McLeod NA, Kuzmina LG, Korobkov I, Howard JAK, Nikonov GI. Hydridosilylamido complexes of Ta and Mo isolobal with Berry's zirconocenes: syntheses, β-Si-H agostic interactions, catalytic hydrosilylation, and insight into mechanism.
Dalton Trans 2016;
45:2554-61. [PMID:
26727669 DOI:
10.1039/c5dt04548g]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The syntheses of novel Group 5 and Group 6 hydrosilylamido complexes of the type R(ArN[double bond, length as m-dash])M{N((t)Bu)SiMe2-H}X (M = Ta, R = Cp; M = Mo, R = ArN; X = Cl, H, OBn, Me) are described. The various substituents in the X position seem to play the key role in determining the extent of β-agostic interaction with the Si-H bond. The Mo agostic hydrido complex (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H is a pre-catalyst for the hydrosilylation of carbonyls. The stoichiometric reaction between benzaldehyde and (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H gives the benzoxy complex (ArN[double bond, length as m-dash])2Mo{N((t)Bu)SiMe2-H}(OBn), which showed a similar catalytic reactivity compared to the parent hydride. Mechanistic studies suggest that a non-hydride mechanism is operative.
Collapse