1
|
Huang M, Frohlich K, Esmaili E, Yang T, Li L, Jung S. Interfacial Dynamics in Dual Channels: Inspired by Cuttlebone. Biomimetics (Basel) 2023; 8:466. [PMID: 37887597 PMCID: PMC10604149 DOI: 10.3390/biomimetics8060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
The cuttlebone, a chambered gas-filled structure found in cuttlefish, serves a crucial role in buoyancy control for the animal. This study investigates the motion of liquid-gas interfaces within cuttlebone-inspired artificial channels. The cuttlebone's unique microstructure, characterized by chambers divided by vertical pillars, exhibits interesting fluid dynamics at small scales while pumping water in and out. Various channels were fabricated with distinct geometries, mimicking cuttlebone features, and subjected to different pressure drops. The behavior of the liquid-gas interface was explored, revealing that channels with pronounced waviness facilitated more non-uniform air-water interfaces. Here, Lyapunov exponents were employed to characterize interface separation, and they indicated more differential motions with increased pressure drops. Channels with greater waviness and amplitude exhibited higher Lyapunov exponents, while straighter channels exhibited slower separation. This is potentially aligned with cuttlefish's natural adaptation to efficient water transport near the membrane, where more straight channels are observed in real cuttlebone.
Collapse
Affiliation(s)
- Matthew Huang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; (M.H.); (K.F.); (E.E.)
| | - Karl Frohlich
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; (M.H.); (K.F.); (E.E.)
| | - Ehsan Esmaili
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; (M.H.); (K.F.); (E.E.)
| | - Ting Yang
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA (L.L.)
| | - Ling Li
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA (L.L.)
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; (M.H.); (K.F.); (E.E.)
| |
Collapse
|
2
|
|
3
|
Pang Y, Lu Y, Wang X, Zhou Q, Ren Y, Liu Z. Impact of flow feedback on bubble generation in T-junction microchannels under pressure-driven condition. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.117010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, Montazerian H, Jahangiry J, Darabi MA, Haghniaz R, Dokmeci MR, Annabi N, Ahadian S, Khademhosseini A. Droplet-based microfluidics in biomedical applications. Biofabrication 2021; 14. [PMID: 34781274 DOI: 10.1088/1758-5090/ac39a9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e., passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications of droplet-based microfluidics in different biomedical applications are detailed. Finally, a general overview of the latest trends along with the perspectives and future potentials in the field are provided.
Collapse
Affiliation(s)
- Leyla Amirifar
- Mechanical Engineering, Sharif University of Technology, Tehran, Iran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Rohollah Nasiri
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | | | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Elham Davoodi
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Ahmet Erdem
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Hossein Montazerian
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Jamileh Jahangiry
- University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Nasim Annabi
- Chemical Engineering, UCLA, Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| |
Collapse
|
5
|
Ma D, Liang D, Zhu C, Fu T, Ma Y, Yuan X, Li HZ. The breakup dynamics and mechanism of viscous droplets in Y-shaped microchannels. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
|
7
|
Verma RK, Ghosh S. Comparison of Slug Breakup for Confined Liquid–Liquid Flows in Serpentine Minigeometry. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raj Kumar Verma
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| | - Sumana Ghosh
- Department of Chemical Engineering, IIT Roorkee, Roorkee 247667, India
| |
Collapse
|
8
|
Wang X, Liu Z, Pang Y. Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Wang X, Liu Z, Pang Y. Collision characteristics of droplet pairs with the presence of arriving distance differences. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Wang X, Liu Z, Pang Y. Droplet breakup in an asymmetric bifurcation with two angled branches. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Ziyi X, Taotao F, Chunying Z, Shaokun J, Youguang M, Kai W, Guangsheng L. Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions. Electrophoresis 2018; 40:376-387. [PMID: 30188577 DOI: 10.1002/elps.201800330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/27/2018] [Indexed: 11/05/2022]
Abstract
For revealing the dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions, the combination of dimensionless power-law and geometric model was applied to study the effects of capillary number, bubble length, and channel angle on the bubble rupture process. In the squeezing process, the gas-liquid interface curve follows the parabolic model. For the evolution of the bubble neck during breakup, the increase of the bubble length, the channel angle, and the capillary number leads to the decrease of the focus distance α. The chord m increases with the increase of the capillary number and the decrease of the bubble length, and it would reach the maximum value when the channel angle is 90°. In the fast pinch-off stage during bubble breakup, the bubble's neck curve no longer conforms to the parabolic model so the focus and chord no longer exist. For the evolution of the bubble head during breakup, the value of γ approaches 1 with the increase of the capillary number and the bubble length, and with the close of the channel angle to 90°. It is found that the quadrilateral model can be applied for the partially obstructed rupture of bubbles in the symmetrical microfluidic Y-junction.
Collapse
Affiliation(s)
- Xu Ziyi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Fu Taotao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Zhu Chunying
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Jiang Shaokun
- The 718th Research Institute of China Shipbuilding Industry Corporation, Handan City, Hebei P rovince, P. R. China
| | - Ma Youguang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Wang Kai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
| | - Luo Guangsheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
12
|
Ma Y, Zheng M, Bah MG, Wang J. Effects of obstacle lengths on the asymmetric breakup of a droplet in a straight microchannel. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Akamatsu K, Minezaki K, Yamada M, Seki M, Nakao SI. Direct Observation of Splitting in Oil-In-Water-In-Oil Emulsion Droplets via a Microchannel Mimicking Membrane Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14087-14092. [PMID: 29140704 DOI: 10.1021/acs.langmuir.7b03331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Direct observation of double emulsion droplet permeation through a microchannel that mimicked 100 μm membrane pores with a porosity of 66.7% provided insights regarding splitting mechanisms in porous membranes. The microchannel was fabricated by standard soft lithography, and the oil-in-water-in-oil double emulsion droplets were prepared with a glass capillary device. By changing the flow rate from 0.5 to 5.0 × 10-2 m s-1, three characteristic behaviors were observed: (a) passage into one channel without splitting; (b) division into two smaller components; and (c) stripping of the middle water phase of the double emulsion droplets into a smaller double emulsion droplet and a smaller water-in-oil single emulsion droplet. The mechanisms are discussed with respect to the balance of viscous forces and interfacial tension, the contact point with the tip of the channel, and the relative position of the innermost droplet within the middle droplet.
Collapse
Affiliation(s)
- Kazuki Akamatsu
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University , 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Koki Minezaki
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University , 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University , 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University , 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shin-Ichi Nakao
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University , 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| |
Collapse
|
14
|
Wang X, Zhu C, Fu T, Qiu T, Ma Y. Critical condition for bubble breakup in a microfluidic flow-focusing junction. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Kadivar E, Alizadeh A. Numerical simulation and scaling of droplet deformation in a hyperbolic flow. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:31. [PMID: 28324241 DOI: 10.1140/epje/i2017-11521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Motivated by a recent experiment (C. Ulloa et al., Phys. Rev. E 89, 033004 (2014)), droplet deformation in a flat microfluidic channel having a cross intersection with two inlet channels and two outlet channels, i.e. hyperbolic flow, is numerically investigated. Employing the boundary element method (BEM), we numerically solve the Darcy equation in the two dimensions and investigate droplet motion and droplet deformation as the droplet enters the cross intersection. We numerically find that the maximum deformation of droplet depends on droplet size, capillary number, viscosity ratio and flow rate ratio of the two inlets. Our numerical scaling is in good agreement with the experimental scaling report.
Collapse
Affiliation(s)
- Erfan Kadivar
- Department of Physics, Shiraz University of Technology, 71555-313, Shiraz, Iran.
| | - Atefeh Alizadeh
- Department of Physics, Faculty of Sciences, Persian Gulf University, 75168, Bushehr, Iran
| |
Collapse
|
16
|
Zhang P, Mines JM, Lee S, Jung S. Particle-bubble interaction inside a Hele-Shaw cell. Phys Rev E 2016; 94:023112. [PMID: 27627397 DOI: 10.1103/physreve.94.023112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/07/2022]
Abstract
Hydrodynamic interactions between air bubbles and particles have wide applications in multiphase separation and reaction processes. In the present work, we explore the fundamental mechanism of such complex processes by studying the collision of a single bubble with a fixed solid particle inside a Hele-Shaw cell. Physical experiments show that an air bubble either splits or slides around the particle depending on the initial transverse distance between the bubble and particle centroids. An air bubble splits into two daughter bubbles at small transverse distances, and slides around the particle at large distances. In order to predict the critical transverse distance that separates these two behaviors, we also develop a theoretical model by estimating the rate of the bubble volume transfer from one side of the particle to the other based on Darcy's law, which is in good agreement with experiments.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - John M Mines
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Sungyon Lee
- Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Sunghwan Jung
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
17
|
Yu D, Zheng M, Jin T, Wang J. Asymmetric breakup of a droplet in an axisymmetric extensional flow. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Li H, Wu Y, Wang X, Zhu C, Fu T, Ma Y. Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Adv 2016. [DOI: 10.1039/c5ra21802k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Breakup of the ferrofluid droplets at the Y-junction divergence under various flow rate ratios.
Collapse
Affiliation(s)
- Huajun Li
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Yining Wu
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Xiaoda Wang
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
19
|
Schmit A, Salkin L, Courbin L, Panizza P. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles. SOFT MATTER 2015; 11:2454-2460. [PMID: 25668310 DOI: 10.1039/c4sm02036g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish diagrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric) parameters. Microfluidic experiments validate our model as they concur very well with predictions.
Collapse
Affiliation(s)
- Alexandre Schmit
- IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France.
| | | | | | | |
Collapse
|
20
|
Brouzes E, Kruse T, Kimmerling R, Strey HH. Rapid and continuous magnetic separation in droplet microfluidic devices. LAB ON A CHIP 2015; 15:908-19. [PMID: 25501881 PMCID: PMC4323160 DOI: 10.1039/c4lc01327a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.
Collapse
Affiliation(s)
- Eric Brouzes
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | | | | | | |
Collapse
|
21
|
Yue J, Rebrov EV, Schouten JC. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows. LAB ON A CHIP 2014; 14:1632-1649. [PMID: 24651271 DOI: 10.1039/c3lc51307f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a three-phase slug flow and a parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 μm connected to a cross-flow mixer. The three-phase slug flow pattern is characterized by a flow of decane droplets containing single elongated nitrogen bubbles, which are separated by water slugs. This flow pattern was observed at a superficial velocity of decane (in the range of about 0.6 to 10 mm s(-1)) typically lower than that of water for a given superficial gas velocity in the range of 30 to 91 mm s(-1). The parallel-slug flow pattern is characterized by a continuous water flow in one part of the channel cross section and a parallel flow of decane with dispersed nitrogen bubbles in the adjacent part of the channel cross section, which was observed at a superficial velocity of decane (in the range of about 2.5 to 40 mm s(-1)) typically higher than that of water for each given superficial gas velocity. The three-phase slug flow can be seen as a superimposition of both decane-water and nitrogen-decane slug flows observed in the chip when the flow of the third phase (viz. nitrogen or water, respectively) was set at zero. The parallel-slug flow can be seen as a superimposition of the decane-water parallel flow and the nitrogen-decane slug flow observed in the chip under the corresponding two-phase flow conditions. In case of small capillary numbers (Ca ≪ 0.1) and Weber numbers (We ≪ 1), the developed two-phase pressure drop model under a slug flow has been extended to obtain a three-phase slug flow model in which the 'nitrogen-in-decane' droplet is assumed as a pseudo-homogeneous droplet with an effective viscosity. The parallel flow and slug flow pressure drop models have been combined to obtain a parallel-slug flow model. The obtained models describe the experimental pressure drop with standard deviations of 8% and 12% for the three-phase slug flow and parallel-slug flow, respectively. An example is given to illustrate the model uses in designing bifurcated microchannels that split the three-phase slug flow for high-throughput processing.
Collapse
Affiliation(s)
- Jun Yue
- Laboratory of Chemical Reactor Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
22
|
de Ruiter R, Pit AM, de Oliveira VM, Duits MHG, van den Ende D, Mugele F. Electrostatic potential wells for on-demand drop manipulation in microchannels. LAB ON A CHIP 2014; 14:883-91. [PMID: 24394887 DOI: 10.1039/c3lc51121a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Precise control and manipulation of individual drops are crucial in many lab-on-a-chip applications. We present a novel hybrid concept for channel-based discrete microfluidics with integrated electrowetting functionality by incorporating co-planar electrodes (separated by a narrow gap) in one of the microchannel walls. By combining the high throughput of channel-based microfluidics with the individual drop control achieved using electrical actuation, we acquire the strengths of both worlds. The tunable strength of the electrostatic forces enables a wide range of drop manipulations, such as on-demand trapping and release, guiding, and sorting of drops in the microchannel. In each of these scenarios, the retaining electrostatic force competes with the hydrodynamic drag force. The conditions for trapping can be predicted using a simple model that balances these forces.
Collapse
Affiliation(s)
- Riëlle de Ruiter
- Physics of Complex Fluids and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Amon A, Schmit A, Salkin L, Courbin L, Panizza P. Path selection rules for droplet trains in single-lane microfluidic networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:013012. [PMID: 23944554 DOI: 10.1103/physreve.88.013012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 05/23/2023]
Abstract
We investigate the transport of periodic trains of droplets through microfluidic networks having one inlet, one outlet, and nodes consisting of T junctions. Variations of the dilution of the trains, i.e., the distance between drops, reveal the existence of various hydrodynamic regimes characterized by the number of preferential paths taken by the drops. As the dilution increases, this number continuously decreases until only one path remains explored. Building on a continuous approach used to treat droplet traffic through a single asymmetric loop, we determine selection rules for the paths taken by the drops and we predict the variations of the fraction of droplets taking these paths with the parameters at play including the dilution. Our results show that as dilution decreases, the paths are selected according to the ascending order of their hydrodynamic resistance in the absence of droplets. The dynamics of these systems controlled by time-delayed feedback is complex: We observe a succession of periodic regimes separated by a wealth of bifurcations as the dilution is varied. In contrast to droplet traffic in single asymmetric loops, the dynamical behavior in networks of loops is sensitive to initial conditions because of extra degrees of freedom.
Collapse
Affiliation(s)
- A Amon
- IPR, CNRS, UMR No. 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France
| | | | | | | | | |
Collapse
|