1
|
Hatshan M, Khan M, Assal ME, Shaik MR, Kuniyil M, Al-warthan A, Siddiqui MRH, Adil SF. Green, Solvent-Free Mechanochemical Synthesis of Nano Ag 2O/MnO 2/N-Doped Graphene Nanocomposites: An Efficient Catalyst for Additive-Base-Free Aerial Oxidation of Various Kinds of Alcohols. ACS OMEGA 2024; 9:2770-2782. [PMID: 38250433 PMCID: PMC10795140 DOI: 10.1021/acsomega.3c07865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Herein, we report a solvent-less, straightforward, and facile mechanochemical technique to synthesize nanocomposites of Ag2O nanoparticles-doped MnO2, which is further codoped with nitrogen-doped graphene (N-DG) [i.e., (X %)N-DG/MnO2-(1% Ag2O)] using physical milling of separately prepared N-DG and Ag2O NPs-MnO2 annealed at 400 °C over an eco-friendly ball-mill process. To assess the efficiency in terms of catalytic performance of the nanocomposites, selective oxidation of benzyl alcohol (BlOH) to benzaldehyde (BlCHO) is selected as a substrate model with an eco-friendly oxidizing agent (O2 molecule) and without any requirements for the addition of any harmful additives or bases. Various nanocomposites were prepared by varying the amount of N-DG in the composite, and the results obtained highlighted the function of N-DG in the catalyst system when they are compared with the catalyst MnO2-(1% Ag2O) [i.e., undoped catalyst] and MnO2-(1% Ag2O) codoped with different graphene dopants such as GRO and H-RG for alcohol oxidation transformation. The effects of various catalytic factors are systematically evaluated to optimize reaction conditions. The N-DG/MnO2-(1% Ag2O) catalyst exhibits premium specific activity (16.0 mmol/h/g) with 100% BlOH conversion and <99.9% BlCHO selectivity within a very short interval. The mechanochemically prepared N-DG-based nanocomposite displayed higher catalytic efficacy than that of the MnO2-(1% Ag2O) catalyst without the graphene dopant, which is N-DG in this study. A wide array of aromatic, heterocyclic, allylic, primary, secondary, and aliphatic alcohols have been selectively converted to respective ketones and aldehydes with full convertibility without further oxidation to acids over N-DG/MnO2-(1% Ag2O). Interestingly, it is also found that the N-DG/MnO2-(1% Ag2O) can be efficiently reused up to six times without a noteworthy decline in its effectiveness. The prepared nanocomposites were characterized using various analytical, microscopic, and spectroscopic techniques such as X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman, field emission scanning electron microscopy, and Brunauer-Emmett-Teller.
Collapse
Affiliation(s)
- Mohammad
Rafe Hatshan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed E. Assal
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mufsir Kuniyil
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Al-warthan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Syed Farooq Adil
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Xiao Y, Zhong L, Fan G, Li F. A-site defective La 2-xCuO 4 perovskite-type oxides for efficient oxidation of cyclohexylbenzene. Dalton Trans 2023; 52:14443-14452. [PMID: 37772348 DOI: 10.1039/d3dt01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Phenol production through the oxidation of cyclohexylbenzene (CHB) and the subsequent decomposition of tertiary hydroperoxide has attracted more and more attention. In this study, defective La2-xCuO4 perovskite-type oxide catalysts with tunable A-site deficient structures and abundant surface oxygen vacancies were developed for the liquid phase oxidation of CHB to produce cyclohexylbenzene-1-hydroperoxide (CHBHP). By tuning the amount of A-site La ions in the perovskite structure, more surface oxygen vacancies and Cu+ species were formed in catalysts. The A-site-deficient La1.9CuO4 catalyst achieved significant catalytic efficiency along with a high CHBHP yield of 27.6% at 48.6% CHB conversion under reaction conditions (i.e., 120 °C and 12 h), outperforming those of other transition metal-based catalysts previously reported in the literature. A series of structural characterization methods and catalytic reactions highlighted the crucial roles of surface oxygen vacancies and metal La and Cu ions in the oxidation process. It was revealed that metal ions favored CHB adsorption and activation, while surface oxygen vacancies facilitated the creation of active adsorbed oxygen species. The present study offers an opportunity for the future design of new high-efficiency heterogeneous catalyst systems for CHB oxidation to obtain phenol.
Collapse
Affiliation(s)
- Yanlin Xiao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lingyu Zhong
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Guoli Fan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Feng Li
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Tan Y, Qi M, Jiang H, Wang B, Zhang X. Determination of uric acid in serum by SERS system based on V O-MnCo 2O 4/Ag nanozyme. Anal Chim Acta 2023; 1274:341584. [PMID: 37455071 DOI: 10.1016/j.aca.2023.341584] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The level of uric acid is crucial to human health. Octahedral oxygen vacancy MnCo2O4/Ag (VO-MnCo2O4/Ag) nanozyme was successfully prepared by simple hydrothermal, calcination and self-reduction methods. VO-MnCo2O4/Ag nanozyme is rich in Mn2+/Mn3+ and CO2+/CO3+ redox electron pairs, large specific surface area and oxygen vacancies. VO-MnCo2O4/Ag nanozyme showed high uricase-like activity and peroxidase-like activity. At the same time, the SERS signal of the detected molecule could be significantly enhanced after the catalytic reaction of the VO-MnCo2O4/Ag nanozyme. The Km values of VO-MnCo2O4/Ag nanozyme for H2O2 and TMB were 0.04 mM and 0.027 mM respectively. Based on the uric acid oxidase-like and peroxidase-like activities of VO-MnCo2O4/Ag, we developed a label-free, sensitive, and reliable SERS uric acid detection system. The detection linear range of uric acid is 0.01 μM-1000 μM and the detection of limit is 7.8 × 10-9 M. The results show that the sensing system has good accuracy, sensitivity, selectivity, and stability. It can be applied to the determination of samples under different conditions. This study provides profound insights into the design of enzyme-like activity regulation and SERS properties regulation of nanozymes, provides guidance for the study of reaction kinetics and catalytic mechanism of nanozymes, and has broad application prospects in the field of nanozymes and SERS sensing analysis.
Collapse
Affiliation(s)
- Yaoyu Tan
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Mengyao Qi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huan Jiang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Baihui Wang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xia Zhang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
4
|
Li Y, Wang Z, Zou Z, Yu P, Zhao E, Zou H, Wu J. Mn-Co/ɣ-Al2O3 coupled with peroxymonosulfate as efficient catalytic system for degradation of norfloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Wen S, Mu M, Xie Q, Zhao B, Song W. Investigation of Sulfur Doping in Mn-Co Oxide Nanotubes on Surface-Enhanced Raman Scattering Properties. Anal Chem 2022; 94:5987-5995. [PMID: 35389611 DOI: 10.1021/acs.analchem.2c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Doping engineering is an efficient strategy to manipulate the optoelectronic properties of metal oxides for sensing, catalysis, and energy applications. Herein, we have demonstrated the fabrication of sulfur (S)-doped Mn-Co oxides to regulate their band and surface electronic structures, which is beneficial to enhancing the charge transfer (CT) between the metal oxides and their adsorbed molecules. As expected, significantly enhanced SERS signals are achieved on S-doped Mn-Co oxide nanotubes, and the minimum detection concentration can reach as low as 10-8 M. Furthermore, the change in the electronic structure caused by S-doping provides different microelectric fields to influence the orientation of the interaction between the probe molecules and the substrate. Additionally, the evaluation of the oxidase-like catalytic activity of the substrate proved that, with an increase in the ratio of Co2+/Co3+ content, the number of electrons on the substrate increases, which promotes the CT process and further increases the degree of CT. The nonmetallic doping route in semiconducting metal oxides can provide effective and stable SERS activity; moreover, it provides a new strategy for exploring the relationship between CT in catalysis and SERS performance of semiconductors.
Collapse
Affiliation(s)
- Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qinhui Xie
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
6
|
Yu D, Lei P, Li Y, Shen W, Zhong M, Zhang J, Guo S. Catalytic Oxidation of Veratryl Alcohol Derivatives Using RuCo/rGO Composites. Chemistry 2022; 28:e202104380. [DOI: 10.1002/chem.202104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Daobo Yu
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
- Department of Micro/Nano Electronics School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Puyi Lei
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Yanfang Li
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Wenzhuo Shen
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Min Zhong
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Jiali Zhang
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Shouwu Guo
- Department of Electronic Engineering School of Electronic Information and Electric Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
7
|
Adil SF, Ashraf M, Khan M, Assal ME, Shaik MR, Kuniyil M, Al-Warthan A, Siddiqui MRH, Tremel W, Tahir MN. Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. CHEM REC 2022; 22:e202100274. [PMID: 35103379 DOI: 10.1002/tcr.202100274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Graphene-based nanocomposites with inorganic (metal and metal oxide) nanoparticles leads to materials with high catalytic activity for a variety of chemical transformations. Graphene and its derivatives such as graphene oxide, highly reduced graphene oxide, or nitrogen-doped graphene are excellent support materials due to their high surface area, their extended π-system, and variable functionalities for effective chemical interactions to fabricate nanocomposites. The ability to fine-tune the surface composition for desired functionalities enhances the versatility of graphene-based nanocomposites in catalysis. This review summarizes the preparation of graphene/inorganic NPs based nanocomposites and their use in catalytic applications. We discuss the large-scale synthesis of graphene-based nanomaterials. We have also highlighted the interfacial electronic communication between graphene/inorganic nanoparticles and other factors resulting in increased catalytic efficiencies.
Collapse
Affiliation(s)
- Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Ashraf
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafiq H Siddiqui
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wolfgang Tremel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia.,Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Li BC, Lin JY, Lee J, Kwon E, Thanh BX, Duan X, Chen HH, Yang H, Lin KYA. Size-controlled nanoscale octahedral HKUST-1 as an enhanced catalyst for oxidative conversion of vanillic alcohol: The mediating effect of polyvinylpyrrolidone. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Wang B, Gao L, Yang H, Zheng G. Regio- and Stereoselective Syn-Boronation of Terminal Alkynes Catalyzed by Copper Nanospheres on Graphene Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47530-47540. [PMID: 34585911 DOI: 10.1021/acsami.1c11892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Evenly distributed copper nanospheres on reduced graphene oxide were prepared and showed high heterogeneous catalytic activity in converting varying terminal alkynes into (E)-β-styrene boronate esters. The excellent catalytic performance was achieved through the synergistic catalysis between Cu nanospheres and rGO. This work not only is a supplement for preparing (E)-β-styrene boronate esters but also provides a way for the rational designing of high-performance graphene-based catalysts. Meanwhile, the advancement of graphene-based nanomaterials will be motivated to promote their applications in the development of green catalytic chemistry.
Collapse
Affiliation(s)
- Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Lingfeng Gao
- School of Chemistry and Chemical Engineering, University of Jinan, 336 Nanxinzhuang West Road, Jinan 250022, China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Gengxiu Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, 336 Nanxinzhuang West Road, Jinan 250022, China
| |
Collapse
|
10
|
Solventless Mechanochemical Fabrication of ZnO–MnCO3/N-Doped Graphene Nanocomposite: Efficacious and Recoverable Catalyst for Selective Aerobic Dehydrogenation of Alcohols under Alkali-Free Conditions. Catalysts 2021. [DOI: 10.3390/catal11070760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Catalytic efficacy of metal-based catalysts can be significantly enhanced by doping graphene or its derivatives in the catalytic protocol. In continuation of previous work regarding the catalytic properties of highly-reduced graphene oxide (HRG), graphene-oxide (GO) doped mixed metal oxide-based nanocomposites, herein we report a simple, straightforward and solventless mechanochemical preparation of N-doped graphene (NDG)/mixed metal oxide-based nanocomposites of ZnO–MnCO3 (i.e., ZnO–MnCO3/(X%-NDG)), wherein N-doped graphene (NDG) is employed as a dopant. The nanocomposites were prepared by physical milling of separately fabricated NDG and ZnO–MnCO3 calcined at 300 °C through eco-friendly ball mill procedure. The as-obtained samples were characterized via X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), Raman, Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX) and surface area analysis techniques. To explore the effectiveness of the obtained materials, liquid-phase dehydrogenation of benzyl alcohol (BOH) to benzaldehyde (BH) was chosen as a benchmark reaction using eco-friendly oxidant (O2) without adding any harmful surfactants or additives. During the systematic investigation of reaction, it was revealed that the ZnO–MnCO3/NDG catalyst exhibited very distinct specific-activity (80 mmol/h.g) with a 100% BOH conversion and <99% selectivity towards BH in a very short time. The mechanochemically synthesized NDG-based nanocomposite showed remarkable enhancement in the catalytic performance and increased surface area compared with the catalyst without graphene (i.e., ZnO–MnCO3). Under the optimum catalytic conditions, the catalyst successfully transformed various aromatic, heterocyclic, allylic, primary, secondary and aliphatic alcohols to their respective ketones and aldehydes with high selectively and convertibility without over-oxidation to acids. In addition, the ZnO–MnCO3/NDG was also recycled up to six times with no apparent loss in its efficacy.
Collapse
|
11
|
Sivagurunathan P, Raj T, Mohanta CS, Semwal S, Satlewal A, Gupta RP, Puri SK, Ramakumar SSV, Kumar R. 2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development. CHEMOSPHERE 2021; 268:129326. [PMID: 33360003 DOI: 10.1016/j.chemosphere.2020.129326] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Lignin is produced as a byproduct in cellulosic biorefinery as well in pulp and paper industries and has the potential for the synthesis of a variety of phenolics chemicals, biodegradable polymers, and high value-added chemicals surrogate to conventional petro-based fuels. Therefore, in this critical review, we emphasize the possible scenario for lignin isolation, transformation into value addition chemicals/materials for the economic viability of current biorefineries. Additionally, this review covers the chemical structure of lignocellulosic biomass/lignin, worldwide availability of lignin and describe various thermochemical (homogeneous/heterogeneous base/acid-catalyzed depolymerization, oxidative, hydrogenolysis etc.) and biotechnological developments for the production of bio-based low molecular weight phenolics, i.e. polyhydroxyalkanoates, vanillin, adipic acid, lipids etc. Besides, some functional chemicals applications, lignin-formaldehyde ion exchange resin, electrochemical and production of few targeted chemicals are also elaborated. Finally, we examine the challenges, opportunities and prospects way forward related to lignin valorization.
Collapse
Affiliation(s)
- P Sivagurunathan
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Tirath Raj
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Chandra Sekhar Mohanta
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Surbhi Semwal
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Alok Satlewal
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Ravi P Gupta
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Suresh K Puri
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - S S V Ramakumar
- Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India
| | - Ravindra Kumar
- DBT- IOC Advanced Bio Energy Research Center, Indian Oil Corporation Ltd. Research and Development Centre, Sector-13, Faridabad, Haryana, 121007, India.
| |
Collapse
|
12
|
Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using manganese dioxide with different crystal structures: A comparative study. J Colloid Interface Sci 2021; 592:416-429. [PMID: 33691223 DOI: 10.1016/j.jcis.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Aerobic oxidation of 5-Hydroxymethylfurfural (HMF) to 2,5-Diformylfuran (DFF) using O2 gas represents a sustainable approach for valorization of lignocellulosic compounds. As manganese dioxide (MnO2) is validated as a useful oxidation catalyst and many crystalline forms of MnO2 exist, it is critical to explore how the crystalline structures of MnO2 influence their physical/chemical properties, which, in turn, determine catalytic activities of MnO2 crystals for HMF oxidation to DFF. In particular, six MnO2 crystals, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, ε-MnO2, and λ-MnO2 are prepared and investigated for their catalytic activities for HMF oxidation to DFF. With different morphologies and crystalline structures, these MnO2 crystals possess very distinct surficial chemistry, redox capabilities, and textural properties, making these MnO2 exhibit different catalytic activities towards HMF conversion. Especially, β-MnO2 can produce much higher DFF per surface area than other MnO2 crystals. β-MnO2 could achieve the highest CHMF = 99% and YDFF = 97%, which are much higher than the reported values in literature, possibly because the surficial reactivity of β-MnO2 appears to be highest in comparison to other MnO2 crystals. Especially, β-MnO2 could exhibit YDFF > 90% over 5 cycles of reusability test, and maintain its crystalline structure, revealing its advantageous feature for aerobic oxidation of HMF to DFF. Through this study, the relationship between morphology, surface chemistry, and catalytic activity of MnO2 with different crystal forms is elucidated for providing scientific insights into design, application and development of MnO2-based materials for aerobic oxidation of bio-derived molecules to value-added products.
Collapse
|
13
|
Ambika, Singh PP. Carbon Nanocomposites: The Potential Heterogeneous Catalysts for Organic Transformations. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999200401124820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major challenges in chemistry confronted by the chemists is the replacement
of conventional homogeneous catalysts by heterogeneous catalysts for the development
of green, sustainable and economical chemical processes. Recently, carbón-based
nanocomposites have attracted the attention of scientists due to their unique physical and
chemical properties such as large surface area and pore volume, chemical inertness, high
stability and high electrical conductivity. These NCs have been employed in energy storage,
electronic devices, sensors, environmental remediation etc. Owing to the wide availability
and low cost, carbón-based materials have been utilized as supports for transition metals
and other materials. The carbón-based NCs offer a number of advantages such as high stability,
easy recovery, reusability with often minimal leaching of metal ions, and green and
sustainable approaches to heterogeneous catalysis for various organic transformations. Hence, they can be used
as the substitute for the existing catalyst used for heterogeneous catalysis in industries. In this review, various
processing methods for carbón-based nanocomposites and their applications as heterogeneous catalysts for organic
transformations like hydrogenation, oxidation, coupling, and multi.component reactions, have been discussed.
Collapse
Affiliation(s)
- Ambika
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Pradeep Pratap Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Bimetallic Pt-Co Nanoparticle Deposited on Alumina for Simultaneous CO and Toluene Oxidation in the Presence of Moisture. Processes (Basel) 2021. [DOI: 10.3390/pr9020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carbon monoxide (CO) and hydrocarbons (HCs) generally have competitive adsorption on the active site of noble-metal nano-catalysts, thus developing an effective way to reduce the passivation of competitive reaction with each other is an urgent problem. In this study, we successfully synthesized transition metal-noble metal (Pt-M) alloys via introducing inexpensive metal elements (M = Ni, Co and Cu) into Pt particles and then deposited on alumina support to form Pt-based catalysts. Subsequently, we choose CO and toluene as polluting gases to evaluate the catalytic activities of Pt-M/Al2O3 catalysts. Introducing inexpensive metal elements (M = Ni, Co, and Cu) significantly changed the physicochemical properties and catalytic activities of these Pt-based catalysts. It can be found that the Pt-Co/Al2O3 catalyst exhibited outstanding catalytic activity for CO and toluene oxidation under mixed gas atmosphere, compared with other Pt-based catalysts, which is due to the higher dispersity, more surface adsorption oxygen, and well redox ability. Surprisingly, H2O could promote the catalytic activities for CO/toluene co-oxidation over the Pt-Co/Al2O3 catalyst. Thus, the present synthetic strategy not only opens an avenue towards the synthesis of noble metal-based catalysts, but also provides an excellent tolerance to H2O in the catalytic process.
Collapse
|
15
|
Kaci MM, Nasrallah N, Kebir M, Guernanou R, Soukeur A, Trari M. Synthesis, physical and electrochemical properties of CoMn2O4: application to photocatalytic Ni2+ reduction. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04371-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Eco-Friendly and Solvent-Less Mechanochemical Synthesis of ZrO2–MnCO3/N-Doped Graphene Nanocomposites: A Highly Efficacious Catalyst for Base-Free Aerobic Oxidation of Various Types of Alcohols. Catalysts 2020. [DOI: 10.3390/catal10101136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In recent years, the development of green mechanochemical processes for the synthesis of new catalysts with higher catalytic efficacy and selectivity has received manifest interest. In continuation of our previous study, in which graphene oxide (GRO) and highly reduced graphene oxide (HRG) based nanocomposites were prepared and assessed, herein, we have explored a facile and solvent-less mechanochemical approach for the synthesis of N-doped graphene (NDG)/mixed metal oxide (MnCO3–ZrO2) ((X%)NDG/MnCO3–ZrO2), as the (X%)NDG/MnCO3–ZrO2 nano-composite was synthesized using physical grinding of separately synthesized NDG and pre-calcined (300 °C) MnCO3–ZrO2 via green milling method. The structures of the prepared materials were characterized in detail using X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Analysis (EDX), Fourier-transform infrared spectroscopy (FTIR), Raman, Thermogravimetric analysis (TGA), and N2 adsorption-desorption isotherm analysis. Besides, the obtained nanocomposites were employed as heterogeneous oxidation catalyst for the alcohol oxidation using green oxidant O2 without involving any surfactants or bases. The reaction factors were systematically studied during the oxidation of benzyl alcohol (PhCH2OH) as the model reactant to benzaldehyde (PhCHO). The NDG/MnCO3–ZrO2 exhibits premium specific activity (66.7 mmol·g−1·h−1) with 100% conversion of PhCH2OH and > 99.9% selectivity to PhCHO after only 6 min. The mechanochemically prepared NDG based nanocomposite exhibited notable improvement in the catalytic efficacy as well as the surface area compared to the pristine MnCO3–ZrO2. Under the optimal circumstances, the NDG/MnCO3–ZrO2 catalyst could selectively catalyze the aerobic oxidation of a broad array of alcohols to carbonyls with full convertibility without over-oxidized side products like acids. The NDG/MnCO3–ZrO2 catalyst were efficiently reused for six subsequent recycling reactions with a marginal decline in performance and selectivity.
Collapse
|
17
|
Gao T, Yin Y, Zhu G, Cao Q, Fang W. Co3O4 NPs decorated Mn-Co-O solid solution as highly selective catalyst for aerobic base-free oxidation of 5-HMF to 2,5-FDCA in water. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Yang L, Ma R, Zeng H, Rui Z, Li Y. MOF-templated core-shell Co(II/III)@ZnO hexagonal prisms for selective oxidation of vanillyl alcohol. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Synthesis and Characterization of CoxOy–MnCO3 and CoxOy–Mn2O3 Catalysts: A Comparative Catalytic Assessment Towards the Aerial Oxidation of Various Kinds of Alcohols. Processes (Basel) 2020. [DOI: 10.3390/pr8080910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CoxOy–manganese carbonate (X%)(CoxOy–MnCO3 catalysts (X = 1–7)) were synthesized via a straightforward co-precipitation strategy followed by calcination at 300 °C. Upon calcination at 500 °C, these were transformed to CoxOy–dimanganese trioxide i.e., (X%)CoxOy–Mn2O3. A relative catalytic evaluation was conducted to compare the catalytic efficiency of the two prepared catalysts for aerial oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) using O2 molecule as a clean oxidant without utilizing any additives or alkalis. Amongst the different percentages of doping with CoxOy (0–7% wt./wt.) on MnCO3 support, the (1%)CoxOy–MnCO3 catalyst exhibited the highest catalytic activity. The influence of catalyst loading, calcination temperature, reaction time, and temperature and catalyst dosage was thoroughly assessed to find the optimum conditions of oxidation of benzyl alcohol (BzOH) for getting the highest catalytic efficiency. The (1%)CoxOy–MnCO3 catalyst which calcined at 300 °C displayed the best effectiveness and possessed the largest specific surface area i.e., 108.4 m2/g, which suggested that the calcination process and specific surface area play a vital role in this transformation. A 100% conversion of BzOH along with BzH selectivity >99% was achieved after just 20 min. Notably, the attained specific activity was found to be considerably larger than the previously-reported cobalt-containing catalysts for this transformation. The scope of this oxidation reaction was expanded to various alcohols containing aromatic, aliphatic, allylic, and heterocyclic alcohols without any further oxidation i.e., carboxylic acid formation. The scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET) specific surface area analytical techniques were used to characterize the prepared catalysts. The obtained catalyst could be easily regenerated and reused for six consecutive runs without substantial decline in its efficiency.
Collapse
|
20
|
Wen S, Ma X, Liu H, Chen G, Wang H, Deng G, Zhang Y, Song W, Zhao B, Ozaki Y. Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model. Anal Chem 2020; 92:11763-11770. [DOI: 10.1021/acs.analchem.0c01886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaowei Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Gang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - He Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Gaoqiang Deng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Yuantao Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 660-1337, Japan
| |
Collapse
|
21
|
Li Y, Chatterjee A, Chen LB, Lam FLY, Hu X. Pd doped Co functionalized SBA-15 as an active magnetic catalyst for low temperature solventless additive-base-free selective oxidation of benzyl alcohol. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Eco-Friendly Mechanochemical Preparation of Ag2O–MnO2/Graphene Oxide Nanocomposite: An Efficient and Reusable Catalyst for the Base-Free, Aerial Oxidation of Alcohols. Catalysts 2020. [DOI: 10.3390/catal10030281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recently, the development of eco-friendly mechanochemical approaches for the preparation of novel catalysts with enhanced activity and selectivity has gained considerable attention. Herein, we developed a rapid and solvent-less mechanochemical method for the preparation of mixed metal oxide (Ag2O–MnO2) decorated graphene oxide (GRO)-based nanocomposites (Ag2O–MnO2/(X wt.%)GRO), as the Ag2O–MnO2/(X wt.%)GRO nanocomposite was fabricated by the physical grinding of freshly prepared GRO and pre-annealed (300 °C) mixed metal oxide nanoparticles (NPs) (Ag2O–MnO2) using an eco-friendly milling procedure. The as-prepared nanocatalysts were characterized by using various techniques. Furthermore, the nanocomposites were applied as a heterogeneous catalyst for the oxidation of alcohol by employing gaseous O2 as an eco-friendly oxidant under base-free conditions. The mechanochemically obtained GRO-based composite exhibited noticeable enhancement in the surface area and catalytic performance compared to the pristine Ag2O–MnO2. The results revealed that (1%)Ag2O–MnO2/(5 wt.%)GRO catalyst exhibited higher specific performance (13.3 mmol·g−1·h−1) with a 100% conversion of benzyl alcohol (BnOH) and >99% selectivity towards benzaldehyde (BnH) within 30 min. The enhancement of the activity and selectivity of GRO-based nanocatalyst was attributed to the presence of various oxygen-containing functional groups, a large number of defects, and a high specific surface area of GRO. In addition, the as-prepared nanocatalyst also demonstrated excellent catalytic activity towards the conversion of a variety of other alcohols to respective carbonyls under optimal conditions. Besides, the catalyst ((1%)Ag2O–MnO2/(5 wt.%)GRO) could be efficiently recycled six times with no noticeable loss in its performance and selectivity.
Collapse
|
23
|
Lin JY, Yuan MH, Lin KYA, Lin CH. Selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by Cu-based metal organic frameworks with 2,2,6,6-tetramethylpiperidin-oxyl. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Yang MT, Du Y, Tong WC, Yip ACK, Lin KYA. Cobalt-impregnated biochar produced from CO 2-mediated pyrolysis of Co/lignin as an enhanced catalyst for activating peroxymonosulfate to degrade acetaminophen. CHEMOSPHERE 2019; 226:924-933. [PMID: 31509922 DOI: 10.1016/j.chemosphere.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 06/10/2023]
Abstract
-While sulfate radical (SO4-)-based processes are useful to degrade acetaminophen (ACE), studies of using peroxymonosulfate (PMS) to degrade ACE are quite limited. In addition, although Co is validated as the most effective metal for activating PMS, very few Co catalysts have been developed and investigated for activating PMS to degrade ACE. Since carbon is a promising substrate to support Co nanoparticles (NPs) to form Co/carbon composite catalysts, most existing carbon substrates require delicate fabrications. As biochar is an easy-to-obtain but versatile carbon material, pyrolysis of Co/lignin affords an advantageous Co-impregnated biochar (CoIB) as an attractive catalyst for PMS activation. Specifically, as CO2 substitutes N2 as a reaction medium for pyrolysis of Co/lignin, the syngas production from pyrolysis can be substantially improved and a magnetic CoIB is afforded. This CoIB consists of evenly-distributed Co nanoparticles (NPs) impregnated in carbon matrices of biochar, and possesses several superior characteristics, such as high porosity, large surface area and magnetism, enabling CoIB a promising catalyst for activating PMS to degrade ACE. CoIB also shows a much higher catalytic activity of PMS activation than CoIBN2, and Co3O4 for degrading ACE. CoIB is also recyclable for activating PMS to effectively degrade ACE for multiple cycles. The ACE degradation pathway by this CoIB-activated PMS is proposed according to the degradation products. These findings validate that CoIB is assuredly an advantageous heterogeneous catalyst, which can be easily prepared from pyrolysis of Co/lignin in CO2 with concomitant enhanced syngas production for effectively activating PMS to degrade ACE.
Collapse
Affiliation(s)
- Ming-Tong Yang
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Yunchen Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Wai-Chi Tong
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
25
|
CO2 as a reaction medium for pyrolysis of lignin leading to magnetic cobalt-embedded biochar as an enhanced catalyst for Oxone activation. J Colloid Interface Sci 2019; 545:16-24. [DOI: 10.1016/j.jcis.2019.02.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
|
26
|
Vinodhkumar G, Ramya R, Potheher IV, Vimalan M, Peter AC. Synthesis of reduced graphene oxide/Co3O4 nanocomposite electrode material for sensor application. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03777-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Cao Y, Geng K, Geng H, Ang H, Pei J, Liu Y, Cao X, Zheng J, Gu H. Metal-Oleate Complex-Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance. NANO-MICRO LETTERS 2019; 11:15. [PMID: 34137982 PMCID: PMC7770734 DOI: 10.1007/s40820-019-0247-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 05/24/2023]
Abstract
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal-oleate complex embedded in 3D graphene networks (MnO/CoMn2O4 ⊂ GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn2O4 ⊂ GN consists of thermal decomposition of metal-oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a self-assembly route with reduced graphene oxides. The MnO/CoMn2O4 ⊂ GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the diffusion path of Li+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/CoMn2O4 ⊂ GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li+ charge/discharge reactions. As a result, the MnO/CoMn2O4 ⊂ GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability.
Collapse
Affiliation(s)
- Yingying Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Kaiming Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongbo Geng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Huixiang Ang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Jie Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Yayuan Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xueqin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Junwei Zheng
- College of Physics, Optoelectronic and Energy, Soochow University, Suzhou, 215006, People's Republic of China
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
28
|
Hu Z, Zhou X, Lu Y, Jv R, Liu Y, Li N, Chen S. CoMn2O4 doped reduced graphene oxide as an effective cathodic electrocatalyst for ORR in microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Reddy PRGN, Rao BG, Rao TV, Reddy BM. Selective Aerobic Oxidation of Vanillyl Alcohol to Vanillin Catalysed by Nanostructured Ce-Zr-O Solid Solutions. Catal Letters 2019. [DOI: 10.1007/s10562-019-02658-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Prussian Blue analogue supported on sulfur-doped carbon nitride as an enhanced heterogeneous catalyst for activating peroxymonosulfate. J Colloid Interface Sci 2018; 529:161-170. [DOI: 10.1016/j.jcis.2018.05.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 11/20/2022]
|
31
|
Rapid microwave-hydrothermal conversion of lignin model compounds to value-added products via catalytic oxidation using metal organic frameworks. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0452-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Zhang J, Zhang F, Guo S, Zhang J. Three-dimensional composite of Co3O4 nanoparticles and nitrogen-doped reduced graphene oxide for lignin model compound oxidation. NEW J CHEM 2018. [DOI: 10.1039/c8nj01533c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
3D composite of Co3O4 nanoparticles and N-doped reduced graphene oxide can effectively catalyze the oxidation of lignin model compounds.
Collapse
Affiliation(s)
- Jiali Zhang
- Department of Electronic Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Fangwei Zhang
- Department of Electronic Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Shouwu Guo
- Department of Electronic Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jingyan Zhang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
33
|
Mixed Zinc/Manganese on Highly Reduced Graphene Oxide: A Highly Active Nanocomposite Catalyst for Aerial Oxidation of Benzylic Alcohols. Catalysts 2017. [DOI: 10.3390/catal7120391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
34
|
Elamathi P, Kolli MK, Chandrasekar G. Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor. INTERNATIONAL JOURNAL OF NANOSCIENCE 2017. [DOI: 10.1142/s0219581x17600109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50[Formula: see text]wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, [Formula: see text]C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30[Formula: see text]min at 60[Formula: see text]C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.
Collapse
Affiliation(s)
- P. Elamathi
- Chemistry Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai, Tamil Nadu, India
| | - Murali Krishna Kolli
- Chemistry Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai, Tamil Nadu, India
| | - G. Chandrasekar
- Chemistry Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
35
|
Lin KYA, Lai HK, Chen ZY. Selective generation of vanillin from catalytic oxidation of a lignin model compound using ZIF-derived carbon-supported cobalt nanocomposite. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Zhao Q, Yan Z, Chen C, Chen J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem Rev 2017; 117:10121-10211. [DOI: 10.1021/acs.chemrev.7b00051] [Citation(s) in RCA: 854] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qing Zhao
- Key Laboratory of Advanced
Energy Materials Chemistry (Ministry of Education), Collaborative
Innovation Center of Chemical Science and Engineering, College of
Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenhua Yan
- Key Laboratory of Advanced
Energy Materials Chemistry (Ministry of Education), Collaborative
Innovation Center of Chemical Science and Engineering, College of
Chemistry, Nankai University, Tianjin 300071, China
| | - Chengcheng Chen
- Key Laboratory of Advanced
Energy Materials Chemistry (Ministry of Education), Collaborative
Innovation Center of Chemical Science and Engineering, College of
Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Chen
- Key Laboratory of Advanced
Energy Materials Chemistry (Ministry of Education), Collaborative
Innovation Center of Chemical Science and Engineering, College of
Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Behling R, Chatel G, Valange S. Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. ULTRASONICS SONOCHEMISTRY 2017; 36:27-35. [PMID: 28069210 DOI: 10.1016/j.ultsonch.2016.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
The heterogeneous oxidation of vanillyl alcohol to vanillin was investigated on new grounds under eco-friendly conditions in the presence of hydrogen peroxide as an oxidant and water as solvent, coupled with low frequency ultrasonic irradiation. The sono-Fenton-like-assisted vanillyl alcohol oxidation was performed with a high-surface area nanostructured spinel cobalt oxide catalyst exhibiting small crystallites size. The catalytic reaction was also carried out under conventional heating conditions for comparison purposes. The influence of the reaction parameters, namely catalyst loading and hydrogen peroxide concentration was studied with the aim of determining the optimum yield and selectivity to the desired vanillin product. The chemical effects of ultrasound (ability to generate hydroxyl radicals) along with increased mass transfer appeared to be key prerequisites for enhancing the efficiency of the process, while decreasing the overall energy consumption.
Collapse
Affiliation(s)
- Ronan Behling
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, ENSIP, B1, 1 rue Marcel Doré, F-86073 Poitiers Cedex 9, France
| | - Gregory Chatel
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, ENSIP, B1, 1 rue Marcel Doré, F-86073 Poitiers Cedex 9, France; Present address: Laboratoire de Chimie Moléculaire et Environnement (LCME), Université Savoie Mont Blanc, 73376 Le Bourget du Lac Cedex, France.
| | - Sabine Valange
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, CNRS, ENSIP, B1, 1 rue Marcel Doré, F-86073 Poitiers Cedex 9, France.
| |
Collapse
|
38
|
Ma Q, Liu K, Mao J, Chen K, Liang C, Yao J, Chen Z, Li H. Kinetic studies on the liquid-phase catalytic oxidation of 4-methyl guaiacol to vanillin. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Qiyi Ma
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Kejing Liu
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P. R. China
| | - Jianyong Mao
- Zhejiang NHU Company Ltd.; Xinchang 312500 P. R. China
| | - Kexian Chen
- School of Food Science and Biotechnology; Zhejiang Gongshang University; Hangzhou Zhejiang 310018 P.R. China
| | - Cheng Liang
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Jia Yao
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P. R. China
| | - Zhirong Chen
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Haoran Li
- State Key Laboratory of Chemical Engineering; College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P. R. China
- Department of Chemistry; ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 P. R. China
| |
Collapse
|
39
|
Saha S, Abd Hamid SB. CuZrO 3nanoparticles catalyst in aerobic oxidation of vanillyl alcohol. RSC Adv 2017; 7:9914-9925. [DOI: 10.1039/c6ra26370d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
A highly crystalline, mesoporous and perovskite type CuZrO3nanoparticles catalyst was preparedviaa simple and facile one pot solvent evaporation method.
Collapse
Affiliation(s)
- Subrata Saha
- Nanotechnology and Catalysis Research Center (NANOCAT)
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Sharifah Bee Abd Hamid
- Nanotechnology and Catalysis Research Center (NANOCAT)
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| |
Collapse
|
40
|
Assal ME, Shaik MR, Kuniyil M, Khan M, Al-Warthan A, Siddiqui MRH, Khan SMA, Tremel W, Tahir MN, Adil SF. A highly reduced graphene oxide/ZrOx–MnCO3 or –Mn2O3 nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Adv 2017. [DOI: 10.1039/c7ra11569e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ZrOx(1%)–MnCO3/HRG(1%) based nanocomposites material as an efficient oxidation catalyst.
Collapse
Affiliation(s)
- Mohamed E. Assal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | | | - Sohail M. A. Khan
- Department of Mechanical and Industrial Engineering
- Ryerson University
- Toronto
- Canada
| | - Wolfgang Tremel
- Institute of Inorganic and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- Germany
| | - Muhammad Nawaz Tahir
- Institute of Inorganic and Analytical Chemistry
- Johannes Gutenberg-University of Mainz
- Germany
- Chemistry Department
- King Fahd University of Petroleum and Materials
| | - Syed Farooq Adil
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Karami K, Hashemi S, Dinari M. Investigation of catalytic properties of two new orthopalladated complexes supported on montmorillonite: Synthesis, characterization and application in aerobic oxidation of alcohols. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kazem Karami
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156/83111 Iran
| | - Sara Hashemi
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156/83111 Iran
| | - Mohammad Dinari
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156/83111 Iran
| |
Collapse
|
42
|
Iqbal S, Davies TE, Hayward JS, Morgan DJ, Karim K, Bartley JK, Taylor SH, Hutchings GJ. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catal Today 2016. [DOI: 10.1016/j.cattod.2016.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Li J, Li W, Liu G, Deng Y, Yang J, Chen Y. Tricobalt tetraoxide-supported palladium catalyst derived from metal organic frameworks for complete benzene oxidation. Catal Letters 2016. [DOI: 10.1007/s10562-016-1753-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Highly efficient transformation of alcohol to carbonyl compounds under a hybrid bifunctional catalyst originated from metalloporphyrins and hydrotalcite. J Catal 2016. [DOI: 10.1016/j.jcat.2015.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Saha S, Abd Hamid SB. Nanosized spinel Cu–Mn mixed oxide catalyst prepared via solvent evaporation for liquid phase oxidation of vanillyl alcohol using air and H2O2. RSC Adv 2016. [DOI: 10.1039/c6ra21221b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinel Cu–Mn mixed oxide preparedviasolvent evaporation method demonstrating superior catalytic activity.
Collapse
Affiliation(s)
- Subrata Saha
- Nanotechnology and Catalysis Research Center (NANOCAT)
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Sharifah Bee Abd Hamid
- Nanotechnology and Catalysis Research Center (NANOCAT)
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| |
Collapse
|
46
|
Al Khabouri S, Al Harthi S, Maekawa T, Nagaoka Y, Elzain ME, Al Hinai A, Al-Rawas AD, Gismelseed AM, Yousif AA. Composition, Electronic and Magnetic Investigation of the Encapsulated ZnFe2O 4 Nanoparticles in Multiwall Carbon Nanotubes Containing Ni Residuals. NANOSCALE RESEARCH LETTERS 2015; 10:971. [PMID: 26068078 PMCID: PMC4478189 DOI: 10.1186/s11671-015-0971-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/02/2015] [Indexed: 05/27/2023]
Abstract
We report investigation on properties of multiwall carbon nanotubes (mCNTs) containing Ni residuals before and after encapsulation of zinc ferrite nanoparticles. The pristine tubes exhibit metallic character with a 0.3 eV reduction in the work function along with ferromagnetic behavior which is attributed to the Ni residuals incorporated during the preparation of tubes. Upon encapsulation of zinc ferrite nanoparticles, 0.5 eV shift in Fermi level position and a reduction in both the π band density of state along with a change in the hybridized sp(2)/sp(3) ratio of the tubes from 2.04 to 1.39 are observed. As a result of the encapsulation, enhancement in the σ bands density of state and coating of the zinc ferrite nanoparticles by the internal layers of the CNTs in the direction along the tube axis is observed. Furthermore, Ni impurities inside the tubes are attracted to the encapsulated zinc ferrite nanoparticles, suggesting the possibility of using these particles as purifying agents for CNTs upon being synthesized using magnetic catalyst particles. Charge transfer from Ni/mCNTs to the ZnFe2O4 nanoparticles is evident via reduction of the density of states near the Fermi level and a 0.3 eV shift in the binding energy of C 1 s core level ionization. Furthermore, it is demonstrated that encapsulated zinc ferrite nanoparticles in mCNTs resulted in two interacting sub-systems featured by distinct blocking temperatures and enhanced magnetic properties; i.e., large coercivity of 501 Oe and saturation magnetization of 2.5 emu/g at 4 K.
Collapse
Affiliation(s)
- Saja Al Khabouri
- />Department of Physics, Sultan Qaboos University, Muscat, PC 123 Sultanate of Oman
| | - Salim Al Harthi
- />Department of Physics, Sultan Qaboos University, Muscat, PC 123 Sultanate of Oman
| | - Toru Maekawa
- />Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350 8585 Japan
| | - Yutaka Nagaoka
- />Bio-Nano Electronics Research Center, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350 8585 Japan
| | - Mohamed E Elzain
- />Department of Physics, Sultan Qaboos University, Muscat, PC 123 Sultanate of Oman
| | - Ashraf Al Hinai
- />Department of Chemistry, Sultan Qaboos University, Muscat, PC 123 Sultanate of Oman
| | - AD Al-Rawas
- />Department of Physics, Sultan Qaboos University, Muscat, PC 123 Sultanate of Oman
| | - AM Gismelseed
- />Department of Physics, Sultan Qaboos University, Muscat, PC 123 Sultanate of Oman
| | - Ali A Yousif
- />Department of Physics, Sultan Qaboos University, Muscat, PC 123 Sultanate of Oman
| |
Collapse
|
47
|
Cheng Y, Fan Y, Pei Y, Qiao M. Graphene-supported metal/metal oxide nanohybrids: synthesis and applications in heterogeneous catalysis. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00630a] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This minireview outlines recent advances in the design and catalytic applications of graphene-supported metal/metal oxide nanohybrids.
Collapse
Affiliation(s)
- Yi Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| | - Yiqiu Fan
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| | - Yan Pei
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| | - Minghua Qiao
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
48
|
Geng L, Zhang M, Zhang W, Jia M, Yan W, Liu G. Rational design of carbon support to prepare ultrafine iron oxide catalysts for air oxidation of alcohols. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00022j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient carbon supports change not only the physical but also the chemical properties of iron oxide and create new active sites for the enhancement of catalytic activity in the oxidation of alcohols with air as an oxygen source.
Collapse
Affiliation(s)
- Longlong Geng
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Min Zhang
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Wenxiang Zhang
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Mingjun Jia
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Gang Liu
- Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry
- Jilin University
- Changchun
- PR China
| |
Collapse
|
49
|
Uthaman B, Anand KS, Rajan RK, Kyaw HH, Thomas S, Al-Harthi S, Suresh KG, Varma MR. Structural properties, magnetic interactions, magnetocaloric effect and critical behaviour of cobalt doped La0.7Te0.3MnO3. RSC Adv 2015. [DOI: 10.1039/c5ra13408k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of cobalt doping on the structural, magnetic and magnetocaloric properties of electron-doped manganite La0.7Te0.3Mn1−xCoxO3 (x = 0, 0.1, 0.2, 0.25, 0.3 and 0.5) has been investigated.
Collapse
Affiliation(s)
- Bhagya Uthaman
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695 019
- India
| | - K. S. Anand
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695 019
- India
| | - Rajesh Kumar Rajan
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695 019
- India
| | - Htet H. Kyaw
- Department of Physics
- Sultan Qaboos University
- Muscat PC 123
- Sultanate of Oman
| | - Senoy Thomas
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695 019
- India
| | - Salim Al-Harthi
- Department of Physics
- Sultan Qaboos University
- Muscat PC 123
- Sultanate of Oman
| | - K. G. Suresh
- Department of Physics
- Indian Institute of Technology
- Mumbai-400076
- India
| | - Manoj Raama Varma
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695 019
- India
| |
Collapse
|