1
|
Biologically Assisted One-Step Synthesis of Electrode Materials for Li-Ion Batteries. Microorganisms 2023; 11:microorganisms11030603. [PMID: 36985177 PMCID: PMC10058457 DOI: 10.3390/microorganisms11030603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Mn(II)-oxidizing organisms promote the biomineralization of manganese oxides with specific textures, under ambient conditions. Controlling the phases formed and their texture on a larger scale may offer environmentally relevant routes to manganese oxide synthesis, with potential technological applications, for example, for energy storage. In the present study, we sought to use biofilms to promote the formation of electroactive minerals and to control the texture of these biominerals down to the electrode scale (i.e., cm scale). We used the bacterium Pseudomonas putida strain MnB1 which can produce manganese oxide in a biofilm. We characterized the biofilm–mineral assembly using a combination of electron microscopy, synchrotron-based X-ray absorption spectroscopy, X-ray diffraction, thermogravimetric analysis and electron paramagnetic resonance spectroscopy. Under optimized conditions of biofilm growth on the surface of current collectors, mineralogical characterizations revealed the formation of several minerals including a slightly crystalline MnOx birnessite. Electrochemical measurements in a half-cell against Li(0) revealed the electrochemical signature of the Mn4+/Mn3+ redox couple indicating the electroactivity of the biomineralized biofilm without any post-synthesis chemical, physical or thermal treatment. These results provide a better understanding of the properties of biomineralized biofilms and their possible use in designing new routes for one-pot electrode synthesis.
Collapse
|
2
|
Gao J, Tao H, Liu B. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003786. [PMID: 34169587 DOI: 10.1002/adma.202003786] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/29/2020] [Indexed: 06/13/2023]
Abstract
Water oxidation, or the oxygen evolution reaction (OER), which combines two oxygen atoms from two water molecules and releases one oxygen molecule, plays the key role by providing protons and electrons needed for the hydrogen generation, electrochemical carbon dioxide reduction, and nitrogen fixation. The multielectron transfer OER process involves multiple reaction intermediates, and a high overpotential is needed to overcome the sluggish kinetics. Among the different water splitting devices, proton exchange membrane (PEM) water electrolyzer offers greater advantages. However, current anode OER electrocatalysts in PEM electrolyzers are limited to precious iridium and ruthenium oxides. Developing highly active, stable, and precious-metal-free electrocatalysts for water oxidation in acidic media is attractive for the large-scale application of PEM electrolyzers. In recent years, various types of precious-metal-free catalysts such as carbon-based materials, earth-abundant transition metal oxides, and multiple metal oxide mixtures have been investigated and some of them show promising activity and stability for acidic OER. In this review, the thermodynamics of water oxidation, Pourbaix diagram of metal elements in aqueous solution, and theoretical screening and prediction of precious-metal-free electrocatalysts for acidic OER are first elaborated. The catalytic performance, reaction kinetics, and mechanisms together with future research directions regarding acidic OER are summarized and discussed.
Collapse
Affiliation(s)
- Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Huabing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
3
|
Heidari S, Balaghi SE, Sologubenko AS, Patzke GR. Economic Manganese-Oxide-Based Anodes for Efficient Water Oxidation: Rapid Synthesis and In Situ Transmission Electron Microscopy Monitoring. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sima Heidari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S. Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Alla S. Sologubenko
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
4
|
Balaghi SE, Triana CA, Patzke GR. Molybdenum-Doped Manganese Oxide as a Highly Efficient and Economical Water Oxidation Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.9b02718] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- S. Esmael Balaghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - C. A. Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
5
|
Mousazade Y, Najafpour MM, Bagheri R, Jagličić Z, Singh JP, Chae KH, Song Z, Rodionova MV, Voloshin RA, Shen JR, Ramakrishna S, Allakhverdiev SI. A manganese(ii) phthalocyanine under water-oxidation reaction: new findings. Dalton Trans 2019; 48:12147-12158. [DOI: 10.1039/c9dt01790a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The decomposition reaction for a manganese complex under water oxidation was investigated.
Collapse
|
6
|
Affiliation(s)
- Dong Ryeol Whang
- Institute of Physical Chemistry; Johannes Kepler University Linz; Altenbergerstraße 69 4040 Linz Austria
| | - Dogukan Hazar Apaydin
- Institute of Physical Chemistry; Johannes Kepler University Linz; Altenbergerstraße 69 4040 Linz Austria
| |
Collapse
|
7
|
Najafpour MM, Madadkhani S, Akbarian S, Zand Z, Hołyńska M, Kompany-Zareh M, Tatsuya T, Singh JP, Chae KH, Allakhverdiev SI. Links between peptides and Mn oxide: nano-sized manganese oxide embedded in a peptide matrix. NEW J CHEM 2018. [DOI: 10.1039/c8nj02119h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a poly-peptide/Mn oxide nanocomposite as a model for the water-oxidizing catalyst in Photosystem II.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Sepideh Madadkhani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Somayyeh Akbarian
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- Marburg D-35032
- Germany
| | - Mohsen Kompany-Zareh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Tomo Tatsuya
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276
- Russia
| |
Collapse
|
8
|
Najafpour MM. From manganese complexes to nano-sized manganese oxides as water-oxidizing catalysts for artificial photosynthetic systems: Insights from the Zanjan team. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Najafpour MM, Salimi S, Zand Z, Hołyńska M, Tomo T, Singh JP, Chae KH, Allakhverdiev SI. Nanosized manganese oxide/holmium oxide: a new composite for water oxidation. NEW J CHEM 2017. [DOI: 10.1039/c7nj02747h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ho2O3 as a support for nanosized Mn oxide was used for the synthesis of a new water-oxidizing catalyst.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Saeideh Salimi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Zahra Zand
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)
- Philipps-Universität Marburg
- Hans-Meerwein-Straße
- D-35032 Marburg
- Germany
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Kagurazaka 1-3
- Tokyo
| | - Jitendra Pal Singh
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Keun Hwa Chae
- Advanced Analysis Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Botanicheskaya Street 35
- Moscow 127276
| |
Collapse
|
10
|
Najafpour MM, Salimi S, Madadkhani S, Hołyńska M, Tomo T, Allakhverdiev SI. Nanostructured manganese oxide on silica aerogel: a new catalyst toward water oxidation. PHOTOSYNTHESIS RESEARCH 2016; 130:225-235. [PMID: 27037826 DOI: 10.1007/s11120-016-0247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Herein we report on the synthesis and characterization of nano-sized Mn oxide/silica aerogel with low density as a good catalyst toward water oxidation. The composite was synthesized by a simple and low-cost hydrothermal procedure. In the next step, we studied the composite in the presence of cerium(IV) ammonium nitrate and photo-produced Ru(bpy) 33+ as a water-oxidizing catalyst. The low-density composite is a good Mn-based catalyst with turnover frequencies of ~0.3 and 0.5 (mmol O2/(mol Mn·s)) in the presence of Ru(bpy) 33+ and cerium(IV) ammonium nitrate, respectively. In addition to the water-oxidizing activities of the composite under different conditions, its self-healing reaction in the presence of cerium(IV) ammonium nitrate was also studied.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Saeideh Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Sepideh Madadkhani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, Russia, 119991.
| |
Collapse
|
11
|
Abstract
Water oxidation is a key chemical transformation for the conversion of solar energy into chemical fuels. Our review focuses on recent work on robust earth-abundant heterogeneous catalysts for the oxygen-evolving reaction (OER). We point out that improvements in the performance of OER catalysts will depend critically on the success of work aimed at understanding reaction barriers based on atomic-level mechanisms. We highlight the challenge of obtaining acid-stable OER catalysts, with proposals for elements that could be employed to reach this goal. We suggest that future advances in solar fuels science will be accelerated by the development of new methods for materials synthesis and characterization, along with in-depth investigations of redox mechanisms at catalytic surfaces.
Collapse
Affiliation(s)
- Bryan M Hunter
- Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology , M/C 139-74, Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology , M/C 139-74, Pasadena, California 91125, United States
| | - Astrid M Müller
- Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology , M/C 139-74, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Mahdi Najafpour M, Jafarian Sedigh D, Maedeh Hosseini S, Zaharieva I. Treated Nanolayered Mn Oxide by Oxidizable Compounds: A Strategy To Improve the Catalytic Activity toward Water Oxidation. Inorg Chem 2016; 55:8827-32. [DOI: 10.1021/acs.inorgchem.6b01334] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Davood Jafarian Sedigh
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Seyedeh Maedeh Hosseini
- Department of Chemistry, and Center of
Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Ivelina Zaharieva
- Freie Universität Berlin, Fachbereich Physik, Arnimallee
14, D-14195 Berlin, Germany
| |
Collapse
|
13
|
Ganesan K, Murugan P. First principles calculations on oxygen vacant hydrated α-MnO2 for activating water oxidation and its self-healing mechanism. Phys Chem Chem Phys 2016; 18:22196-202. [PMID: 27447447 DOI: 10.1039/c6cp02032a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the mechanism behind water oxidation is the prime requirement for designing better catalysts for electrochemical energy devices. In this work, we demonstrate by employing first principles calculations that an initial step of water oxidation is observed to be associated with the dissociation of water dimers into hydronium and hydroxide ions, in the tunnel of a hydrated α-MnO2 compound with an oxygen vacancy. The former ion is intercalated within the network, while the latter ion occupies the oxygen vacant site and interacts strongly with the Mn atoms. Based on our calculations, the factor responsible for this dissociation of water molecules is observed to be the presence of mixed charge states of Mn atoms in the triangular lattice. Further, the coulombic attraction of a hydronium ion with a water molecule leads to the formation of a Zundel cation in the tunnel, while by dehydrogenating the adsorbed hydroxide ion, the self-healing property of the compound is achieved along with another hydronium ion as a reaction product. These cations can be exchanged with Li(+) ions. Thus, the protonic moieties formed in the tunnel of α-MnO2 leads to niche applications in the field of fuel cells and lithium ion batteries.
Collapse
Affiliation(s)
- Kruthika Ganesan
- Functional Materials Division, CSIR Central Electrochemical Research Institute (CECRI), Karaikudi-630 003, Tamil Nadu, India. and Academy of Scientific & Innovative Research, CECRI, Karaikudi-630 003, Tamil Nadu, India
| | - P Murugan
- Functional Materials Division, CSIR Central Electrochemical Research Institute (CECRI), Karaikudi-630 003, Tamil Nadu, India. and Academy of Scientific & Innovative Research, CECRI, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
14
|
Liu G, Hall J, Nasiri N, Gengenbach T, Spiccia L, Cheah MH, Tricoli A. Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flame-Made Manganese Oxide Nanocrystals. CHEMSUSCHEM 2015; 8:4162-4171. [PMID: 26601653 DOI: 10.1002/cssc.201500704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/30/2015] [Indexed: 06/05/2023]
Abstract
Chemical energy storage by water splitting is a promising solution for the utilization of renewable energy in numerous currently impracticable needs, such as transportation and high temperature processing. Here, the synthesis of efficient ultra-fine Mn3O4 water oxidation catalysts with tunable specific surface area is demonstrated by a scalable one-step flame-synthesis process. The water oxidation performance of these flame-made structures is compared with pure Mn2O3 and Mn5O8, obtained by post-calcination of as-prepared Mn3O4 (115 m(2) g(-1)), and commercial iso-structural polymorphs, probing the effect of the manganese oxidation state and synthetic route. The structural properties of the manganese oxide nanoparticles were investigated by XRD, FTIR, high-resolution TEM, and XPS. It is found that these flame-made nanostructures have substantially higher activity, reaching up to 350 % higher surface-specific turnover frequency (0.07 μmolO2 m(-2) s(-1)) than commercial nanocrystals (0.02 μmolO2 m(-2) s(-1)), and production of up to 0.33 mmolO2 molMn (-1) s(-1). Electrochemical characterization confirmed the high water oxidation activity of these catalysts with an initial current density of 10 mA cm(-2) achieved with overpotentials between 0.35 and 0.50 V in 1 m NaOH electrolyte.
Collapse
Affiliation(s)
- Guanyu Liu
- Nanotechnology Research Laboratory, Research School of Engineering, The Australian National University, Canberra, 2001, Australia
| | - Jeremy Hall
- Research School of Chemistry, The Australian National University, Canberra, 2001, Australia
| | - Noushin Nasiri
- Nanotechnology Research Laboratory, Research School of Engineering, The Australian National University, Canberra, 2001, Australia
| | - Thomas Gengenbach
- Division of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Leone Spiccia
- School of Chemistry, ARC Centre of Excellence for Electromaterials Science, Monash University, Melbourne, 3800, Australia
| | - Mun Hon Cheah
- Research School of Biology, The Australian National University, Canberra, 2001, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Engineering, The Australian National University, Canberra, 2001, Australia.
| |
Collapse
|
15
|
Kwon G, Kokhan O, Han A, Chapman KW, Chupas PJ, Du P, Tiede DM. Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2015; 71:713-21. [PMID: 26634728 PMCID: PMC4669998 DOI: 10.1107/s2052520615022180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/19/2015] [Indexed: 05/31/2023]
Abstract
Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.
Collapse
Affiliation(s)
- Gihan Kwon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Oleksandr Kokhan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| | - Ali Han
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Rd, Hefei 230026, People’s Republic of China
| | - Karena W. Chapman
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, United States
| | - Peter J. Chupas
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, United States
| | - Pingwu Du
- Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Rd, Hefei 230026, People’s Republic of China
| | - David M. Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Ave, Lemont, IL 60439, USA
| |
Collapse
|
16
|
Najafpour MM, Hosseini SM, Hołyńska M, Tomo T, Allakhverdiev SI. Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold. PHOTOSYNTHESIS RESEARCH 2015; 126:477-487. [PMID: 26076756 DOI: 10.1007/s11120-015-0164-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
We synthesized manganese oxides supported on gold nanoparticles (diameter <100 nm) by the reaction of KMnO4 with gold nanoparticles under hydrothermal conditions. In this green method Mn oxide is deposited on the gold nanoparticles. The compounds were characterized by scanning electron microscopy, energy-dispersive spectrometry, high-resolution transmission electron microscopy, X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy. In the next step, the water-oxidizing activities of these compounds in the presence of cerium(IV) ammonium nitrate as a non-oxo transfer oxidant were studied. The results show that these compounds are good catalysts toward water oxidation with a turnover frequency of 1.0 ± 0.1 (mmol O2/(mol Mn·s)). A comparison with other previously reported Mn oxides and important factors influencing the water-oxidizing activities of Mn oxides is also discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.
- Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran.
| | - Seyedeh Maedeh Hosseini
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 45137-66731, Zanjan, Iran
| | - Małgorzata Hołyńska
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
| |
Collapse
|
17
|
Abstract
Herein we report that the reaction of KMnO4 with cobalt nanoparticles coated with multiple graphene layers forms a promising catalyst toward water oxidation. The compound was characterized by scanning electron microscopy, energy-dispersive spectroscopy, high resolution transmission electron microscopy, X-ray diffraction, electronic spectroscopy, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy. In addition to the Mn oxide-based characteristics of the catalyst, it is a conductive, self-healing, recycling, highly dispersible, magnetically separable, environmentally friendly, and nano-sized catalyst for water oxidation. The turnover frequency for the catalyst toward water oxidation is 0.1 and 0.05 (mmol O2 per mol Mn s) in the presence of cerium(iv) ammonium nitrate and photo-produced Ru(bpy)3(3+).
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | |
Collapse
|
18
|
Najafpour MM, Allakhverdiev SI. Nano-sized Mn oxide: A true catalyst in the water-oxidation reaction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:127-32. [DOI: 10.1016/j.jphotobiol.2015.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
|
19
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Nanolayered manganese oxide/C(60) composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Trans 2015; 43:12058-64. [PMID: 24984108 DOI: 10.1039/c4dt00599f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
For the first time, we considered Mn oxide/C60 composites as water-oxidizing catalysts. The composites were synthesized by easy and simple procedures, and characterized by some methods. The water-oxidizing activities of these composites were also measured in the presence of cerium(iv) ammonium nitrate. We found that the nanolayered Mn oxide/C60 composites show promising activity toward water oxidation.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
20
|
Najafpour MM, Rahimi F, Fathollahzadeh M, Haghighi B, Hołyńska M, Tomo T, Allakhverdiev SI. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Dalton Trans 2015; 43:10866-76. [PMID: 24898625 DOI: 10.1039/c4dt01295j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | | | | | | | | | | | | |
Collapse
|
21
|
Najafpour MM, Fekete M, Sedigh DJ, Aro EM, Carpentier R, Eaton-Rye JJ, Nishihara H, Shen JR, Allakhverdiev SI, Spiccia L. Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catal 2015. [DOI: 10.1021/cs5015157] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Monika Fekete
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Julian J. Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
| | - Leone Spiccia
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia
| |
Collapse
|
22
|
|
23
|
Najafpour MM, Abbasi Isaloo M. The mechanism of water oxidation catalyzed by nanolayered manganese oxides: New insights. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:133-8. [PMID: 25666103 DOI: 10.1016/j.jphotobiol.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/13/2023]
Abstract
Herein we consider the mechanism of water oxidation by nanolayered manganese oxide in the presence of cerium(IV) ammonium nitrate. Based on membrane-inlet mass spectrometry results, the rate of H2((18))O exchange of μ-O groups on the surface of the nanolayered Mn-K oxide, and studies on water oxidation in the presence of different ratios of acetonitrile/water we propose a mechanism for water oxidation by nanolayered Mn oxides in the presence of cerium(IV) ammonium nitrate.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mohsen Abbasi Isaloo
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
24
|
Najafpour MM, Amini E. Nano-sized Mn oxides on halloysite or high surface area montmorillonite as efficient catalysts for water oxidation with cerium(iv) ammonium nitrate: support from natural sources. Dalton Trans 2015; 44:15441-9. [DOI: 10.1039/c5dt02336j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used halloysite, a nano-sized natural mineral and high surface area montmorillonite as supports for nano-sized Mn oxides to synthesize efficient water-oxidising catalysts.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Emad Amini
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
25
|
Najafpour MM, Khoshkam M, Jafarian Sedigh D, Zahraei A, Kompany-Zareh M. Self-healing for nanolayered manganese oxides in the presence of cerium(iv) ammonium nitrate: new findings. NEW J CHEM 2015. [DOI: 10.1039/c4nj02092h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We used multivariate chemometrics methods to analyze the concentration profiles of cerium(iv) ammonium nitrate and MnO4−during the water oxidation reaction.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Maryam Khoshkam
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- School of Pharmacy
| | - Davood Jafarian Sedigh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Ali Zahraei
- Young Researchers and Elite Club
- Qom Branch
- Islamic Azad University
- Qom
- Iran
| | - Mohsen Kompany-Zareh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| |
Collapse
|
26
|
Najafpour MM, Isaloo MA, Ghobadi MZ, Amini E, Haghighi B. The effect of different metal ions between nanolayers of manganese oxide on water oxidation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:247-52. [DOI: 10.1016/j.jphotobiol.2014.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/19/2014] [Accepted: 10/28/2014] [Indexed: 12/19/2022]
|
27
|
He Y, Chai Y, Wang H, Bai L, Yuan R. A signal-on electrochemiluminescence aptasensor based on the quenching effect of manganese dioxide for sensitive detection of carcinoembryonic antigen. RSC Adv 2014. [DOI: 10.1039/c4ra11392f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Menezes PW, Indra A, Littlewood P, Schwarze M, Göbel C, Schomäcker R, Driess M. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry. CHEMSUSCHEM 2014; 7:2202-11. [PMID: 25044528 DOI: 10.1002/cssc.201402169] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 05/10/2023]
Abstract
We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1<x<2) upon treatment with CAN, which acted as an oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers.
Collapse
Affiliation(s)
- Prashanth W Menezes
- Department of Chemistry, Technische Universität Berlin, Strasse des 17 Juni 135, Sekr. C2, 10623 Berlin (Germany)
| | | | | | | | | | | | | |
Collapse
|
29
|
McDonnell-Worth C, MacFarlane DR. Ion effects in water oxidation to hydrogen peroxide. RSC Adv 2014. [DOI: 10.1039/c4ra05296j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Huynh M, Bediako DK, Nocera DG. A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 2014; 136:6002-10. [PMID: 24669981 DOI: 10.1021/ja413147e] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
First-row metals have been a target for the development of oxygen evolution reaction (OER) catalysts because they comprise noncritical elements. We now report a comprehensive electrochemical characterization of manganese oxide (MnOx) over a wide pH range, and establish MnOx as a functionally stable OER catalyst owing to self-healing, is derived from MnOx redeposition that offsets catalyst dissolution during turnover. To study this process in detail, the oxygen evolution mechanism of MnOx was investigated electrokinetically over a pH range spanning acidic, neutral, and alkaline conditions. In the alkaline pH regime, a ∼60 mV/decade Tafel slope and inverse first-order dependence on proton concentration were observed, whereas the OER acidic pH regime exhibited a quasi-infinite Tafel slope and zeroth-order dependence on proton concentration. The results reflect two competing mechanisms: a one-electron one-proton PCET pathway that is dominant under alkaline conditions and a Mn(3+) disproportionation process, which predominates under acidic conditions. Reconciling the rate laws of these two OER pathways with that of MnOx electrodeposition elucidates the self-healing characteristics of these catalyst films. The intersection of the kinetic profile of deposition and that of water oxidation as a function of pH defines the region of kinetic stability for MnOx and importantly establishes that a non-noble metal oxide OER catalyst may be operated in acid by exploiting a self-healing process.
Collapse
Affiliation(s)
- Michael Huynh
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
31
|
Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI. Mn oxide/nanodiamond composite: a new water-oxidizing catalyst for water oxidation. RSC Adv 2014. [DOI: 10.1039/c4ra06181k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, we reported nanosized Mn oxide/nanodiamond composites as water-oxidizing compounds.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | - Mahnaz Abasi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| | - Tatsuya Tomo
- Department of Biology
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601, Japan
- PRESTO
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory
- Institute of Plant Physiology
- Russian Academy of Sciences
- Moscow 127276, Russia
- Institute of Basic Biological Problems
| |
Collapse
|
32
|
Najafpour MM, Abbasi Isaloo M, Abasi M, Hołyńska M. Manganese oxide as a water-oxidizing catalyst: from the bulk to Ångström-scale. NEW J CHEM 2014. [DOI: 10.1039/c3nj01393f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Najafpour MM, Haghighi B, Sedigh DJ, Ghobadi MZ. Conversions of Mn oxides to nanolayered Mn oxide in electrochemical water oxidation at near neutral pH, all to a better catalyst: catalyst evolution. Dalton Trans 2013; 42:16683-6. [DOI: 10.1039/c3dt52304g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|