1
|
Singh H, Sharma S. Understanding the Hydration Thermodynamics of Cationic Quaternary Ammonium and Charge-Neutral Amine Surfactants. J Phys Chem B 2022; 126:9810-9820. [PMID: 36395484 DOI: 10.1021/acs.jpcb.2c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aqueous solubility and interfacial adsorption of surfactants are important for numerous applications. Using molecular dynamics, we have studied the effect of the type of the polar headgroup (cationic quaternary ammonium and charge-neutral amine) and length of the alkyl tail on the hydration free energy of surfactants in infinite dilution. In addition, we have studied the effect of replacing the terminal methyl group of the alkyl tail with a more polar hydroxyl group on the hydration free energy. Quaternary ammonium surfactants have strongly favorable hydration free energies, whereas charge-neutral amine surfactants have unfavorable hydration free energies. The contribution of the quaternary ammonium group in reducing the hydration free energy is estimated to be as large as ∼63 kBT and that of the charge-neutral amine group to be 3 kBT. Both surfactants and their corresponding alkanes have minima in the free energy at the air-water interface. The quaternary ammonium group contributes to a 6 kBT decrease in the free energy of transfer from air-water interface to bulk aqueous phase (termed henceforth as interface transfer free energy). The amine group, on the other hand, has a net zero interface transfer free energy. The interface transfer free energies of surfactants are both enthalpically and entropically unfavorable. The enthalpic penalty is attributed to the loss of water-water interactions. Interestingly, surfactant molecules gain entropy upon their transfer from the air-water interface to the aqueous phase, but this increase is more than compensated by the loss in the entropy of water molecules, presumably due to the ordering of water molecules around the surfactants. Replacing the terminal methyl group of the alkyl tail with a hydroxyl group in quat surfactants reduces their hydration free energy by 10 kBT, thus making them more soluble in water. Attaching a hydroxyl group to the alkyl tail also inhibits their micelle forming tendency in the bulk aqueous phase. Overall, this work reveals how tuning the molecular characteristics of surfactants can help to achieve the desirable aqueous solubility, interfacial properties, and micellization tendency of surfactants.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio45701, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio45701, United States
| |
Collapse
|
2
|
Singh H, Sharma S. Hydration of Linear Alkanes is Governed by the Small Length-Scale Hydrophobic Effect. J Chem Theory Comput 2022; 18:3805-3813. [PMID: 35648114 DOI: 10.1021/acs.jctc.2c00219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Length-scale dependence of the hydrophobic effect is well understood for apolar spherical solutes: for small solutes (diameter, d ≲ 0.8 nm), the hydration free energy is entropically driven, while for larger solutes (d ≳ 2 nm), it is enthalpically driven. The nature of the hydrophobic effect in the case of anisotropic molecules such as linear alkanes is not understood yet. In this work, we have calculated the hydration free energy of linear alkanes going from methane to octadecane and of a spherical decane droplet of d ≈ 3 nm using molecular simulations. We show that the hydration free energies of alkanes, irrespective of their size, are governed by the small length-scale hydrophobic effect. That is, unlike the case of large spherical solutes, the hydration free energies of linear alkanes are entropically driven.
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Sumit Sharma
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
3
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Lbadaoui-Darvas M, Garberoglio G, Karadima KS, Cordeiro MNDS, Nenes A, Takahama S. Molecular simulations of interfacial systems: challenges, applications and future perspectives. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1980215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Mária Lbadaoui-Darvas
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Garberoglio
- European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*), Trento, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), Trento, Italy
| | - Katerina S. Karadima
- Department of Chemical Engineering, University of Patras, Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | | | - Athanasios Nenes
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas(FORTH-ICE/HT), Patras, Greece
| | - Satoshi Takahama
- ENAC/IIE; Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Vodopivec AA, Chen Y, Russo PS, Hung FR. Molecular Dynamics Simulations of Nanostructures Formed by Hydrophobins and Oil in Seawater. J Phys Chem B 2021; 125:7886-7899. [PMID: 34236182 DOI: 10.1021/acs.jpcb.1c02040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Classical molecular dynamics simulations using the Martini coarse-grained force field were performed to study oil nanodroplets surrounded by fungal hydrophobin (HP) proteins in seawater. The class I EAS and the class II HFBII HPs were studied along with two model oils, namely, benzene and n-decane. Both HPs exhibit free energy minima at the oil-seawater interface, which is deeper in benzene compared to the n-decane systems. Larger constraint forces are required to keep both HPs within the n-decane phase compared to inside benzene, with HFBII being more affine to benzene compared to EAS. Smaller surface tensions are observed at benzene-seawater interfaces coated with HPs compared to their n-decane counterparts. In the latter the surface tension remains unchanged upon increases in the concentration of HPs, whereas in benzene systems adding more HPs lead to decreases in surface tension. EAS has a larger tendency to cluster together in the interface compared to HFBII, with both HPs having larger coordination numbers when surrounding benzene droplets compared to when they are around n-decane nanoblobs. The HP-oil nanostructures in seawater examined have radii of gyration ranging between 2 and 12 nm, where the n-decane structures are larger and have more irregular shapes compared to the benzene systems. The n-decane molecules within the nanostructures form a compact spherical core, with the HPs partially covering its surface and clustering together, conferring irregular shapes to the nanostructures. The EAS with n-decane structures are larger and have more irregular shapes compared to their HFBII counterparts. In contrast, in the HP-benzene structures both HPs tend to penetrate the oil part of the droplet. The HFBII-benzene structures having the larger oil/HP ratios examined tend to be more compact and spherical compared to their EAS counterparts; however, some of the HFBII-benzene systems that have smaller oil/HP ratios have a more elongated structure compared to their EAS counterparts. This simulation study provides insights into HP-oil nanostructures that are smaller than the oil droplets and gas bubbles recently studied in experiments and, thus, might be challenging to examine with experimental techniques.
Collapse
Affiliation(s)
- Andrés A Vodopivec
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yuwu Chen
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Paul S Russo
- School of Materials Science and Engineering and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Francisco R Hung
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Progress in Operational Modeling in Support of Oil Spill Response. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8090668] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following the 2010 Deepwater Horizon accident of a massive blow-out in the Gulf of Mexico, scientists from government, industry, and academia collaborated to advance oil spill modeling and share best practices in model algorithms, parameterizations, and application protocols. This synergy was greatly enhanced by research funded under the Gulf of Mexico Research Initiative (GoMRI), a 10-year enterprise that allowed unprecedented collection of observations and data products, novel experiments, and international collaborations that focused on the Gulf of Mexico, but resulted in the generation of scientific findings and tools of broader value. Operational oil spill modeling greatly benefited from research during the GoMRI decade. This paper provides a comprehensive synthesis of the related scientific advances, remaining challenges, and future outlook. Two main modeling components are discussed: Ocean circulation and oil spill models, to provide details on all attributes that contribute to the success and limitations of the integrated oil spill forecasts. These forecasts are discussed in tandem with uncertainty factors and methods to mitigate them. The paper focuses on operational aspects of oil spill modeling and forecasting, including examples of international operational center practices, observational needs, communication protocols, and promising new methodologies.
Collapse
|
7
|
Oliver RC, Naing SH, Weiss KL, Pingali SV, Lieberman RL, Urban VS. Contrast-Matching Detergent in Small-Angle Neutron Scattering Experiments for Membrane Protein Structural Analysis and Ab Initio Modeling. J Vis Exp 2018:57901. [PMID: 30394373 PMCID: PMC6235576 DOI: 10.3791/57901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The biological small-angle neutron scattering instrument at the High-Flux Isotope Reactor of Oak Ridge National Laboratory is dedicated to the investigation of biological materials, biofuel processing, and bio-inspired materials covering nanometer to micrometer length scales. The methods presented here for investigating physical properties (i.e., size and shape) of membrane proteins (here, MmIAP, an intramembrane aspartyl protease from Methanoculleus marisnigri) in solutions of micelle-forming detergents are well-suited for this small-angle neutron scattering instrument, among others. Other biophysical characterization techniques are hindered by their inability to address the detergent contributions in a protein-detergent complex structure. Additionally, access to the Bio-Deuteration Lab provides unique capabilities for preparing large-scale cultivations and expressing deuterium-labeled proteins for enhanced scattering signal from the protein. While this technique does not provide structural details at high-resolution, the structural knowledge gap for membrane proteins contains many addressable areas of research without requiring near-atomic resolution. For example, these areas include determination of oligomeric states, complex formation, conformational changes during perturbation, and folding/unfolding events. These investigations can be readily accomplished through applications of this method.
Collapse
Affiliation(s)
- Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory
| | - Swe-Htet Naing
- School of Chemistry and Biochemistry, Georgia Institute of Technology
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory
| | | | | | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory;
| |
Collapse
|
8
|
Takeshita R, Sullivan L, Smith C, Collier T, Hall A, Brosnan T, Rowles T, Schwacke L. The Deepwater Horizon oil spill marine mammal injury assessment. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00808] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Zhang Z, Avij P, Perkins MJ, Liyana-Arachchi TP, Field JA, Valsaraj KT, Hung FR. Combined Experimental and Molecular Simulation Investigation of the Individual Effects of Corexit Surfactants on the Aerosolization of Oil Spill Matter. J Phys Chem A 2016; 120:6048-58. [DOI: 10.1021/acs.jpca.6b04988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zenghui Zhang
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Paria Avij
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Matt J. Perkins
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Jennifer A. Field
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kalliat T. Valsaraj
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Francisco R. Hung
- Cain
Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|