1
|
Yu SJ, Hu SM, Zhu YZ, Zhou S, Dong S, Zhou T. Pickering emulsions stabilized by soybean protein isolate/chitosan hydrochloride complex and their applications in essential oil delivery. Int J Biol Macromol 2023; 250:126146. [PMID: 37544563 DOI: 10.1016/j.ijbiomac.2023.126146] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In this work, fabrication of soybean protein isolate (SPI)/chitosan hydrochloride (CHC) composite particles stabilized O/W Pickering emulsions using soybean oil as an oil phase was optimized by examining the effects of pH, SPI/CHC mass ratio, SPI/CHC composite particle concentration and oil phase fraction on the stability of the emulsions. The results showed that under the conditions of SPI/CHC mass ratio 1:1, pH 4 and particle concentration 2 %, the SPI/CHC composite particles could stabilize the emulsions with oil phase fraction up to 80 %. At an oil phase fraction of 60 %, the emulsions had a minimum particle size. The microstructure, storage and oxidation stabilities and rheological properties of the emulsions were determined. Using this SPI/CHC composite particle-stabilized Pickering emulsion template, citrus essential oil (CEO) Pickering emulsion (CEOP) was prepared. CEOP was found to markedly inhibit two food-related microorganisms, Staphylococcus aureus and Escherichia coli. In addition, the CEOP emulsion dilution (containing 4500 μL CEO/L) not only improved the water solubility of CEO, but also effectively retarded the browning and bacterial growth of fresh-cut apple. The SPI/CHC-stabilized Pickering emulsion template constructed in this work provides a promising alternative for the delivery of antimicrobial essential oils in the food industry.
Collapse
Affiliation(s)
- Si-Jia Yu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shu-Min Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yu-Zhu Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Shuai Dong
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
2
|
Wang T, Yi K, Li Y, Wang H, Fan Z, Jin H, Xu J. Esterified Soy Proteins with Enhanced Antibacterial Properties for the Stabilization of Nano-Emulsions under Acidic Conditions. Molecules 2023; 28:molecules28073078. [PMID: 37049843 PMCID: PMC10095910 DOI: 10.3390/molecules28073078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Soy protein isolate (SPI), including β-conglycinin (7S) and glycinin (11S), generally have low solubility under weakly acidic conditions due to the pH closed to their isoelectric points (pIs), which has limited their application in acidic emulsions. Changing protein pI through modification by esterification could be a feasible way to solve this problem. This study aimed to obtain stable nano-emulsion with antibacterial properties under weakly acidic conditions by changing the pI of soy protein emulsifiers. Herein, the esterified soy protein isolate (MSPI), esterified β-conglycinin (M7S), and esterified glycinin (M11S) proteins were prepared. Then, pI, turbidimetric titration, Fourier transform infrared (FTIR) spectra, intrinsic fluorescence spectra, and emulsifying capacity of esterified protein were discussed. The droplet size, the ζ-potential, the stability, and the antibacterial properties of the esterified protein nano-emulsion were analyzed. The results revealed that the esterified proteins MSPI, M7S, and M11S had pIs, which were measured by ζ-potentials, as pH 10.4, 10.3, and 9.0, respectively, as compared to native proteins. All esterified-protein nano-emulsion samples showed a small mean particle size and good stability under weakly acidic conditions (pH 5.0), which was near the original pI of the soy protein. Moreover, the antibacterial experiments showed that the esterified protein-based nano-emulsion had an inhibitory effect on bacteria at pH 5.0.
Collapse
Affiliation(s)
- Tingyu Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Kehan Yi
- National Research Center of Soybean Engineering and Technology, Harbin 150028, China; (K.Y.)
| | - Yang Li
- National Research Center of Soybean Engineering and Technology, Harbin 150028, China; (K.Y.)
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi 154007, China;
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China;
- Correspondence: (H.J.); (J.X.)
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China;
- Correspondence: (H.J.); (J.X.)
| |
Collapse
|
3
|
Gao S, Yang M, Luo Z, Ban Z, Pan Y, Tu M, Ma Q, Lin X, Xu Y, Li L. Soy protein/chitosan-based microsphere as Stable Biocompatible Vehicles of Oleanolic Acid: An Emerging Alternative Enabling the Quality Maintenance of Minimally Processed Produce. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Yu J, Wang Q, Zhang H, Qin X, Chen H, Corke H, Hu Z, Liu G. Increased stability of curcumin-loaded pickering emulsions based on glycated proteins and chitooligosaccharides for functional food application. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111742] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Zhang T, Guo X, Meng H, Tang X, Ai C, Chen H, Lin J, Yu S. Effects of bovine serum albumin on the ethanol precipitation of sugar beet pulp pectins. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Zhao L, Zhang M, Wang H, Devahastin S. Effect of carbon dots in combination with aqueous chitosan solution on shelf life and stability of soy milk. Int J Food Microbiol 2020; 326:108650. [PMID: 32402916 DOI: 10.1016/j.ijfoodmicro.2020.108650] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/25/2020] [Indexed: 01/10/2023]
Abstract
Use of carbon dots (CDs) in combination with aqueous chitosan solution to extend shelf life and improve stability of soy milk was investigated. Soy milk samples with chitosan solution (0.00%, 0.08%, 0.12%, 0.16% and 0.20%) and banana-based CDs (4%, 6% and 8%) were prepared and stored at room temperature (25-30 °C) for shelf life evaluation. Soy milk with 0.16% chitosan solution exhibited improved stability as evident by increased viscosity, stability coefficient, zeta potential and decreased centrifugation rate compared with soy milk without chitosan. The suitable amount of carbon dots could effectively inhibit the growth of Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Soy milk with 0.16% chitosan and 8% CDs exhibited longer shelf life and significantly lower total bacterial count after storage at room temperature for up to 4 days. Electronic nose-based flavor characteristics of all treated soy milk samples were not far from that of the control sample.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha u-tid Road, Tungkru, Bangkok 10140, Thailand
| |
Collapse
|
7
|
Yuan Y, Kong ZY, Sun YE, Zeng QZ, Yang XQ. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.045] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Wan ZL, Guo J, Yang XQ. Plant protein-based delivery systems for bioactive ingredients in foods. Food Funct 2015; 6:2876-89. [DOI: 10.1039/c5fo00050e] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The application of food-grade delivery systems for the encapsulation, protection and controlled release of bioactive food ingredients have recently gained increasing interest in the research fields of functional foods and pharmaceutics. The preparation and application of bifunctional particles provide a novel perspective for the design of plant protein-based delivery system.
Collapse
Affiliation(s)
- Zhi-Li Wan
- Research and Development Center of Food Proteins
- Department of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Jian Guo
- Research and Development Center of Food Proteins
- Department of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins
- Department of Food Science and Technology
- South China University of Technology
- Guangzhou 510640
- People's Republic of China
| |
Collapse
|
9
|
Souilem S, Kobayashi I, Neves MA, Jlaiel L, Isoda H, Sayadi S, Nakajima M. Interfacial characteristics and microchannel emulsification of oleuropein-containing triglyceride oil–water systems. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|