1
|
3D Printed Microfluidic Devices for Drug Release Assays. Pharmaceutics 2020; 13:pharmaceutics13010013. [PMID: 33374752 PMCID: PMC7824507 DOI: 10.3390/pharmaceutics13010013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
Microfluidics research for various applications, including drug delivery, cell-based assays and biomedical research has grown exponentially. Despite this technology’s enormous potential, drawbacks include the need for multistep fabrication, typically with lithography. We present a one-step fabrication process of a microfluidic chip for drug dissolution assays based on a 3D printing technology. Doxorubicin porous and non-porous microspheres, with a mean diameter of 250µm, were fabricated using a conventional “batch” or microfluidic method, based on an optimized solid-in-oil-in-water protocol. Microspheres fabricated with microfluidics system exhibited higher encapsulation efficiency and drug content as compared with batch formulations. We determined drug release profiles of microspheres in varying pH conditions using two distinct dissolution devices that differed in their mechanical barrier structures. The release profile of the “V” shape barrier was similar to that of the dialysis sac test and differed from the “basket” barrier design. Importantly, a cytotoxicity test confirmed biocompatibility of the printed resin. Finally, the chip exhibited high durability and stability, enabling multiple recycling sessions. We show how the combination of microfluidics and 3D printing can reduce costs and time, providing an efficient platform for particle production while offering a feasible cost-effective alternative to clean-room facility polydimethylsiloxane-based chip microfabrication.
Collapse
|
2
|
Rambach RW, Biswas P, Yadav A, Garstecki P, Franke T. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles. Analyst 2018; 143:843-849. [PMID: 29234760 DOI: 10.1039/c7an01100h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.
Collapse
Affiliation(s)
- Richard W Rambach
- Soft Matter and Biological Physics Group, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | | | | | | | | |
Collapse
|
3
|
Suteria NS, Nekouei M, Vanapalli SA. Microfluidic bypass manometry: highly parallelized measurement of flow resistance of complex channel geometries and trapped droplets. LAB ON A CHIP 2018; 18:343-355. [PMID: 29264612 DOI: 10.1039/c7lc00889a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current lithography methods allow facile fabrication of microfluidic conduits where not only the shape of the bounding walls can be arbitrarily varied but also the internal conduit space can be laden with a variety of microstructures and wetting properties. This virtually infinite design space of microfluidic geometries brings in the challenge of how to quantify fluid resistance in a large number of microfluidic conduits, while maintaining operational simplicity. We report a versatile experimental technique referred to as microfluidic bypass manometry for measurement of pressure drop versus flow rate (ΔP-Q) relations in a parallelized manner. The technique involves introducing co-flowing laminar streams into a microfluidic network that contains a series of loops, where each loop is comprised of a test geometry and a bypass channel as a flow-rate sensing element. We optimize the network geometry and present operational considerations for microfluidic bypass manometry. To demonstrate the power of our technique, we used single-phase fluids and measured ΔP-Q relations simultaneously for forty test geometries ranging from linear to contraction-expansion to serpentine to pillar-laden microchannels. To expand the capabilities of the method, we measured ΔP-Q relations for similar-sized oil droplets trapped in microcavities where the cavity geometry spans from prisms of 3-10 sides to circular disks. We found in all cases, the ΔP-Q relation is nonlinear and the flow resistance of droplets is sensitive to confinement. At high flow rates, the drop resistance depends on the cavity geometry and is higher in a triangular prism compared to a circular disk. We compared the measured flow resistance of single-phase fluids and droplets in different microfluidic geometries to that from computational fluid dynamics simulations and found them to be in excellent agreement. Given the simplicity and versatility of the microfluidic bypass manometry method, we anticipate that it may find broad application in several areas including design of lab-on-chip devices, laminar drag reduction and mechanics of deformable particles.
Collapse
Affiliation(s)
- Naureen S Suteria
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA.
| | | | | |
Collapse
|
4
|
Abstract
A microfluidic device that is capable of trapping and sensing dynamic variations in the electrical properties of individual cells is demonstrated. The device is applied to the real-time recording of impedance measurements of mouse embryonic stem cells (mESCs) during the process of membrane lysis, with the resulting changes in the electrical properties of cells during this process being quantitatively tracked over time. It is observed that the impedance magnitude decreases dramatically after cell membrane lysis. A significant shift in the phase spectrum is also observed during the time course of this process. By fitting experimental data to physical models, the electrical parameters of cells can be extracted and parameter variations quantified during the process. In the cell lysis experiments, the equivalent conductivity of the cell membrane is found to increase significantly due to pore formation in the membrane during lysis. An increase in the specific capacitance of the membrane is also observed. On the other hand, the conductivity of the cytoplasm is observed to decrease, which may be explained the fact that excess water enters the cell through the gradual permeabilization of the membrane during lysis. Cells can be trapped in the device for periods up to several days, and their electrical response can be monitored by real-time impedance measurements in a label-free and non-invasive manner. Furthermore, due to the highly efficient single cell trapping capacity of the device, a number of cells can be trapped and held in separate wells for concurrent parallel experiments, allowing for the possibility of stepped parametric experiments and studying cell heterogeneity by combining measurements across the array.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Engineering, Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge, CB3 0FF, UK
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ashwin A Seshia
- Department of Engineering, Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge, CB3 0FF, UK.
| |
Collapse
|
5
|
Chen X, Leary TF, Maldarelli C. Transport of biomolecules to binding partners displayed on the surface of microbeads arrayed in traps in a microfluidic cell. BIOMICROFLUIDICS 2017; 11:014101. [PMID: 28096941 PMCID: PMC5218969 DOI: 10.1063/1.4973247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/13/2016] [Indexed: 05/15/2023]
Abstract
Arrays of probe molecules integrated into a microfluidic cell are utilized as analytical tools to screen the binding interactions of the displayed probes against a target molecule. These assay platforms are useful in enzyme or antibody discovery, clinical diagnostics, and biosensing, as their ultraminiaturized design allows for high sensitivity and reduced consumption of reagents and target. We study here a platform in which the probes are first grafted to microbeads which are then arrayed in the microfluidic cell by capture in a trapping course. We examine a course which consists of V-shaped, half-open enclosures, and study theoretically and experimentally target mass transfer to the surface probes. Target binding is a two step process of diffusion across streamlines which convect the target over the microbead surface, and kinetic conjugation to the surface probes. Finite element simulations are obtained to calculate the target surface concentration as a function of time. For slow convection, large diffusive gradients build around the microbead and the trap, decreasing the overall binding rate. For rapid convection, thin diffusion boundary layers develop along the microbead surface and within the trap, increasing the binding rate to the idealized limit of untrapped microbeads in a channel. Experiments are undertaken using the binding of a target, fluorescently labeled NeutrAvidin, to its binding partner biotin, on the microbead surface. With the simulations as a guide, we identify convective flow rates which minimize diffusion barriers so that the transport rate is only kinetically determined and measure the rate constant.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| | - Thomas F Leary
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| | - Charles Maldarelli
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| |
Collapse
|
6
|
Zhang C, Hu Y, Du W, Wu P, Rao S, Cai Z, Lao Z, Xu B, Ni J, Li J, Zhao G, Wu D, Chu J, Sugioka K. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Sci Rep 2016; 6:33281. [PMID: 27619690 PMCID: PMC5020409 DOI: 10.1038/srep33281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.
Collapse
Affiliation(s)
- Chenchu Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Wenqiang Du
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Peichao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Shenglong Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Ze Cai
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoxin Lao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Bing Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jincheng Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Gang Zhao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Koji Sugioka
- Laser Technology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Chen X, Liu Y, Xu Q, Zhu J, Poget SF, Lyons AM. High-Precision Dispensing of Nanoliter Biofluids on Glass Pedestal Arrays for Ultrasensitive Biomolecule Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10788-10799. [PMID: 27070413 DOI: 10.1021/acsami.6b02487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 μL) on isolated hydrophilic glass pedestals (500 μm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence microscopy or MALDI-TOF.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- ARL Designs LLC, 215 West 125th Street, New York, New York 10027, United States
| | - Yang Liu
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10314, United States
| | - QianFeng Xu
- ARL Designs LLC, 215 West 125th Street, New York, New York 10027, United States
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Jing Zhu
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
| | - Sébastien F Poget
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10314, United States
| | - Alan M Lyons
- ARL Designs LLC, 215 West 125th Street, New York, New York 10027, United States
- Department of Chemistry, College of Staten Island, City University of New York , 2800 Victory Boulevard, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10314, United States
| |
Collapse
|