipulate the photochemistry of molecules. To fully exploit its potential, one needs to build a toolbox of polaritonic phenomenologies that supplement those of standard photochemistry. By means of a state-of-the-art computational photochemistry approach extended to the strong-coupling regime, here we disclose various mechanisms peculiar of polaritonic chemistry: coherent population oscillations between polaritons, quenching by trapping in dead-end polaritonic states and the alteration of the photochemical reaction pathway and quantum yields. We focus on azobenzene photoisomerization, that encompasses the essential features of complex photochemical reactions such as the presence of conical intersections and reaction coordinates involving multiple internal modes. In the strong coupling regime, a polaritonic conical intersection arises and we characterize its role in the photochemical process. Our chemically detailed simulations provide a framework to rationalize how the strong coupling impacts the photochemistry of realistic molecules. Manipulation of the photochemistry of molecules is traditionally achieved through synthetic chemical modifications. Here the authors use computational photochemistry to show how to control azobenzene photoisomerization through hybrid light–molecule states (polaritons).
Collapse
Affiliation(s)
- J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, University of Modena and Reggio Emilia, I-41125, Modena, Italy.,Istituto Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, I-41125, Modena, Italy
| | - G Granucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, I-56124, Pisa, Italy.
| | - E Coccia
- Dipartimento di Scienze Chimiche, University of Padova, I-35131, Padova, Italy
| | - M Persico
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, I-56124, Pisa, Italy
| | - S Corni
- Istituto Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, I-41125, Modena, Italy. .,Dipartimento di Scienze Chimiche, University of Padova, I-35131, Padova, Italy.
| |
Collapse
|
32
|
Raman and 2D electronic spectroscopies: A fruitful alliance for the investigation of ground and excited state vibrations in chlorophyll a. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Pavel M, Rienk VG. Interplay of disorder and delocalization in photosynthetic light harvesting. Curr Opin Chem Biol 2018; 47:1-6. [PMID: 29957484 DOI: 10.1016/j.cbpa.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
Photosystems, the machines of photosynthesis, are highly complex and energetically disordered pigment-protein structures. Yet, they perform their function, be it highly efficient energy transfer and charge separation or the ability to switch between light-harvesting and photoprotective states, extremely well. In this opinioned review we describe the interplay of disorder and exciton delocalization in photosynthetic light harvesting. By discussing recent research advances on grounds of well-established concepts, we demonstrate that not only is the excitation delocalization a robust phenomenon, but that it in fact enables the light-harvesting function in the disordered environment.
Collapse
Affiliation(s)
- Malý Pavel
- Faculty of Science, Vrije Universiteit Amsterdam, Netherlands; Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | | |
Collapse
|
34
|
Goldberg O, Meir Y, Dubi Y. Vibration-Assisted and Vibration-Hampered Excitonic Quantum Transport. J Phys Chem Lett 2018; 9:3143-3148. [PMID: 29791167 DOI: 10.1021/acs.jpclett.8b00995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interplay between excitons and vibrations is considered to be a key factor in determining the exciton-transfer properties in light-harvesting complexes. Here we study this interplay theoretically in a model for exciton transport, composed of two chromophores coupled to an exciton source and sink in the presence of vibrations. We consider two cases that show qualitatively distinct transport features. In the first, the vibrations are global and affect the two chromophores simultaneously. In the second case, the vibrations are localized on each chromophore. For global vibrations, the current exhibits antiresonances as a function of the chromophore energy difference, which are due to exciton-polaron interference. For local vibrations, on the contrary, the currents show tunneling resonances at multiples of the vibration energy. Counterintuitively, both effects increase with increasing temperature. Our results demonstrate that an environment can either assist or hamper exciton transport and is in accord with the current understanding of energy transfer in natural exciton-transfer complexes.
Collapse
Affiliation(s)
- Omer Goldberg
- Department of Physics and the Ilse Katz Center for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 84105 , Israel
| | - Yigal Meir
- Department of Physics and the Ilse Katz Center for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 84105 , Israel
| | - Yonatan Dubi
- Department of Chemistry and the Ilse Katz Center for Nanoscale Science and Technology , Ben-Gurion University of the Negev , Beer Sheva 84105 , Israel
| |
Collapse
|
35
|
Coccia E, Troiani F, Corni S. Probing quantum coherence in ultrafast molecular processes: Anab initioapproach to open quantum systems. J Chem Phys 2018; 148:204112. [DOI: 10.1063/1.5022976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emanuele Coccia
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy
| | - Filippo Troiani
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy
| |
Collapse
|
36
|
Weng YX. Detection of Electronic Coherence via Two-Dimensional Electronic Spectroscopy in Condensed Phase. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1803055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yu-xiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
37
|
Leng X, Yan YM, Zhu RD, Song K, Weng YX, Shi Q. Simulation of the Two-Dimensional Electronic Spectroscopy and Energy Transfer Dynamics of Light-Harvesting Complex II at Ambient Temperature. J Phys Chem B 2018; 122:4642-4652. [DOI: 10.1021/acs.jpcb.8b00674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xuan Leng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dan Zhu
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Cipolloni M, Fresch B, Occhiuto I, Rukin P, Komarova KG, Cecconello A, Willner I, Levine RD, Remacle F, Collini E. Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex. Phys Chem Chem Phys 2018; 19:23043-23051. [PMID: 28817145 DOI: 10.1039/c7cp01334e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution.
Collapse
Affiliation(s)
- M Cipolloni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - B Fresch
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy. and Theoretical Physical Chemistry, University of Liège, Allée du 6 Aout 11, B4000 Liège, Belgium
| | - I Occhiuto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - P Rukin
- Theoretical Physical Chemistry, University of Liège, Allée du 6 Aout 11, B4000 Liège, Belgium
| | - K G Komarova
- Theoretical Physical Chemistry, University of Liège, Allée du 6 Aout 11, B4000 Liège, Belgium
| | - A Cecconello
- The Institute of Chemistry, Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - I Willner
- The Institute of Chemistry, Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - R D Levine
- The Institute of Chemistry, Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, Allée du 6 Aout 11, B4000 Liège, Belgium
| | - E Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
39
|
Ramanan C, Ferretti M, van Roon H, Novoderezhkin VI, van Grondelle R. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII. Phys Chem Chem Phys 2018; 19:22877-22886. [PMID: 28812075 DOI: 10.1039/c7cp03038j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII.
Collapse
Affiliation(s)
- Charusheela Ramanan
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| | - Marco Ferretti
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| | - Henny van Roon
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| | - Vladimir I Novoderezhkin
- A.N. Berlozersky Intitut of Physico-Chemical Biology, Moscow State University, Leninskie Gory 1, 119992, Moscow, Russia
| | - Rienk van Grondelle
- Department of Physics and Astronomy and Institute for Lasers, Life, and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Trofymchuk K, Reisch A, Didier P, Fras F, Gilliot P, Mely Y, Klymchenko AS. Giant light-harvesting nanoantenna for single-molecule detection in ambient light. NATURE PHOTONICS 2017; 11:657-663. [PMID: 28983324 PMCID: PMC5624503 DOI: 10.1038/s41566-017-0001-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we explore the enhancement of single molecule emission by polymeric nano-antenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nano-antenna, the cationic dyes are brought together in very close proximity using bulky counterions, thus enabling ultrafast diffusion of excitation energy (≤30 fs) with minimal losses. Our 60-nm nanoparticles containing >10,000 rhodamine-based donor dyes can efficiently transfer energy to 1-2 acceptors resulting in an antenna effect of ~1,000. Therefore, single Cy5-based acceptors become 25-fold brighter than quantum dots QD655. This unprecedented amplification of the acceptor dye emission enables observation of single molecules at illumination powers (1-10 mW cm-2) that are >10,000-fold lower than typically required in single-molecule measurements. Finally, using a basic setup, which includes a 20X air objective and a sCMOS camera, we could detect single Cy5 molecules by simply shining divergent light on the sample at powers equivalent to sunlight.
Collapse
Affiliation(s)
- Kateryna Trofymchuk
- Université de Strasbourg, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, 74, Route du Rhin, F-67401 ILLKIRCH, France
| | - Andreas Reisch
- Université de Strasbourg, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, 74, Route du Rhin, F-67401 ILLKIRCH, France
| | - Pascal Didier
- Université de Strasbourg, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, 74, Route du Rhin, F-67401 ILLKIRCH, France
| | | | | | - Yves Mely
- Université de Strasbourg, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, 74, Route du Rhin, F-67401 ILLKIRCH, France
| | - Andrey S. Klymchenko
- Université de Strasbourg, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, 74, Route du Rhin, F-67401 ILLKIRCH, France
- Correspondence and requests for materials should be addressed to A.S.K. ; Tel: +33 368 85 42 55
| |
Collapse
|
41
|
Meneghin E, Leonardo C, Volpato A, Bolzonello L, Collini E. Mechanistic insight into internal conversion process within Q-bands of chlorophyll a. Sci Rep 2017; 7:11389. [PMID: 28900171 PMCID: PMC5595816 DOI: 10.1038/s41598-017-11621-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 11/08/2022] Open
Abstract
The non-radiative relaxation of the excitation energy from higher energy states to the lowest energy state in chlorophylls is a crucial preliminary step for the process of photosynthesis. Despite the continuous theoretical and experimental efforts to clarify the ultrafast dynamics of this process, it still represents the object of an intense investigation because the ultrafast timescale and the congestion of the involved states makes its characterization particularly challenging. Here we exploit 2D electronic spectroscopy and recently developed data analysis tools to provide more detailed insights into the mechanism of internal conversion within the Q-bands of chlorophyll a. The measurements confirmed the timescale of the overall internal conversion rate (170 fs) and captured the presence of a previously unidentified ultrafast (40 fs) intermediate step, involving vibronic levels of the lowest excited state.
Collapse
Affiliation(s)
- Elena Meneghin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Leonardo
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Andrea Volpato
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Luca Bolzonello
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
42
|
Yue S, Wang Z, Leng X, Zhu RD, Chen HL, Weng YX. Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017; 543:355-365. [PMID: 28300093 DOI: 10.1038/nature22012] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
Abstract
Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.
Collapse
|
44
|
Fresch B, Bocquel J, Hiluf D, Rogge S, Levine RD, Remacle F. Implementation of Multivariable Logic Functions in Parallel by Electrically Addressing a Molecule of Three Dopants in Silicon. Chemphyschem 2017; 18:1790-1797. [PMID: 28470997 DOI: 10.1002/cphc.201700222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/14/2017] [Indexed: 12/17/2022]
Abstract
To realize low-power, compact logic circuits, one can explore parallel operation on single nanoscale devices. An added incentive is to use multivalued (as distinct from Boolean) logic. Here, we theoretically demonstrate that the computation of all the possible outputs of a multivariate, multivalued logic function can be implemented in parallel by electrical addressing of a molecule made up of three interacting dopant atoms embedded in Si. The electronic states of the dopant molecule are addressed by pulsing a gate voltage. By simulating the time evolution of the non stationary electronic density built by the gate voltage, we show that one can implement a molecular decision tree that provides in parallel all the outputs for all the inputs of the multivariate, multivalued logic function. The outputs are encoded in the populations and in the bond orders of the dopant molecule, which can be measured using an STM tip. We show that the implementation of the molecular logic tree is equivalent to a spectral function decomposition. The function that is evaluated can be field-programmed by changing the time profile of the pulsed gate voltage.
Collapse
Affiliation(s)
- Barbara Fresch
- Theoretical Physical Chemistry, University of Liege, B4000, Liege, Belgium.,Department of Chemical Science, University of Padova, Via Marzolo 1, 35131, Italy
| | - Juanita Bocquel
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Dawit Hiluf
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,Current address: Department of Chemistry, Ben Gurion University of the Negev, Be'er-Sheva, 84105, Israel
| | - Sven Rogge
- Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Raphael D Levine
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, USA
| | - Françoise Remacle
- Theoretical Physical Chemistry, University of Liege, B4000, Liege, Belgium.,The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
45
|
Wen J, Ma H. A fragmentation-based approach for evaluating the intra-chain excitonic couplings in conjugated polymers. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Tang Q. All-Weather Solar Cells: A Rising Photovoltaic Revolution. Chemistry 2017; 23:8118-8127. [DOI: 10.1002/chem.201700098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Qunwei Tang
- Institute of Materials Science and Engineering; Ocean University of China; No 238 Songling Road, Laoshan District Qingdao 266100 P. R. China
| |
Collapse
|
47
|
Volpato A, Bolzonello L, Meneghin E, Collini E. Global analysis of coherence and population dynamics in 2D electronic spectroscopy. OPTICS EXPRESS 2016; 24:24773-24785. [PMID: 27828197 DOI: 10.1364/oe.24.024773] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
2D electronic spectroscopy is a widely exploited tool to study excited state dynamics. A high density of information is enclosed in 2D spectra. A crucial challenge is to objectively disentangle all the features of the third order optical signal. We propose a global analysis method based on the variable projection algorithm, which is able to reproduce simultaneously coherence and population dynamics of rephasing and non-rephasing contributions. Test measures at room temperature on a standard dye are used to validate the procedure and to discuss the advantages of the proposed methodology with respect to the currently employed analysis procedures.
Collapse
|
48
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
49
|
Fazzi D, Barbatti M, Thiel W. Unveiling the Role of Hot Charge-Transfer States in Molecular Aggregates via Nonadiabatic Dynamics. J Am Chem Soc 2016; 138:4502-11. [DOI: 10.1021/jacs.5b13210] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele Fazzi
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Mario Barbatti
- Aix Marseille Université, CNRS, ICR UMR7273, 13397 Marseille, France
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
50
|
Tsampourakis K, Kominis I. Quantum trajectory tests of radical-pair quantum dynamics in CIDNP measurements of photosynthetic reaction centers. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|