1
|
Wu Q, Liang J, Wang D, Wang R, Janiak C. Host molecules inside metal-organic frameworks: host@MOF and guest@host@MOF (Matrjoschka) materials. Chem Soc Rev 2024. [PMID: 39589788 DOI: 10.1039/d4cs00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The controllable encapsulation of host molecules (such as porphyrin, phthalocyanine, crown ether, calixarene or cucurbituril organic macrocycles, cages, metal-organic polyhedrons and enzymes) into the pores of metal-organic frameworks (MOFs) to form host-in-host (host@MOF) materials has attracted increasing research interest in various fields. These host@MOF materials combine the merits of MOFs as a host matrix and functional host molecules to exhibit synergistic functionalities for the formation of guest@host@MOF materials in sorption and separation, ion capture, catalysis, proton/ion conduction and biosensors. (This guest@host@MOF construction is reminiscent of Russian (Matrjoschka) dolls which are nested dolls of decreasing size placed one inside another.) In this tutorial review, the advantages of MOFs as a host matrix are presented; the encapsulation approaches and general important considerations for the preparation of host@MOF materials are introduced. The state-of-the-art examples of these materials based on different host molecules are shown, and representative applications and general characterization of these materials are discussed. This review will guide researchers attempting to design functional host@MOF and guest@host@MOF materials for various applications.
Collapse
Affiliation(s)
- Qiao Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
| | - Jun Liang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Dan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
| | - Ruihu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, 300401 Tianjin, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| |
Collapse
|
2
|
Wang J, Li X, Chang CH, Zhang T, Guan X, Liu Q, Zhang L, Wen P, Tang I, Zhang Y, Yang X, Tang J, Lan Y. Engineering Single Ni Sites on 3D Cage-like Cucurbit[n]uril Ligands for Efficient and Selective CO 2 Photocatalytic Reduction. Angew Chem Int Ed Engl 2024:e202417384. [PMID: 39467046 DOI: 10.1002/anie.202417384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Solar-driven CO2 selective reduction with high conversion is a challenging task yet holds immense promise for both CO2 neutralization and green fuel production. Enhancing CO2 adsorption at the catalytic centre can trigger a highly efficient CO2 capture-to-conversion process. Herein, we introduce cucurbit[n]urils (CB[n]), a new family of molecular ligands, as a key component in the creation of a 3D cage-like metal (nickel, Ni)-complex molecular co-catalyst (CB[7]-Ni) for photocatalysis. It exhibits an unprecedented CO yield rate of 72.1 μmol ⋅ h-1 with a high selectivity of 97.9 % under visible light irradiation. To verify the origin of the carbon source in the products, a straightforward isotopic tracing method is designed based on tandem reactions. The catalytic process commences with photoelectron transfer from Ru(bpy)3 2+ to the Ni2+ site, resulting in the reduction of Ni2+ to Ni+. The locally enriched CO2 molecules in the cage ligand CB[7] undergo selective reduction by the Ni+ nearby to form CO product. This work exemplifies the inspiring potential of ligand structure engineering in advancing the development of efficient unanchored molecular co-catalysts.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, United Kingdom
- Centre for Nature-Inspired Engineering, University College London, London, WC1E 7JE, United Kingdom
| | - Xiyi Li
- Department of Chemical Engineering, University College London, London, WC1E 7JE, United Kingdom
- Centre for Nature-Inspired Engineering, University College London, London, WC1E 7JE, United Kingdom
| | - Chia-Hao Chang
- Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Tianyu Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xuze Guan
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry and Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The, Netherlands
| | - Qiong Liu
- Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Liquan Zhang
- Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Ping Wen
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ivan Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, United Kingdom
- Centre for Nature-Inspired Engineering, University College London, London, WC1E 7JE, United Kingdom
| | - Yuewen Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaofeng Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, United Kingdom
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Lan
- Department of Chemical Engineering, University College London, London, WC1E 7JE, United Kingdom
- Centre for Nature-Inspired Engineering, University College London, London, WC1E 7JE, United Kingdom
| |
Collapse
|
3
|
Fedorenko GV, Zbruyev OI, Pavlishchuk AV, Oleksenko LP, Shova SG, Chebanov VA, Pavlishchuk VV. The crystal structure of a mononuclear Pr III complex with cucurbit[6]uril. Acta Crystallogr E Crystallogr Commun 2024; 80:789-794. [PMID: 38974149 PMCID: PMC11223695 DOI: 10.1107/s2056989024005760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
A new mononuclear complex, penta-aqua-(cucurbit[6]uril-κ2 O,O')(nitrato-κ2 O,O')praseodymium(III) dinitrate 9.56-hydrate, [Pr(NO3)(CB6)(H2O)5](NO3)2·9.56H2O (1), was obtained as outcome of the hydro-thermal reaction between the macrocyclic ligand cucurbit[6]uril (CB6, C36H36N24O12) with a tenfold excess of Pr(NO3)3·6H2O. Complex 1 crystallizes in the P21/n space group with two crystallographically independent but chemically identical [Pr(CB6)(NO3)(H2O)5]2+ complex cations, four nitrate counter-anions and 19.12 inter-stitial water mol-ecules per asymmetric unit. The nona-coordinated PrIII in 1 are located in the PrO9 coordination environment formed by two carbonyl O atoms from bidentate cucurbit[6]uril units, two oxygen atoms from the bidentate nitrate anion and five water mol-ecules. Considering the differences in Pr-O bond distances and O-Pr-O angles in the coordination spheres, the coordination polyhedrons of the two PrIII atoms can be described as distorted spherical capped square anti-prismatic and muffin polyhedral.
Collapse
Affiliation(s)
- George V. Fedorenko
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospect Nauki 31, Kyiv, 03028, Ukraine
| | - Oleksandr I. Zbruyev
- SSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv 61072, Ukraine
| | - Anna V. Pavlishchuk
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospect Nauki 31, Kyiv, 03028, Ukraine
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, 47907-2084, IN, USA
| | - Lyudmila P. Oleksenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 62, Kyiv, 01601, Ukraine
| | - Sergiu G. Shova
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda nr. 41A, Iaşi, 700487, Romania
| | - Valentyn A. Chebanov
- SSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky ave., Kharkiv 61072, Ukraine
- V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine
| | - Vitaly V. Pavlishchuk
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospect Nauki 31, Kyiv, 03028, Ukraine
| |
Collapse
|
4
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
5
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
6
|
Xu J, Li B, Zhang XD, Wu D, Zhao JL, Chen K. Selective removal of Cr 2O 72- in aqueous solution by nonporous pure crystals of cucurbit[6]uril. Dalton Trans 2024; 53:6168-6172. [PMID: 38488062 DOI: 10.1039/d4dt00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cucurbit[6]uril (Q[6]) could serve as a selective absorbent for the toxic anion Cr2O72-, which was demonstrated by the results of UV-vis, ICP, XPS, SEM, and EDS experiments. Single-crystal X-ray diffraction analysis revealed that capture capacity could be attributed to the outer-surface interactions of cucurbit[n]uril between Cr2O72- and the outer surface of Q[6].
Collapse
Affiliation(s)
- Jing Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bin Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiu-Du Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, China
| | - Dong Wu
- Computer Aided Drug Discovery Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China.
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519080, Guangdong, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
7
|
Li X, Jin Y, Zhu N, Yin J, Jin LY. Recent Developments of Fluorescence Sensors Constructed from Pillar[ n]arene-Based Supramolecular Architectures Containing Metal Coordination Sites. SENSORS (BASEL, SWITZERLAND) 2024; 24:1530. [PMID: 38475066 DOI: 10.3390/s24051530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The field of fluorescence sensing, leveraging various supramolecular self-assembled architectures constructed from macrocyclic pillar[n]arenes, has seen significant advancement in recent decades. This review comprehensively discusses, for the first time, the recent innovations in the synthesis and self-assembly of pillar[n]arene-based supramolecular architectures (PSAs) containing metal coordination sites, along with their practical applications and prospects in fluorescence sensing. Integrating hydrophobic and electron-rich cavities of pillar[n]arenes into these supramolecular structures endows the entire system with self-assembly behavior and stimulus responsiveness. Employing the host-guest interaction strategy and complementary coordination forces, PSAs exhibiting both intelligent and controllable properties are successfully constructed. This provides a broad horizon for advancing fluorescence sensors capable of detecting environmental pollutants. This review aims to establish a solid foundation for the future development of fluorescence sensing applications utilizing PSAs. Additionally, current challenges and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Xu Li
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Yan Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Jinghua Yin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
8
|
Abstract
Large water-soluble anions with chaotropic character display surprisingly strong supramolecular interactions in water, for example, with macrocyclic receptors, polymers, biomembranes, and other hydrophobic cavities and interfaces. The high affinity is traced back to a hitherto underestimated driving force, the chaotropic effect, which is orthogonal to the common hydrophobic effect. This review focuses on the binding of large anions with water-soluble macrocyclic hosts, including cyclodextrins, cucurbiturils, bambusurils, biotinurils, and other organic receptors. The high affinity of large anions to molecular receptors has been implemented in several lines of new applications, which are highlighted herein.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, 19117 Al-Salt, Jordan.
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
9
|
Jin XY, Ge Q, Cong H, Zhang YQ, Zhao JL, Jiang N. Recent Breakthroughs in Supercapacitors Boosted by Macrocycles. CHEMSUSCHEM 2023; 16:e202300027. [PMID: 36946375 DOI: 10.1002/cssc.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Indexed: 06/04/2023]
Abstract
Supercapacitors are essential for electrochemical energy storage because of their high-power density, good cycle stability, fast charging and discharging rates, and low maintenance cost. Macrocycles, including cucurbiturils, calixarene, and cyclodextrins, are cage-like organic compounds (with a nanocavity that contains O and N heteroatoms) with unique potential in supercapacitors. Here, we review the applications of macrocycles in supercapacitor systems, and we illustrate the merits of organic macrocycles in electrodes and electrolytes for improving the electrochemical double-layer capacitors and pseudocapacitance via supramolecular strategies. Then, the observed relationships between electrochemical performance and macrocyclic structures are introduced. This comprehensive review describes recent progress on macrocycle-block supercapacitors for researchers.
Collapse
Affiliation(s)
- Xian-Yi Jin
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Qingmei Ge
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Hang Cong
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Jiang-Lin Zhao
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, 519080, Guangdong, P. R. China
| | - Nan Jiang
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang, 550025, Guizhou, P. R. China
| |
Collapse
|
10
|
Hu JH, Zhang W, Ren CX, Xiong Y, Zhang JY, He J, Huang Y, Tao Z, Xiao X. A novel portable smart phone sensing platform based on a supramolecular fluorescence probe for quick visual quantitative detection of picric acid. Anal Chim Acta 2023; 1254:341095. [PMID: 37005021 DOI: 10.1016/j.aca.2023.341095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Picric acid (PA) is a lethal explosive substance that is easily soluble in water and harmful to the environment. Here, a supramolecular polymer material BTPY@Q[8] with aggregation induced emission (AIE) was prepared by supramolecular self-assembly of cucurbit uril (Q[8]) and 1,3,5-tris[4-(pyridin-4-yl) phenyl] benzene derivative (BTPY), which exhibited aggregation-induced fluorescence enhancement. To this supramolecular self-assembly, the addition of a number of nitrophenols was found to have no obvious effect on the fluorescence, however on addition of PA, the fluorescence intensity underwent a dramatic quench. For PA, BTPY@Q[8] had sensitive specificity and effective selectivity. Based on this, a quick and simple on-site visual PA fluorescence quantitative detection platform was developed using smart phones, and the platform was used to monitor temperature. Machine learning (ML) is a popular pattern recognition technology, which can accurately predict the results from data. Therefore, ML has much more potential for analyzing and improving sensing data than the widely used statistical pattern recognition method. In the field of analytical science, the sensing platform offers a reliable method for the quantitative detection of PA that can be applied to other analytes or micropollutant screening.
Collapse
|
11
|
Organic macrocycle-polyoxometalate hybrids. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Yang D, Luo Y, Wei Yuan S, Xia Chen L, Hua Ma P, Tao Z, Xiao X. A cucurbit[8]uril-based supramolecular polymer constructed outer surface interactions: use as a sensor, in cellular imaging and beyond. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
13
|
Xu F, Feringa BL. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204413. [PMID: 36239270 DOI: 10.1002/adma.202204413] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Photoresponsive supramolecular polymers are well-organized assemblies based on highly oriented and reversible noncovalent interactions containing photosensitive molecules as (co-)monomers. They have attracted increasing interest in smart materials and dynamic systems with precisely controllable functions, such as light-driven soft actuators, photoresponsive fluorescent anticounterfeiting and light-triggered electronic devices. The present review discusses light-activated molecules used in photoresponsive supramolecular polymers with their main photo-induced changes, e.g., geometry, dipole moment, and chirality. Based on these distinct changes, supramolecular polymers formed by light-activated molecules exhibit photoresponsive disassembly and reassembly. As a consequence, photo-induced supramolecular polymerization, "depolymerization," and regulation of the lengths and topologies are observed. Moreover, the light-controlled functions of supramolecular polymers, such as actuation, emission, and chirality transfer along length scales, are highlighted. Furthermore, a perspective on challenges and future opportunities is presented. Besides the challenge of moving from harmful UV light to visible/near IR light avoiding fatigue, and enabling biomedical applications, future opportunities include light-controlled supramolecular actuators with helical motion, light-modulated information transmission, optically recyclable materials, and multi-stimuli-responsive supramolecular systems.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
14
|
Liu JX, Chen K, Redshaw C. Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[ n]uril homologues and derivatives. Chem Soc Rev 2023; 52:1428-1455. [PMID: 36728265 DOI: 10.1039/d2cs00785a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cucurbit[n]uril supramolecular chemistry has developed rapidly since 2001 when different cucurbit[n]uril homologues (Q[n]) were successfully separated in pure form. The combination of Q[n] cavity size and various types of external stimuli has given birth to numerous types of Q[n]-based mechanically interlocked molecules (MIMs), including (pseudo)rotaxanes, catenanes, dendrimers and poly(pseudo)rotaxanes. In this review article, the important advances in the field of Q[n]-based MIMs over the past two decades are highlighted. This review also describes examples of heterowheel (pseudo)rotaxanes and poly(pseudo)rotaxanes involving Q[n]s, and reflects on the opportunities and challenges of constructing Q[n]-based stimuli-responsive MIMs.
Collapse
Affiliation(s)
- Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China.
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
15
|
Chen K, Zhu ZQ, Zhang MH, Yang X, Li J, Chen C, Redshaw C. 4,4′-Biphenyldisulfonic acid induced coordination polymers of symmetrical tetramethyl cucurbit[6]uril with alkaline-earth metals for detection of antibiotics. CrystEngComm 2023. [DOI: 10.1039/d2ce01470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Three new 3D TMeQ[6]-based coordination polymers of alkali-earth metal ions (Ca2+, Sr2+ and Ba2+) were characterized, and one can highly selectively detect NFX (norfloxacin) molecules via a fluorescence quenching effect.
Collapse
Affiliation(s)
- Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Zhao-Qiang Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Ming-Hui Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Xiang Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Jie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Chen Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
16
|
Zhang Q, Zhang L, Zheng J, Wang X, Tao Z. Supramolecular Self-Assembly Based on Symmetric Tetramethyl-Substituted Cucurbit[6]uril and Small Aromatic Amines. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
A study of the supramolecular assembly formed by cucurbit[7]uril and 4-cyanophenol. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Zhao H, Hu YL, Shen L, Sun JF, Yang B, Gao ZZ, Wei G. Inverted Cucurbit[7]uril-Induced Supramolecular Fluorescence Enhancement in Hemicyanine Dye and Its Analysis Application. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Sensitive detection of barium ion based on its enhancing effect on luminol electrochemiluminescence at cucurbit[7]uril-modified electrode. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Supramolecular assemblies of cucurbit[n]urils and 4-aminopyridine controlled by cucurbit[n]uril size (n = 5, 6, 7 and 8). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Q[8]-based frameworks exhibiting clustering-triggered emission and responses to organic molecules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Zhao H, Shen FF, Sun JF, Gao ZZ. Cucurbit[8]uril-controlled [2 + 2] photodimerization of styrylpyridinium molecule. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Zheng J, Zhang L, Chen Y, Ma Y, Dai X, Shi L, Lu Y, Yang X, Ma P. Construction of a supramolecular framework consisting of cucurbit[8]uril and 1-(4-methoxyphenyl)piperazine. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the supramolecular self-assembly of cucurbit[8]uril(Q[8]) and 1-(4-methoxyphenyl)piperazine inclusion complex. The complex is cultured in 3 M hydrochloric acid solution under CdCl2 induction conditions to obtain a new crystal, the structure of which was characterized by X-ray single-crystal diffraction. The results show that the crystal belongs to the monoclinic crystal system with a C2/m space group. The host–guest interaction ratio of Q[8] and 1-(4-methoxyphenyl) piperazine is 1:2.
Collapse
Affiliation(s)
- Jun Zheng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| | - Lin Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| | - Yuhe Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| | - Yue Ma
- Guiyang College of Humanities and Science, Guiyang, People’s Republic of China
| | - Xue Dai
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| | - Li Shi
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| | - Yanli Lu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| | - Xinan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| | - Peihua Ma
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, People’s Republic of China
| |
Collapse
|
24
|
Wei KN, Zhang QJ, Zhang YQ, Zeng X, Xiao X, Huang Y, Chen K, Tao Z. Clustering emission of cucurbit[n]urils in the solid- and solution-state induced by the outer surface interactions of cucurbit[n]urils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121015. [PMID: 35180484 DOI: 10.1016/j.saa.2022.121015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Atypical luminescent compounds that do not contain conventional chromophores emit light due to clustering and have important basic research value and a broad range of potential applications. To date, most atypical luminescent compounds are small molecules or polymers containing groups such as cyano, carbonyl and hydroxyl. In this work, driven by some sporadic and accidental luminescence phenomena observed for cucurbit[n]urils (Q[n]s), the luminescent properties and mechanism of Q[n]s in the solid- and solution-state were systematically studied and the clustering emission of Q[n]s confirmed. Our experiments have revealed that the self-induced outer-surface interactions of Q[n]s (OSIQ) are the most important driving force resulting in the clustering emission of Q[n]s. Substances that can weaken the effect of self-induced OSIQ, such as the presence of various aromatic compounds and anions, may weaken or quench the clustering emission of Q[n]s. This not only reveals the new characteristics and mechanism of the clustering emission of Q[n]s, but also provides new insights on how to utilize the clustering emission of Q[n]s and construct new types of macrocyclic luminescence systems.
Collapse
Affiliation(s)
- Kai-Ni Wei
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qian-Jun Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yun-Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China; The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang 550025, China.
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
25
|
Geng JS, Mei L, Liang YY, Yuan LY, Yu JP, Hu KQ, Yuan LH, Feng W, Chai ZF, Shi WQ. Controllable photomechanical bending of metal-organic rotaxane crystals facilitated by regioselective confined-space photodimerization. Nat Commun 2022; 13:2030. [PMID: 35440111 PMCID: PMC9019062 DOI: 10.1038/s41467-022-29738-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Molecular machines based on mechanically-interlocked molecules (MIMs) such as (pseudo) rotaxanes or catenates are known for their molecular-level dynamics, but promoting macro-mechanical response of these molecular machines or related materials is still challenging. Herein, by employing macrocyclic cucurbit[8]uril (CB[8])-based pseudorotaxane with a pair of styrene-derived photoactive guest molecules as linking structs of uranyl node, we describe a metal-organic rotaxane compound, U-CB[8]-MPyVB, that is capable of delivering controllable macroscopic mechanical responses. Under light irradiation, the ladder-shape structural unit of metal-organic rotaxane chain in U-CB[8]-MPyVB undergoes a regioselective solid-state [2 + 2] photodimerization, and facilitates a photo-triggered single-crystal-to-single-crystal (SCSC) transformation, which even induces macroscopic photomechanical bending of individual rod-like bulk crystals. The fabrication of rotaxane-based crystalline materials with both photoresponsive microscopic and macroscopic dynamic behaviors in solid state can be promising photoactuator devices, and will have implications in emerging fields such as optomechanical microdevices and smart microrobotics.
Collapse
Affiliation(s)
- Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
| | - Yuan-Yuan Liang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Hua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
26
|
Zhang ZH, Chen LX, Zhang YQ, Zhu QJ, Chen K, Tao Z. CdS-Based Catalysts Derived from TMeQ[6]/[Cd xCl y] n--Based Frameworks for Oxidation Benzylamine. Inorg Chem 2022; 61:5607-5615. [PMID: 35357176 DOI: 10.1021/acs.inorgchem.2c00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anion-induced outer surface interaction of Q[n]s is an important driving force in the construction of Q[n]-based supramolecular frameworks. In this work, a symmetric tetramethyl-substituted cucurbit[6]uril (TMeQ[6]) is selected as the basic structural block. Using the anion-induced outer surface interaction of Q[n]s derived from [CdxCly]n- anions formed by Cd2+ cations in a HCl medium, four different TMeQ[6]-[CdxCly]n--based supramolecular frameworks are constructed. Three of the most common TMeQ[6]-[CdxCly]n--based supramolecular frameworks are selected for further vulcanization, and three different CdS/TMeQ[6]-based framework catalysts with different structures and properties are obtained. The catalytic activities of these three CdS/TMeQ[6]-based framework catalysts are investigated by the coupling photocatalytic reaction of aminobenzyl, and the results showed that the catalytic activities of the three catalysts are all higher than that of pure CdS. Therefore, this work establishes that it is possible to establish a method for synthesizing the Q[n]-based framework-supported catalysts by first synthesizing TMeQ[6]-[CdxCly]n--based supramolecular frameworks and then forming Q[n]-based framework supported catalysts by sulfurization or reduction.
Collapse
Affiliation(s)
- Zhi Hua Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Li Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yun Qian Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Qian Jiang Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
27
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Study on geometry and chemical activity of twisted cucurbit[13]uril based on density functional theory. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Q[8]/SC[6]A-based framework constructed via OSIQ for metal ion capture. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Wang Q, Zhang K, Lin RL, Sun WQ, Ye MF, Xiao X, Liu JX. A light-responsive molecular switch based on cucurbit[7]uril and 1,1'-bis(benzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium dibromide displaying white light emission. Org Biomol Chem 2022; 20:1253-1259. [PMID: 35060585 DOI: 10.1039/d1ob02420e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By using 1H NMR, ESI-MS and UV spectra, a novel light-responsive molecular switch constructed using 1,1'-bis(benzyl)-4-[2-(4-pyridyl)-vinyl]-pyridinium (12+) and cucurbit[7]uril (Q[7]) is demonstrated. The E- to Z-isomerization of the double bond in 12+ results in the transition of the switching states from the 1 : 2 complex E-12+@Q[7]2 to the stable 1 : 1 complex Z-12+@Q[7]. In particular, both the 1 : 2 complex and the 1 : 1 complex can emit cold white fluorescence under UV light.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Wen-Qi Sun
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Ming-Fu Ye
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| |
Collapse
|
31
|
Han SD, Hu JX, Wang GM. Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Matsumoto M, Reid J, Byeman C, Evbuomwan O. Supramolecular Enhancement of Antenna‐sensitized Europium(III) Luminescence by Cucurbit[7]uril Complexation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masaomi Matsumoto
- Department of Chemistry and Biochemistry Gonzaga University WA, 99258 Spokane United States
| | - Jon Reid
- Department of Chemistry and Biochemistry Gonzaga University WA, 99258 Spokane United States
| | - Connor Byeman
- Department of Chemistry and Biochemistry Gonzaga University WA, 99258 Spokane United States
| | - Osasere Evbuomwan
- Department of Chemistry University of San Francisco CA, 94117 San Francisco United States
| |
Collapse
|
33
|
Zhang W, Yang W, Chen J, Wang Y, Yan M, Zhou J. An amphiphilic water-soluble biphen[3]arene with a tunable lower critical solution temperature behavior. NEW J CHEM 2022. [DOI: 10.1039/d2nj03918d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first amphiphilic water-soluble thermoresponsive biphen[3]arene with a tunable lower critical solution temperature behavior is reported.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
34
|
Huang Z, Chen X, O'Neill SJK, Wu G, Whitaker DJ, Li J, McCune JA, Scherman OA. Highly compressible glass-like supramolecular polymer networks. NATURE MATERIALS 2022; 21:103-109. [PMID: 34819661 DOI: 10.1038/s41563-021-01124-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Supramolecular polymer networks are non-covalently crosslinked soft materials that exhibit unique mechanical features such as self-healing, high toughness and stretchability. Previous studies have focused on optimizing such properties using fast-dissociative crosslinks (that is, for an aqueous system, dissociation rate constant kd > 10 s-1). Herein, we describe non-covalent crosslinkers with slow, tuneable dissociation kinetics (kd < 1 s-1) that enable high compressibility to supramolecular polymer networks. The resultant glass-like supramolecular networks have compressive strengths up to 100 MPa with no fracture, even when compressed at 93% strain over 12 cycles of compression and relaxation. Notably, these networks show a fast, room-temperature self-recovery (< 120 s), which may be useful for the design of high-performance soft materials. Retarding the dissociation kinetics of non-covalent crosslinks through structural control enables access of such glass-like supramolecular materials, holding substantial promise in applications including soft robotics, tissue engineering and wearable bioelectronics.
Collapse
Affiliation(s)
- Zehuan Huang
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Xiaoyi Chen
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Stephen J K O'Neill
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Daniel J Whitaker
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jiaxuan Li
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jade A McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Zhang LP, Liu CZ, Liu M, Lu S, Yu SB, Qi QY, Yang GY, Li X, Yang B, Li ZT. CB[10]-driven self-assembly of a homotrimer from a symmetric organic dye: tunable multicolor fluorescence and higher solid-state stability than that of a CB[8]-included homodimer. Org Chem Front 2022. [DOI: 10.1039/d2qo01438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A symmetric organic dye can form a highly stable homotrimer in the cavity of CB[10], which exhibits unique multicolour fluorescence different from that of the single molecule or its dimer.
Collapse
Affiliation(s)
- Le-Ping Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan-Zhi Liu
- School of Chemistry and Chemical Engineering, Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, Shangqiu Normal University, Shangqiu 476000, China
| | - Ming Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Department of Chemistry, Guiyang 550025, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guan-Yu Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Bo Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
36
|
Zhang ZH, Lin RL, Yu XY, Chen LX, Tao Z, Xiao X, Wei G, Redshaw C, Liu JX. Encapsulation of l-valine, d-leucine and d-methionine by cucurbit[8]uril. CrystEngComm 2022. [DOI: 10.1039/d1ce01513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding interactions of cucurbit[8]uril (Q[8]) with l-valine, d-leucine, and d-methionine, both in aqueous solution and solid state, have been studied by 1H NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Zeng-Hui Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| | - Xiang-Yun Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Li-Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Gang Wei
- CSIRO Mineral Resources, PO Box 218, Lindfield, NSW 2070, Australia
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| |
Collapse
|
37
|
Li F, Mei L, Peng H, Hu KQ, Chai Z, Liu N. Impact of Proximity Effect on Uranyl Coordination of Conformationally Variable Weakly-Bonded Cucurbit[6]uril-Bipyridinium Pseudorotaxane. CrystEngComm 2022. [DOI: 10.1039/d1ce01330k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore the proximity effect in uranyl coordination of weak-bonded cucurbit[6]uril(CB[6])-bipyridinium ligands, a new pseudorotaxane precursor C7BPCN3@CB[6] containing 1, 1'-(heptyl-1,7-diyl)bis(3-cyanopyridin-1-ium) bromide (C7BPCN3) with elongated alkyl chains and meta-substituted cyano groups,...
Collapse
|
38
|
Jin Y, Meng Y, Li Y, Shi J, Deng L. Supramolecular Self-assembly of Symmetric Dicyclohexanocucurbit[6]uril and Nicotinic Hydrazide. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Chen K, Hua ZY, Zhao JL, Redshaw C, Tao Z. Construction of cucurbit[n]uril-based supramolecular frameworks via host-guest inclusion and functional properties thereof. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00513a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frameworks utilizing cucurbit[n]uril-based chemistry build on the rapid developments in the fields of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and supramolecular organic frameworks (SOFs), and as porous materials have found...
Collapse
|
40
|
Zheng J, Meng Y, Zhang L, Yang X, Ma P. Metal-induced different structures of four cyclopentanocucurbit[5]uril-based complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Paul B, Mukherjee A, Bhuyan D, Guha S. Construction of unsymmetrical b
is‐urea
macrocyclic host for neutral molecule and chloride‐ion binding. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Biprajit Paul
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Deepak Bhuyan
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section Jadavpur University Kolkata India
| |
Collapse
|
42
|
Sokołowski K, Huang J, Földes T, McCune JA, Xu DD, de Nijs B, Chikkaraddy R, Collins SM, Rosta E, Baumberg JJ, Scherman OA. Nanoparticle surfactants for kinetically arrested photoactive assemblies to track light-induced electron transfer. NATURE NANOTECHNOLOGY 2021; 16:1121-1129. [PMID: 34475556 DOI: 10.1038/s41565-021-00949-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Nature controls the assembly of complex architectures through self-limiting processes; however, few artificial strategies to mimic these processes have been reported to date. Here we demonstrate a system comprising two types of nanocrystal (NC), where the self-limiting assembly of one NC component controls the aggregation of the other. Our strategy uses semiconducting InP/ZnS core-shell NCs (3 nm) as effective assembly modulators and functional nanoparticle surfactants in cucurbit[n]uril-triggered aggregation of AuNCs (5-60 nm), allowing the rapid formation (within seconds) of colloidally stable hybrid aggregates. The resultant assemblies efficiently harvest light within the semiconductor substructures, inducing out-of-equilibrium electron transfer processes, which can now be simultaneously monitored through the incorporated surface-enhanced Raman spectroscopy-active plasmonic compartments. Spatial confinement of electron mediators (for example, methyl viologen (MV2+)) within the hybrids enables the direct observation of photogenerated radical species as well as molecular recognition in real time, providing experimental evidence for the formation of elusive σ-(MV+)2 dimeric species. This approach paves the way for widespread use of analogous hybrids for the long-term real-time tracking of interfacial charge transfer processes, such as the light-driven generation of radicals and catalysis with operando spectroscopies under irreversible conditions.
Collapse
Affiliation(s)
- Kamil Sokołowski
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| | - Junyang Huang
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Tamás Földes
- Department of Chemistry, King's College London, London, UK
- Department of Physics and Astronomy, University College London, Gower Street, UK
| | - Jade A McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - David D Xu
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Sean M Collins
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Edina Rosta
- Department of Chemistry, King's College London, London, UK
- Department of Physics and Astronomy, University College London, Gower Street, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Guo H, Yang S, Cao L, Chen L, Gao R, Huang Y, Xue B, Tao Z. Multiple Stimuli-Responsive Supramolecular Hydrogels Constructed by Decamethylcucurbit[5]uril-para-phenylenediamine Exclusion Complex. Macromol Rapid Commun 2021; 42:e2100431. [PMID: 34480770 DOI: 10.1002/marc.202100431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Indexed: 11/12/2022]
Abstract
The hydrogels composed of decamethylcucurbit[5]uril (Me10 Q[5]) and para-phenylenediamine (p-PDA) are first reported herein. They are the first Q[5]-based supramolecular hydrogels, the formation of which is driven by portal exclusion between Me10 Q[5] and p-PDA. The composition, structure, and properties of the Me10 Q[5]/p-PDA-based hydrogels are investigated by various techniques. Since the 1D supramolecular chain forms via portal exclusion between Me10 Q[5] and p-PDA is the key to the formation of the hydrogels, any competitive species, such as metal ions, organic molecules, and amino acids, which can affect the portal exclusion, can change the behavior of the Me10 Q[5]/p-PDA-based hydrogels. Hence, the hydrogels can be used for various applications. Importantly, the results may provide a new research direction for the preparation of Q[n]-based hydrogels via portal exclusion of Q[n]s with guests.
Collapse
Affiliation(s)
- Hanling Guo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Shengdu Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Long Cao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Lixia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ruihan Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Bai Xue
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 515 Jiaxiu Road, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
44
|
Meng Y, Jin YM, Ma PH. Synthesis of symmetric dicyclohexanocucurbit[6]uril and its interaction with glycine. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Wu H, Wang Y, Jones LO, Liu W, Zhang L, Song B, Chen XY, Stern CL, Schatz GC, Stoddart JF. Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exo-Binding with Cucurbit[6]uril. Angew Chem Int Ed Engl 2021; 60:17587-17594. [PMID: 34031957 DOI: 10.1002/anie.202104646] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/13/2021] [Indexed: 01/10/2023]
Abstract
The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo-binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co-crystallization and concomitant co-precipitation between [PtCl6 ]2- dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6 ]2- dianion recognition is driven by weak [Pt-Cl⋅⋅⋅H-C] hydrogen bonding and [Pt-Cl⋅⋅⋅C=O] ion-dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt- and Pd- or Rh-based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6 ]2- dianions from a mixture of [PtCl6 ]2- , [PdCl4 ]2- , and [RhCl6 ]3- anions. This protocol could be exploited to recover platinum from spent vehicular three-way catalytic converters and other platinum-bearing metal waste.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.,Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| |
Collapse
|
46
|
Wu H, Wang Y, Jones LO, Liu W, Zhang L, Song B, Chen X, Stern CL, Schatz GC, Stoddart JF. Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exo‐Binding with Cucurbit[6]uril. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huang Wu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Yu Wang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Leighton O. Jones
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Wenqi Liu
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Long Zhang
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Bo Song
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xiao‐Yang Chen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Charlotte L. Stern
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - George C. Schatz
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
47
|
Zeng Z, Zhang Y, Zhang X, Luo G, Xie J, Tao Z, Zhang Q. Selective detection of Zn2+ and Cd2+ ions in water using a host-guest complex between chromone and Q[7]. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Nie YM, Cao L, Xia W, Zhang C, Zhang YQ, Tao Z. Supramolecular self-assemblies of perhydroxycucurbit[5]uril with Keggin-type heteropolyacids. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Xia W, Nie YM, Lei N, Tao Z, Zhu QJ, Zhang YQ. A recyclable cucurbit[6]uril-supported silicotungstic acid catalyst used in the esterification reaction. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Huang Y, Gao R, Liu M, Chen L, Ni X, Xiao X, Cong H, Zhu Q, Chen K, Tao Z. Cucurbit[
n
]uril‐Based Supramolecular Frameworks Assembled through Outer‐Surface Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202002666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Rui‐Han Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Li‐Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Xin‐Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Qian‐Jiang Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control School of Environmental Science and Engineering Nanjing University of Information Science & Technology 210044 Nanjing China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University 550025 Guiyang China
| |
Collapse
|