1
|
Tariq H, Bukhari SZ, An R, Dong J, Ihsan A, Younis MR. Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy. Mater Today Bio 2025; 30:101440. [PMID: 39866781 PMCID: PMC11758955 DOI: 10.1016/j.mtbio.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently. Exosomes are involved in strategic phases of the onset and development of atherosclerosis because they have been identified to control pathophysiologic pathways including inflammation, angiogenesis, or senescence. This review investigates the potential role of stem cell-derived exosomes in atherosclerosis management. We briefly introduced atherosclerosis and stem cell therapy including stem cell-derived exosomes. The biogenesis of exosomes along with their secretion and isolation have been elaborated. The design engineering of exosomes has been summarized to present how drug loading and surface modification with targeting ligands can improve the therapeutic and targeting capacity of exosomes, demonstrating atheroprotective action. Moreover, the mechanism of action (endothelial dysfunction, reduction of dyslipidemia, macrophage polarization, vascular calcification, and angiogenesis) of drug-loaded exosomes to treat atherosclerosis has been discussed in detail. In the end, a comparative and balanced viewpoint has been given regarding the current challenges and potential solutions to advance exosome engineering for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Hassan Tariq
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Lou S, Hu W, Wei P, He D, Fu P, Ding K, Chen Z, Dong Z, Zheng J, Wang K. Artificial Nanovesicles Derived from Cells: A Promising Alternative to Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22-41. [PMID: 39692623 DOI: 10.1021/acsami.4c12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
As naturally secreted vesicles by cells, extracellular vesicles (EVs) play essential roles in modulating cell-cell communication and have significant potential in tissue regeneration, immune regulation, and drug delivery. However, the low yield and uncontrollable heterogeneity of EVs have been obstacles to their widespread translation into clinical practice. Recently, it has been discovered that artificial nanovesicles (NVs) produced by cell processing can inherit the components and functions of the parent cells and possess similar structures and functions to EVs, with significantly higher yields and more flexible functionalization, making them a powerful complement to natural EVs. This review focuses on recent advances in the research of artificial NVs as replacements for natural EVs. We provide an overview comparing natural EVs and artificial NVs and summarize the top-down preparation strategies of NVs. The applications of NVs prepared from stem cells, differentiated cells, and engineered cells are presented, as well as the latest advances in NV engineering. Finally, the main challenges of artificial NVs are discussed.
Collapse
Affiliation(s)
- Saiyun Lou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Wei Hu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Pengyao Wei
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Dongdong He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejian Ding
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhenyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo,Zhejiang 315211, China
| | - Zhaoxing Dong
- Department of Respiratory and Critical Care Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Jianping Zheng
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering of Chinese Academy of Sciences, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mamgain G, Yadav SRM. Potential Effect of Extracellular Vesicles in Clinical Settings of Lymphoma. Indian J Clin Biochem 2025; 40:12-24. [PMID: 39835236 PMCID: PMC11741971 DOI: 10.1007/s12291-023-01156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/21/2023] [Indexed: 01/22/2025]
Abstract
Liquid biopsy is gaining importance in oncology in the age of precision medicine. Extracellular vesicles (EVs), among other tumor-derived indicators, are isolated and analysed from bodily fluids. EVs are secreted by both healthy and cancerous cells and are lipid bilayer-enclosed particles that are diverse in size and molecular makeup. Since their quantity, phenotype, and molecular payload, which includes proteins, lipids, metabolites, and nucleic acids, mirror the nature and origin of parental cells, EVs are valuable transporters of cancer information in tumour context. This makes them interesting candidates for new biomarkers. Being closely linked to the parental cells in terms of composition, quantity, and roles is a crucial aspect of EVs. Multiple studies have shown the crucial part tumor-derived EVs plays in the development of cancer, and this subject is currently a hot one in the field of oncology. The clinical applications of EVs-based technology that are currently being tested in the areas of biomarkers, therapeutic targets, immune evasion tools, biologically designed immunotherapies, vaccines, neutralising approaches, targeting biogenesis, and extracorporeal removal were the main focus of this review. However, more bioengineering refinement is needed to address clinical and commercial limitations. The introduction of these new potential diagnostic tools into clinical practise has the potential to profoundly revolutionise the cancer field, primarily for solid tumours but also for haematological neoplasms. The development of EV-based therapies will be facilitated by improvements in EV engineering methodology and design, transforming the current pharmaceutical environment.
Collapse
Affiliation(s)
- Garima Mamgain
- Department of Medical Oncology, All India Institute of Medical Sciences Rishikesh, Rishikesh, 249203 India
| | - Shashi Ranjan Mani Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Rishikesh, 249203 India
| |
Collapse
|
4
|
Jaffet J, Singh V, Schrader S, Mertsch S. The Potential Role of Exosomes in Ocular Surface and Lacrimal Gland Regeneration. Curr Eye Res 2024:1-14. [PMID: 39508276 DOI: 10.1080/02713683.2024.2424265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Dry eye disease (DED), a multifactorial disease of the lacrimal system, manifests itself in patients with various symptoms such as itching, inflammation, discomfort and visual impairment. In its most severe forms, it results in the breakdown of the vital tissues of lacrimal functional unit and carries the risk of vision loss. Despite the frequency of occurrence of the disease, there are no effective curative treatment options available to date. Treatment using stem cells and its secreted factors could be a promising approach in the regeneration of damaged tissues of ocular surface. The treatment using secreted factors as well as extracellular vesicles has been demonstrated beneficial effects in various ocular surface diseases. This review provides insights on the usage of stem cell derived exosomes as a promising therapy against LG dysfunction induced ADDE for ocular surface repair. METHODS In order to gain an overview of the existing research in this field, literature search was carried out using the PubMed, Medline, Scopus and Web of Science databases. This review is based on 164 publications until June 2024 and the literature search was carried out using the key words "exosomes", "lacrimal gland regeneration", "exosomes in lacrimal dysfunction". RESULTS The literature and studies till date suggest that exosomes and other secreted factors from stem cells have demonstrated beneficial effects on damaged ocular tissues in various ocular surface diseases. Exosomal cargo plays a crucial role in regenerating tissues by promoting homeostasis in the lacrimal system, which is often compromised in severe cases of dry eye disease. Exosome therapy shows promise as a regenerative therapy, potentially addressing the lack of effective curative treatments available for patients with dry eye disease. CONCLUSION Stem cell-derived exosomes represent a promising, innovative approach as a new treatment option for ADDE. By targeting lacrimal gland dysfunction and enhancing ocular surface repair, exosome therapy offers potential for significant advances in dry eye disease management. Future research is needed to refine the application of this therapy, optimize delivery methods, and fully understand its long-term efficacy in restoring ocular health.
Collapse
Affiliation(s)
- Jilu Jaffet
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vivek Singh
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
5
|
Wu C, Li J, Huang K, Tian X, Guo Y, Skirtach AG, You M, Tan M, Su W. Advances in preparation and engineering of plant-derived extracellular vesicles for nutrition intervention. Food Chem 2024; 457:140199. [PMID: 38955121 DOI: 10.1016/j.foodchem.2024.140199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Plant-derived extracellular vesicles (PLEVs), as a type of naturally occurring lipid bilayer membrane structure, represent an emerging delivery vehicle with immense potential due to their ability to encapsulate hydrophobic and hydrophilic compounds, shield them from external environmental stresses, control release, exhibit biocompatibility, and demonstrate biodegradability. This comprehensive review analyzes engineering preparation strategies for natural vesicles, focusing on PLEVs and their purification and surface engineering. Furthermore, it encompasses the latest advancements in utilizing PLEVs to transport active components, serving as a nanotherapeutic system. The prospects and potential development of PLEVs are also discussed. It is anticipated that this work will not only address existing knowledge gaps concerning PLEVs but also provide valuable guidance for researchers in the fields of food science and biomedical studies, stimulating novel breakthroughs in plant-based therapeutic options.
Collapse
Affiliation(s)
- Caiyun Wu
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Jiaxuan Li
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Kexin Huang
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Xueying Tian
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Yaqiong Guo
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China.
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Mingliang You
- Department of R&D, Hangzhou AimingMed Medical Technology Co., Ltd., China
| | - Mingqian Tan
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Wentao Su
- State Key Lab of Marine Food Processing & Safety Control, Dalian Polytechnic University,Dalian,China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
6
|
Tong S, Niu J, Wang Z, Jiao Y, Fu Y, Li D, Pan X, Sheng N, Yan L, Min P, Chen D, Cui S, Liu Y, Lin S. The Evolution of Microfluidic-Based Drug-Loading Techniques for Cells and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403422. [PMID: 39152940 DOI: 10.1002/smll.202403422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.
Collapse
Affiliation(s)
- Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Peiru Min
- Shanghai 9th People's Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, 200240, China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
7
|
Liang L, Wang L, Liao Z, Ma L, Wang P, Zhao J, Wu J, Yang H. High-yield nanovesicles extruded from dental follicle stem cells promote the regeneration of periodontal tissues as an alternative of exosomes. J Clin Periodontol 2024; 51:1395-1407. [PMID: 38951121 DOI: 10.1111/jcpe.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
AIM To identify an optimized strategy for the large-scale production of nanovesicles (NVs) that preserve the biological properties of exosomes (EXOs) for use in periodontal regeneration. MATERIALS AND METHODS NVs from dental follicle stem cells (DFSCs) were prepared through extrusion, and EXOs from DFSCs were isolated. The yield of both extruded NVs (eNVs) and EXOs were quantified through protein concentration and particle number analyses. Their pro-migration, pro-proliferation and pro-osteogenesis capacities were compared subsequently in vitro. Additionally, proteomics analysis was conducted. To further evaluate the periodontal regeneration potential of eNVs and EXOs, they were incorporated into collagen sponges and transplanted into periodontal defects in rats. In vivo imaging and H&E staining were utilized to verify their biodistribution and safety. Micro-Computed Tomography analysis and histological staining were performed to examine the regeneration of periodontal tissues. RESULTS The yield of eNVs was nearly 40 times higher than that of EXOs. Interestingly, in vitro experiments indicated that the pro-migration and pro-proliferation abilities of eNVs were superior, and the pro-osteogenesis potential was comparable to EXOs. More importantly, eNVs exhibited periodontal regenerative potential similar to that of EXOs. CONCLUSIONS Extrusion has proven to be an efficient method for generating numerous eNVs with the potential to replace EXOs in periodontal regeneration.
Collapse
Affiliation(s)
- Lu Liang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Limeiting Wang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Zhenhui Liao
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Liya Ma
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Pinwen Wang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Junjie Zhao
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Jinyan Wu
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
- Department of Endodontics, Kunming Medicine University School and Hospital of Stomatology, Kunming, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Prosthodontics, kunming Medicine University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
8
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Jiang W, Zhan Y, Zhang Y, Sun D, Zhang G, Wang Z, Chen L, Sun J. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment. Biomaterials 2024; 308:122566. [PMID: 38603824 DOI: 10.1016/j.biomaterials.2024.122566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Achieving sufficient bone regeneration in large segmental defects is challenging, with the structure of bone repair scaffolds and their loaded bioactive substances crucial for modulating the local osteogenic microenvironment. This study utilized digital laser processing (DLP)-based 3D printing technology to successfully fabricate high-precision methacryloylated polycaprolactone (PCLMA) bionic bone scaffold structures. Adipose-derived stem cell-engineered nanovesicles (ADSC-ENs) were uniformly and stably modified onto the bionic scaffold surface using a perfusion device, constructing a conducive microenvironment for tissue regeneration and long bone defect repair through the scaffold's structural design and the vesicles' biological functions. Scanning electron microscopy (SEM) examination of the scaffold surface confirmed the efficient loading of ADSC-ENs. The material group loaded with vesicles (PCLMA-BAS-ENs) demonstrated good cell compatibility and osteogenic potential when analyzed for the adhesion and osteogenesis of primary rabbit bone marrow mesenchymal stem cells (BMSCs) on the material surface. Tested in a 15 mm critical rabbit radial defect model, the PCLMA-BAS-ENs scaffold facilitated near-complete bone defect repair after 12 weeks. Immunofluorescence and proteomic results indicated that the PCLMA-BAS-ENs scaffold significantly improved the osteogenic microenvironment at the defect site in vivo, promoted angiogenesis, and enhanced the polarization of macrophages towards M2 phenotype, and facilitated the recruitment of BMSCs. Thus, the PCLMA-BAS-ENs scaffold was proven to significantly promote the repair of large segmental bone defects. Overall, this strategy of combining engineered vesicles with highly biomimetic scaffolds to promote large-segment bone tissue regeneration holds great potential in orthopedic and other regenerative medicine applications.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yichen Zhan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China.
| |
Collapse
|
10
|
Jin H, Wen X, Sun R, Yu Y, Guo Z, Yang Y, Li L, Sun B. Engineered nanovesicles from activated neutrophils with enriched bactericidal proteins have molecular debridement ability and promote infectious wound healing. BURNS & TRAUMA 2024; 12:tkae018. [PMID: 38903935 PMCID: PMC11188537 DOI: 10.1093/burnst/tkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 06/22/2024]
Abstract
Background Bacterial infections pose a considerable threat to skin wounds, particularly in the case of challenging-to-treat diabetic wounds. Systemic antibiotics often struggle to penetrate deep wound tissues and topically applied antibiotics may lead to sensitization, necessitating the development of novel approaches for effectively treating germs in deep wound tissues. Neutrophils, the predominant immune cells in the bloodstream, rapidly release an abundance of molecules via degranulation upon activation, which possess the ability to directly eliminate pathogens. This study was designed to develop novel neutrophil cell engineered nanovesicles (NVs) with high production and explore their bactericidal properties and application in promoting infectious wound healing. Methods Neutrophils were isolated from peripheral blood and activated in vitro via phorbol myristate acetate (PMA) stimulation. Engineered NVs were prepared by sequentially extruding activated neutrophils followed by ultracentrifugation and were compared with neutrophil-derived exosomes in terms of morphology, size distribution and protein contents. The bactericidal effect of NVs in vitro was evaluated using the spread plate technique, LIVE/DEAD backlight bacteria assay and observation of bacterial morphology. The therapeutic effects of NVs in vivo were evaluated using wound contraction area measurements, histopathological examinations, assessments of inflammatory factors and immunochemical staining. Results Activated neutrophils stimulated with PMA in vitro promptly release a substantial amount of bactericidal proteins. NVs are similar to exosomes in terms of morphology and particle size, but they exhibit a significantly higher enrichment of bactericidal proteins. In vitro, NVs demonstrated a significant bactericidal effect, presumably mediated by the enrichment of bactericidal proteins such as lysozyme. These NVs significantly accelerated wound healing, leading to a marked reduction in bacterial load, downregulation of inflammatory factors and enhanced collagen deposition in a full-thickness infectious skin defect model. Conclusions We developed engineered NVs derived from activated neutrophils to serve as a novel debridement method targeting bacteria in deep tissues, ultimately promoting infectious wound healing.
Collapse
Affiliation(s)
- Hangfei Jin
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Xiao Wen
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Ran Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Yanzhen Yu
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Zaiwen Guo
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Yunxi Yang
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Linbin Li
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| | - Bingwei Sun
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, located at No. 242, Guangji Road, Gusu District, Suzhou 215008, Jiangsu Province, China
| |
Collapse
|
11
|
Wang J, Ma X, Wu Z, Cui B, Zou C, Zhang P, Yao S. Microfluidics-Prepared Ultra-small Biomimetic Nanovesicles for Brain Tumor Targeting. Adv Healthc Mater 2024; 13:e2302302. [PMID: 38078359 DOI: 10.1002/adhm.202302302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Blood-brain-barrier (BBB) serves as a fatal guard of the central nervous system as well as a formidable obstacle for the treatment of brain diseases such as brain tumors. Cell membrane-derived nanomedicines are promising drug carriers to achieve BBB-penetrating and brain lesion targeting. However, the challenge of precise size control of such nanomedicines has severely limited their therapeutic effect and clinical application in brain diseases. To address this problem, this work develops a microfluidic mixing platform that enables the fabrication of cell membrane-derived nanovesicles with precise controllability and tunability in particle size and component. Sub-100 nm macrophage plasma membrane-derived vesicles as small as 51 nm (nanoscale macrophage vesicles, NMVs), with a narrow size distribution (polydispersity index, PDI: 0.27) and a high drug loading rate (up to 89% for indocyanine green-loaded NMVs, NMVs@ICG (ICG is indocyanine green)), are achieved through a one-step process. Compared to beyond-100 nm macrophage cell membrane vesicles (general macrophage vesicles, GMVs) prepared via the traditional methods, the new NMVs exhibits rapid (within 1 h post-injection) and enhanced orthotopic glioma targeting (up to 78% enhancement), with no extra surface modification. This work demonstrates the great potential of such real-nanoscale cell membrane-derived nanomedicines in targeted brain tumor theranostics.
Collapse
Affiliation(s)
- Ji Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiaoxi Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Zhihao Wu
- Individualized Interdisciplinary Program, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Binbin Cui
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Changbin Zou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518048, China
| |
Collapse
|
12
|
Wang X, Gong W, Li R, Li L, Wang J. Preparation of genetically or chemically engineered exosomes and their therapeutic effects in bone regeneration and anti-inflammation. Front Bioeng Biotechnol 2024; 12:1329388. [PMID: 38314353 PMCID: PMC10834677 DOI: 10.3389/fbioe.2024.1329388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The treatment of bone or cartilage damage and inflammation-related diseases has been a long-standing research hotspot. Traditional treatments such as surgery and cell therapy have only displayed limited efficacy because they can't avoid potential deterioration and ensure cell activity. Recently, exosomes have become a favorable tool for various tissue reconstruction due to their abundant content of proteins, lipids, DNA, RNA and other substances, which can promote bone regeneration through osteogenesis, angiogenesis and inflammation modulation. Besides, exosomes are also promising delivery systems because of stability in the bloodstream, immune stealth capacity, intrinsic cell-targeting property and outstanding intracellular communication. Despite having great potential in therapeutic delivery, exosomes still show some limitations in clinical studies, such as inefficient targeting ability, low yield and unsatisfactory therapeutic effects. In order to overcome the shortcomings, increasing studies have prepared genetically or chemically engineered exosomes to improve their properties. This review focuses on different methods of preparing genetically or chemically engineered exosomes and the therapeutic effects of engineering exosomes in bone regeneration and anti-inflammation, thereby providing some references for future applications of engineering exosomes.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Weitao Gong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Rongrong Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lin Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
- Clinical Research Center for Oral Diseases, Lanzhou, China
| |
Collapse
|
13
|
Esmaeili A, Hosseini S, Baghaban Eslaminejad M. Co-culture engineering: a promising strategy for production of engineered extracellular vesicle for osteoarthritis treatment. Cell Commun Signal 2024; 22:29. [PMID: 38200606 PMCID: PMC10782541 DOI: 10.1186/s12964-023-01467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The therapeutic effects of extracellular vesicles (EVs) have been identified as a significant factor in intercellular communication in different disease treatments, including osteoarthritis (OA). Compared to the conventional approaches in treating OA, EV therapy is a non-invasive and cell-free method. However, improving the yield of EVs and their therapeutic effects are the main challenges for clinical applications. In this regard, researchers are using the EV engineering potential to overcome these challenges. New findings suggest that the co-culture strategy as an indirect EV engineering method efficiently increases EV production and quality. The co-culture of mesenchymal stem cells (MSCs) and chondrocytes has improved their chondrogenesis, anti-inflammatory effects, and regenerative properties which are mediated by EVs. Hence, co-culture engineering by considerable systems could be useful in producing engineered EVs for different therapeutic applications. Here, we review various co-culture approaches, including diverse direct and indirect, 2D and 3D cell cultures, as well as static and dynamic systems. Meanwhile, we suggest and discuss the advantages of combined strategies to achieve engineered EVs for OA treatment.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Jang HJ, Shim KS, Lee J, Park JH, Kang SJ, Shin YM, Lee JB, Baek W, Yoon JK. Engineering of Cell Derived-Nanovesicle as an Alternative to Exosome Therapy. Tissue Eng Regen Med 2024; 21:1-19. [PMID: 38066355 PMCID: PMC10764700 DOI: 10.1007/s13770-023-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Exosomes, nano-sized vesicles ranging between 30 and 150 nm secreted by human cells, play a pivotal role in long-range intercellular communication and have attracted significant attention in the field of regenerative medicine. Nevertheless, their limited productivity and cost-effectiveness pose challenges for clinical applications. These issues have recently been addressed by cell-derived nanovesicles (CDNs), which are physically synthesized exosome-mimetic nanovesicles from parent cells, as a promising alternative to exosomes. CDNs exhibit structural, physical, and biological properties similar to exosomes, containing intracellular protein and genetic components encapsulated by the cell plasma membrane. These characteristics allow CDNs to be used as regenerative medicine and therapeutics on their own, or as a drug delivery system. METHODS The paper reviews diverse methods for CDN synthesis, current analysis techniques, and presents engineering strategies to improve lesion targeting efficiency and/or therapeutic efficacy. RESULTS CDNs, with their properties similar to those of exosomes, offer a cost-effective and highly productive alternative due to their non-living biomaterial nature, nano-size, and readiness for use, allowing them to overcome several limitations of conventional cell therapy methods. CONCLUSION Ongoing research and enhancement of CDNs engineering, along with comprehensive safety assessments and stability analysis, exhibit vast potential to advance regenerative medicine by enabling the development of efficient therapeutic interventions.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kyu-Sik Shim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinah Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Joo Hyeon Park
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seong-Jun Kang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Young Min Shin
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Science, Research Institute of Women's Health, Brain Korea 21 Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Wooyeol Baek
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
15
|
Amondarain M, Gallego I, Puras G, Saenz-Del-Burgo L, Luzzani C, Pedraz JL. The role of microfluidics and 3D-bioprinting in the future of exosome therapy. Trends Biotechnol 2023; 41:1343-1359. [PMID: 37302911 DOI: 10.1016/j.tibtech.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Exosome-based strategies constitute a promising tool for therapeutics, avoiding potential immunogenic and tumorigenic side-effects of cell therapies. However, the collection of a suitable exosome pool, and the need for high doses with conventional administration approaches, hamper their clinical translation. To overcome these challenges, versatile exosome collection strategies together with advanced delivery platforms may represent major progress in this field. Microfluidics enables large-scale gathering of both natural and synthetic exosomes for their implementation into bioinks, while 3D-bioprinting holds great promise in regenerative medicine with the use of exosome-loaded scaffolds that mimic the target tissue with controlled pharmacokinetics and pharmacodynamics. Hence, the combination of both strategies might become the key for the translation of exosome therapies to clinical practice.
Collapse
Affiliation(s)
- Mikele Amondarain
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Idoia Gallego
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Gustavo Puras
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Laura Saenz-Del-Burgo
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Carlos Luzzani
- CONICET - Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Buenos Aires, Argentina
| | - José Luis Pedraz
- Laboratory of Pharmaceutics, NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
16
|
Deng M, Wu S, Huang P, Liu Y, Li C, Zheng J. Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence. Asian J Pharm Sci 2023; 18:100870. [PMID: 38161784 PMCID: PMC10755545 DOI: 10.1016/j.ajps.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024] Open
Abstract
Metastasis-associated processes are the predominant instigator of fatalities linked to cancer, wherein the pivotal role of circulating tumor cells lies in the resurgence of malignant growth. In recent epochs, exosomes, constituents of the extracellular vesicle cohort, have garnered attention within the field of tumor theranostics owing to their inherent attributes encompassing biocompatibility, modifiability, payload capacity, stability, and therapeutic suitability. Nonetheless, the rudimentary functionalities and limited efficacy of unmodified exosomes curtail their prospective utility. In an effort to surmount these shortcomings, intricate methodologies amalgamating nanotechnology with genetic manipulation, chemotherapy, immunotherapy, and optical intervention present themselves as enhanced avenues to surveil and intercede in tumor metastasis and relapse. This review delves into the manifold techniques currently employed to engineer exosomes, with a specific focus on elucidating the interplay between exosomes and the metastatic cascade, alongside the implementation of tailored exosomes in abating tumor metastasis and recurrence. This review not only advances comprehension of the evolving landscape within this domain but also steers the trajectory of forthcoming investigations.
Collapse
Affiliation(s)
- Min Deng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Peizheng Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chong Li
- Medical Research Institute, Southwest University, Chongqing 400716, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| |
Collapse
|
17
|
Sayyed AA, Gondaliya P, Yan IK, Carrington J, Driscoll J, Moirangthem A, Patel T. Engineering Cell-Derived Nanovesicles for Targeted Immunomodulation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2751. [PMID: 37887902 PMCID: PMC10609599 DOI: 10.3390/nano13202751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Extracellular vesicles (EVs) show promise for targeted drug delivery but face production challenges with low yields. Cell-derived nanovesicles (CDNVs) made by reconstituting cell membranes could serve as EV substitutes. In this study, CDNVs were generated from mesenchymal stem cells by extrusion. Their proteomic composition, in vitro and in vivo toxicity, and capacity for loading RNA or proteins were assessed. Compared with EVs, CDNVs were produced at higher yields, were comprised of a broader range of proteins, and showed no detrimental effects on cell proliferation, DNA damage, or nitric oxide production in vitro or on developmental toxicity in vivo. CDNVs could be efficiently loaded with RNA and engineered to modify surface proteins. The feasibility of generating immunomodulatory CDNVs was demonstrated by preparing CDNVs with enhanced surface expression of PD1, which could bind to PD-L1 expressing tumor cells, enhance NK and T cell degranulation, and increase immune-mediated tumor cell death. These findings demonstrate the adaptability and therapeutic promise of CDNVs as promising substitutes for natural EVs that can be engineered to enhance immunomodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
18
|
Zhang M, Xing J, Zhao S, Chen H, Yin X, Zhu X. Engineered extracellular vesicles in female reproductive disorders. Biomed Pharmacother 2023; 166:115284. [PMID: 37572637 DOI: 10.1016/j.biopha.2023.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Biologically active and nanoscale extracellular vesicles (EVs) participate in a variety of cellular physiological and pathological processes in a cell-free manner. Unlike cells, EVs not only do not cause acute immune rejection, but are much smaller and have a low risk of tumorigenicity or embolization. Because of their unique advantages, EVs show promise in applications in the diagnosis and treatment of reproductive disorders. As research broadens, engineering strategies for EVs have been developed, and engineering strategies for EVs have substantially improved their application potential while circumventing the defects of natural EVs, driving EVs toward clinical applications. In this paper, we will review the engineering strategies of EVs, as well as their regulatory effects and mechanisms on reproductive disorders (including premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), recurrent spontaneous abortion (RSA), intrauterine adhesion (IUA), and endometriosis (EMS)) and their application prospects. This work provides new ideas for the treatment of female reproductive disorders by engineering EVs.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China.
| |
Collapse
|
19
|
Xu X, Xu L, Wen C, Xia J, Zhang Y, Liang Y. Programming assembly of biomimetic exosomes: An emerging theranostic nanomedicine platform. Mater Today Bio 2023; 22:100760. [PMID: 37636982 PMCID: PMC10450992 DOI: 10.1016/j.mtbio.2023.100760] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Exosomes have emerged as a promising cell-free therapeutic approach. However, challenges in large-scale production, quality control, and heterogeneity must be overcome before they can be used clinically. Biomimetic exosomes containing key components of natural exosomes have been assembled through extrusion, artificial synthesis, and liposome fusion to address these limitations. These exosome-mimetics (EMs) possess similar morphology and function but provide higher yields, faster large-scale production, and similar size compared to conventional exosomes. This article provides an overview of the chemical and biological properties of various synthetic exosome systems, including nanovesicles (NVs), EMs, and hybrid exosomes. We highlight recent advances in the production and applications of nanobiotechnology and discuss the advantages, limitations, and potential clinical applications of programming assembly of exosome mimetics.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
- Jining Medical University, Jining, Shandong, 272067, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, 272029, China
- Jining Medical University, Jining, Shandong, 272067, China
| |
Collapse
|
20
|
Sall IM, Flaviu TA. Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future. Front Bioeng Biotechnol 2023; 11:1215650. [PMID: 37781539 PMCID: PMC10534050 DOI: 10.3389/fbioe.2023.1215650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Background: In recent years, extracellular vesicles have been recognized as important mediators of intercellular communication through the transfer of active biomolecules (proteins, lipids, and nucleic acids) across the plant and animal kingdoms and have considerable roles in several physiological and pathological mechanisms, showing great promise as new therapeutic strategies for a variety of pathologies. Methods: In this study, we carefully reviewed the numerous articles published over the last few decades on the general knowledge of extracellular vesicles, their application in the therapy of various pathologies, and their prospects as an approach for the future. Results: The recent discovery and characterization of extracellular vesicles (EVs) of diverse origins and biogenesis have altered the current paradigm of intercellular communication, opening up new diagnostic and therapeutic perspectives. Research into these EVs released by plant and mammalian cells has revealed their involvement in a number of physiological and pathological mechanisms, such as embryonic development, immune response, tissue regeneration, and cancer. They are also being studied as potential biomarkers for disease diagnosis and vectors for drug delivery. Conclusion: Nanovesicles represent powerful tools for intercellular communication and the transfer of bioactive molecules. Their molecular composition and functions can vary according to their origin (plant and mammalian), so their formation, composition, and biological roles open the way to therapeutic applications in a variety of pathologies, which is arousing growing interest in the scientific community. Clinical Trial Registration: ClinicalTrials.gov identifier: NCT03608631.
Collapse
Affiliation(s)
| | - Tabaran Alexandru Flaviu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Piunti C, Cimetta E. Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications. BIOPHYSICS REVIEWS 2023; 4:031304. [PMID: 38505779 PMCID: PMC10903496 DOI: 10.1063/5.0150345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/15/2023] [Indexed: 03/21/2024]
Abstract
The importance of drug delivery for disease treatment is supported by a vast literature and increasing ongoing clinical studies. Several categories of nano-based drug delivery systems have been considered in recent years, among which lipid-based nanomedicines, both artificial and cell-derived, remain the most approved. The best artificial systems in terms of biocompatibility and low toxicity are liposomes, as they are composed of phospholipids and cholesterol, the main components of cell membranes. Extracellular vesicles-biological nanoparticles released from cells-while resembling liposomes in size, shape, and structure, have a more complex composition with up to hundreds of different types of lipids, proteins, and carbohydrates in their membranes, as well as an internal cargo. Although nanoparticle technologies have revolutionized drug delivery by enabling passive and active targeting, increased stability, improved solubilization capacity, and reduced dose and adverse effects, the clinical translation remains challenging due to manufacturing limitations such as laborious and time-consuming procedures and high batch-to-batch variability. A sea change occurred when microfluidic strategies were employed, offering advantages in terms of precise particle handling, simplified workflows, higher sensitivity and specificity, and good reproducibility and stability over bulk methods. This review examines scientific advances in the microfluidics-mediated production of lipid-based nanoparticles for therapeutic applications. We will discuss the preparation of liposomes using both hydrodynamic focusing of microfluidic flow and mixing by herringbone and staggered baffle micromixers. Then, an overview on microfluidic approaches for producing extracellular vesicles and extracellular vesicles-mimetics for therapeutic applications will describe microfluidic extrusion, surface engineering, sonication, electroporation, nanoporation, and mixing. Finally, we will outline the challenges, opportunities, and future directions of microfluidic investigation of lipid-based nanoparticles in the clinic.
Collapse
|
22
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Danilushkina AA, Emene CC, Barlev NA, Gomzikova MO. Strategies for Engineering of Extracellular Vesicles. Int J Mol Sci 2023; 24:13247. [PMID: 37686050 PMCID: PMC10488046 DOI: 10.3390/ijms241713247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by cells into the extracellular space. EVs mediate cell-to-cell communication through local and systemic transportation of biomolecules such as DNA, RNA, transcription factors, cytokines, chemokines, enzymes, lipids, and organelles within the human body. EVs gained a particular interest from cancer biology scientists because of their role in the modulation of the tumor microenvironment through delivering bioactive molecules. In this respect, EVs represent an attractive therapeutic target and a means for drug delivery. The advantages of EVs include their biocompatibility, small size, and low immunogenicity. However, there are several limitations that restrict the widespread use of EVs in therapy, namely, their low specificity and payload capacity. Thus, in order to enhance the therapeutic efficacy and delivery specificity, the surface and composition of extracellular vesicles should be modified accordingly. In this review, we describe various approaches to engineering EVs, and further discuss their advantages and disadvantages to promote the application of EVs in clinical practice.
Collapse
Affiliation(s)
- Anna A. Danilushkina
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Charles C. Emene
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
| | - Nicolai A. Barlev
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana 001000, Kazakhstan
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communications, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
24
|
Zahid AA, Chakraborty A, Luo W, Coyle A, Paul A. Tailoring the Inherent Properties of Biobased Nanoparticles for Nanomedicine. ACS Biomater Sci Eng 2023. [PMID: 37378614 DOI: 10.1021/acsbiomaterials.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Biobased nanoparticles are at the leading edge of the rapidly developing field of nanomedicine and biotherapeutics. Their unique size, shape, and biophysical properties make them attractive tools for biomedical research, including vaccination, targeted drug delivery, and immune therapy. These nanoparticles are engineered to present native cell receptors and proteins on their surfaces, providing a biomimicking camouflage for therapeutic cargo to evade rapid degradation, immune rejection, inflammation, and clearance. Despite showing promising clinical relevance, commercial implementation of these biobased nanoparticles is yet to be fully realized. In this perspective, we discuss advanced biobased nanoparticle designs used in medical applications, such as cell membrane nanoparticles, exosomes, and synthetic lipid-derived nanoparticles, and highlight their benefits and potential challenges. Moreover, we critically assess the future of preparing such particles using artificial intelligence and machine learning. These advanced computational tools will be able to predict the functional composition and behavior of the proteins and cell receptors present on the nanoparticle surfaces. With more advancement in designing new biobased nanoparticles, this field of research could play a key role in dictating the future rational design of drug transporters, thereby ultimately improving overall therapeutic outcomes.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Wei Luo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department of Chemistry, The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
25
|
Shulman I, Ageeva T, Kostennikov A, Ogurcov S, Tazetdinova L, Kabdesh I, Rogozhin A, Ganiev I, Rizvanov A, Mukhamedshina Y. Intrathecal Injection of Autologous Mesenchymal Stem-Cell-Derived Extracellular Vesicles in Spinal Cord Injury: A Feasibility Study in Pigs. Int J Mol Sci 2023; 24:ijms24098240. [PMID: 37175946 PMCID: PMC10179045 DOI: 10.3390/ijms24098240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Spinal cord injury (SCI) remains one of the current medical and social problems, as it causes deep disability in patients. The use of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) is one strategy for stimulating the post-traumatic recovery of the structure and function of the spinal cord. Here, we chose an optimal method for obtaining cytochalasin B-induced EVs, including steps with active vortex mixing for 60 s and subsequent filtration to remove nuclei and disorganized inclusions. The therapeutic potential of repeated intrathecal injection of autologous MSC-derived EVs in the subacute period of pig contused SCI was also evaluated for the first time. In this study, we observed the partial restoration of locomotor activity by stimulating the remyelination of axons and timely reperfusion of nervous tissue.
Collapse
Affiliation(s)
- Ilya Shulman
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Tatyana Ageeva
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Kostennikov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Leysan Tazetdinova
- Department of Morphology and General Pathology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ilyas Kabdesh
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexander Rogozhin
- Department of Neurology, Kazan State Medical Academy-Branch Campus of the Federal State Budgetary Educational Institution of Father Professional Education, Russian Medical Academy of Continuous Professional Education, 420012 Kazan, Russia
| | - Ilnur Ganiev
- Scientific and Educational Center of Pharmacy, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- Center for Clinical Research for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
26
|
Lopes D, Lopes J, Pereira-Silva M, Peixoto D, Rabiee N, Veiga F, Moradi O, Guo ZH, Wang XD, Conde J, Makvandi P, Paiva-Santos AC. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Mil Med Res 2023; 10:19. [PMID: 37101293 PMCID: PMC10134679 DOI: 10.1186/s40779-023-00453-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
A bio-inspired strategy has recently been developed for camouflaging nanocarriers with biomembranes, such as natural cell membranes or subcellular structure-derived membranes. This strategy endows cloaked nanomaterials with improved interfacial properties, superior cell targeting, immune evasion potential, and prolonged duration of systemic circulation. Here, we summarize recent advances in the production and application of exosomal membrane-coated nanomaterials. The structure, properties, and manner in which exosomes communicate with cells are first reviewed. This is followed by a discussion of the types of exosomes and their fabrication methods. We then discuss the applications of biomimetic exosomes and membrane-cloaked nanocarriers in tissue engineering, regenerative medicine, imaging, and the treatment of neurodegenerative diseases. Finally, we appraise the current challenges associated with the clinical translation of biomimetic exosomal membrane-surface-engineered nanovehicles and evaluate the future of this technology.
Collapse
Affiliation(s)
- Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 374-37515, Iran
| | - Zhan-Hu Guo
- Integrated Composites Laboratory (ICL), Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - João Conde
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
27
|
Thompson W, Papoutsakis ET. The role of biomechanical stress in extracellular vesicle formation, composition and activity. Biotechnol Adv 2023; 66:108158. [PMID: 37105240 DOI: 10.1016/j.biotechadv.2023.108158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Extracellular vesicles (EVs) are cornerstones of intercellular communication with exciting fundamental, clinical, and more broadly biotechnological applications. However, variability in EV composition, which results from the culture conditions used to generate the EVs, poses significant fundamental and applied challenges and a hurdle for scalable bioprocessing. Thus, an understanding of the relationship between EV production (and for clinical applications, manufacturing) and EV composition is increasingly recognized as important and necessary. While chemical stimulation and culture conditions such as cell density are known to influence EV biology, the impact of biomechanical forces on the generation, properties, and biological activity of EVs remains poorly understood. Given the omnipresence of these forces in EV preparation and in biomanufacturing, expanding the understanding of their impact on EV composition-and thus, activity-is vital. Although several publications have examined EV preparation and bioprocessing and briefly discussed biomechanical stresses as variables of interest, this review represents the first comprehensive evaluation of the impact of such stresses on EV production, composition and biological activity. We review how EV biogenesis, cargo, efficacy, and uptake are uniquely affected by various types, magnitudes, and durations of biomechanical forces, identifying trends that emerge both generically and for individual cell types. We also describe implications for scalable bioprocessing, evaluating processes inherent in common EV production and isolation methods, and propose a path forward for rigorous EV quality control.
Collapse
Affiliation(s)
- Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
28
|
Chng WH, Muthuramalingam RPK, Lou CKL, New S, Neupane YR, Lee CK, Altay Benetti A, Huang C, Thoniyot P, Toh WS, Wang JW, Pastorin G. Extracellular Vesicles and Their Mimetics: A Comparative Study of Their Pharmacological Activities and Immunogenicity Profiles. Pharmaceutics 2023; 15:1290. [PMID: 37111775 PMCID: PMC10142599 DOI: 10.3390/pharmaceutics15041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Extracellular vesicles (EVs), which are miniaturised carriers loaded with functional proteins, lipids, and nucleic acid material, are naturally secreted by cells and show intrinsic pharmacological effects in several conditions. As such, they have the potential to be used for the treatment of various human diseases. However, the low isolation yield and laborious purification process are obstacles to their translation for clinical use. To overcome this problem, our lab developed cell-derived nanovesicles (CDNs), which are EV mimetics produced by shearing cells through membrane-fitted spin cups. To evaluate the similarities between EVs and CDNs, we compare the physical properties and biochemical composition of monocytic U937 EVs and U937 CDNs. Besides having similar hydrodynamic diameters, the produced CDNs had proteomic, lipidomic, and miRNA profiles with key communalities compared to those of natural EVs. Further characterisation was conducted to examine if CDNs could exhibit similar pharmacological activities and immunogenicity when administered in vivo. Consistently, CDNs and EVs modulated inflammation and displayed antioxidant activities. EVs and CDNs both did not exert immunogenicity when administered in vivo. Overall, CDNs could serve as a scalable and efficient alternative to EVs for further translation into clinical use.
Collapse
Affiliation(s)
- Wei Heng Chng
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | | | - Charles Kang Liang Lou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119609, Singapore
| | - Silas New
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Choon Keong Lee
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Ayca Altay Benetti
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore 119599, Singapore
| | - Praveen Thoniyot
- Institute of Sustainability for Chemicals, Energy and Environment (ICES), A*STAR, Singapore 627833, Singapore
| | - Wei Seong Toh
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore 117510, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119609, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore 119599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119593, Singapore
| | - Giorgia Pastorin
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
29
|
Feng X, Peng Z, Yuan L, Jin M, Hu H, Peng X, Wang Y, Zhang C, Luo Z, Liao H. Research progress of exosomes in pathogenesis, diagnosis, and treatment of ocular diseases. Front Bioeng Biotechnol 2023; 11:1100310. [PMID: 36761297 PMCID: PMC9902372 DOI: 10.3389/fbioe.2023.1100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Exosomes are natural extracellular vesicles with a diameter of 30-150 nm, which exist in biological fluids and contain biomolecules related to the parent cell, such as proteins, nucleic acids, lipids, etc. It has a wide range of biological functions, and participates in the regulation of important physiological and pathological activities of the body. It can be used as a biomarker for early diagnosis of ocular diseases, a potential therapeutic target, a targeted drug carrier, and has a high potential for clinical application. In this paper, we summarized the genesis mechanism, biological functions, research and application progress of exosomes, focused on the engineering strategy of exosomes, and summarized the advantages and disadvantages of common engineering exosome preparation methods. Systematically combed the role of exosomes in corneal diseases, glaucoma, and retinal diseases, to provide a reference for further understanding of the role of exosomes in the pathogenesis, diagnosis, and treatment of ocular diseases. Finally, we further summarized the opportunities and challenges of exosomes for precision medicine. The extension of exosome research to the field of ophthalmology will help advance current diagnostic and therapeutic methods. Tiny exosomes have huge potential.
Collapse
Affiliation(s)
- Xinting Feng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China,Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Peng
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China,Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyi Yuan
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Ming Jin
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Haijian Hu
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Xin Peng
- College of Fine Arts, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yaohua Wang
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
| | - Chun Zhang
- Department of ophthalmology, West China hospital, Sichuan University, Chengdu, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China,*Correspondence: Hongfei Liao, ; Zhiwen Luo,
| | - Hongfei Liao
- Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China,*Correspondence: Hongfei Liao, ; Zhiwen Luo,
| |
Collapse
|
30
|
Kumar K, Kim E, Alhammadi M, Umapathi R, Aliya S, Tiwari JN, Park HS, Choi JH, Son CY, Vilian AE, Han YK, Bu J, Huh YS. Recent advances in microfluidic approaches for the isolation and detection of exosomes. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Sun D, Mou S, Chen L, Yang J, Wang R, Zhong A, Wang W, Tong J, Wang Z, Sun J. High yield engineered nanovesicles from ADSC with enriched miR-21-5p promote angiogenesis in adipose tissue regeneration. Biomater Res 2022; 26:83. [PMID: 36528594 PMCID: PMC9758932 DOI: 10.1186/s40824-022-00325-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been found to have a great potential for soft tissue repair due to various biological functions, including pro-angiogenesis and low immunogenicity. However, the low yield and heterogeneity of MSC-EVs limited their clinical transformation. This study was designed to develop a novel adipose-derived stem cell engineered nanovesicles (ADSC-NVs) with high production and explore its pro-angiogenetic effect and application in adipose tissue regeneration. METHODS Adipose-derived stem cell-derived extracellular vesicles (ADSC-EVs) were isolated from an EVs-free culture medium for human ADSCs (hADSCs). ADSC-NVs were prepared by sequentially extruding ADSCs followed by iodixanol density gradient ultracentrifugation and were compared with ADSC-EVs in morphology, size distribution, protein contents and yield. The pro-angiogenetic effect of ADSC-NVs in different doses (0, 5, 20 and 80 μg/mL) in vitro was determined using transwell assay, tube formation assay, western blot and qRT-PCR. In vivo, BALB/c nude mice were administered injection of a mixture of fat granules and different dose of ADSC-NVs and grafts were harvested at 12 weeks post-transplantation for further analysis. By analyzing the weight and volume of grafts and histological evaluation, we investigated the effect of ADSC-NVs in vessel formation and adipose tissue regeneration. RESULTS Our results showed yield of purified ADSC-NVs was approximately 20 times more than that of ADSC-EVs secreted by the same number of ADSCs. In vitro, both ADSC-NVs and ADSC-EVs exhibited a dose-dependent pro-angiogenetic effect, despite their distinct miRNA profiles. These effects of ADSC-NVs may be mediated by enriched miR-21-5p via PTEN inhibition and PI3K/p-Akt signaling activation. Furthermore, after a mixed injection of ADSC-NVs, vessel formation and adipose regeneration were observed in vivo in fat implants. CONCLUSIONS Our study developed a potent alternative of ADSC-EVs. ADSC-NVs have a high pro-angiogenesis potential and can be used as cell-free therapeutic biomaterials in soft tissue regeneration.
Collapse
Affiliation(s)
- Di Sun
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Shan Mou
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Lifeng Chen
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jie Yang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Rongrong Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Aimei Zhong
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Wei Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jing Tong
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Zhenxing Wang
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| | - Jiaming Sun
- grid.33199.310000 0004 0368 7223Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022 China
| |
Collapse
|
32
|
Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 2022; 18:100524. [PMID: 36619202 PMCID: PMC9813796 DOI: 10.1016/j.mtbio.2022.100524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injuries (SCIs) are devastating. In SCIs, a powerful traumatic force impacting the spinal cord results in the permanent loss of nerve function below the injury level, leaving the patient paralyzed and wheelchair-bound for the remainder of his/her life. Unfortunately, clinical treatment that depends on surgical decompression appears to be unable to handle damaged nerves, and high-dose methylprednisolone-based therapy is also associated with problems, such as infection, gastrointestinal bleeding, femoral head necrosis, obesity, and hyperglycemia. Nanomaterials have opened new avenues for SCI treatment. Among them, performance-based nanomaterials derived from a variety of materials facilitate improvements in the microenvironment of traumatic injury and, in some cases, promote neuron regeneration. Nanoparticulate drug delivery systems enable the optimization of drug effects and drug bioavailability, thus contributing to the development of novel treatments. The improved efficiency and accuracy of gene delivery will also benefit the exploration of SCI mechanisms and the understanding of key genes and signaling pathways. Herein, we reviewed different types of nanomaterials applied to the treatment of SCI and summarized their functions and advantages to provide new perspectives for future clinical therapies.
Collapse
Affiliation(s)
- Weiquan Gong
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Tianhui Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Mingxue Che
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Yongjie Wang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chuanyu He
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Lidi Liu
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Zhenshan Lv
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Corresponding author.
| | - Shaokun Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China,Corresponding author. Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
33
|
Du Y, Wang H, Yang Y, Zhang J, Huang Y, Fan S, Gu C, Shangguan L, Lin X. Extracellular Vesicle Mimetics: Preparation from Top-Down Approaches and Biological Functions. Adv Healthc Mater 2022; 11:e2200142. [PMID: 35899756 DOI: 10.1002/adhm.202200142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) have attracted attention as delivery vehicles due to their structure, composition, and unique properties in regeneration and immunomodulation. However, difficulties during production and isolation processes of EVs limit their large-scale clinical applications. EV mimetics (EVMs), prepared via top-down strategies that improve the yield of nanoparticles while retaining biological properties similar to those of EVs have been used to address these limitations. Herein, the preparation of EVMs is reviewed and their characteristics in terms of structure, composition, targeting ability, cellular uptake mechanism, and immunogenicity, as well as their strengths, limitations, and future clinical application prospects as EV alternatives are summarized.
Collapse
Affiliation(s)
- Yuan Du
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongyi Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| |
Collapse
|
34
|
Syromiatnikova V, Prokopeva A, Gomzikova M. Methods of the Large-Scale Production of Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms231810522. [PMID: 36142433 PMCID: PMC9506336 DOI: 10.3390/ijms231810522] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
To date, extracellular vesicles (EVs) have been extensively investigated as potential substitutes for cell therapy. Research has suggested their ability to overcome serious risks associated with the application of these cells. Although, the translation of EVs into clinical practice is hampered by the lack of a cheap reasonable way to obtain a clinically relevant number of EVs, an available method for the large-scale production of EVs ensures vesicles’ integrity, preserves their biological activity, and ensures they are well reproducible, providing homogeneity of the product from batch to batch. In this review, advances in the development of methods to increase EVs production are discussed. The existing approaches can be divided into the following: (1) those based on increasing the production of natural EVs by creating and using high capacity “cell factories”, (2) those based on the induction of EVs secretion under various cell stressors, and (3) those based on cell fragmentation with the creation of biomimetic vesicles. The aim of this review is to stimulate the introduction of EVs into clinical practice and to draw attention to the development of new methods of EVs production on a large scale.
Collapse
|
35
|
Feng ZY, Zhang QY, Tan J, Xie HQ. Techniques for increasing the yield of stem cell-derived exosomes: what factors may be involved? SCIENCE CHINA. LIFE SCIENCES 2022; 65:1325-1341. [PMID: 34637101 PMCID: PMC8506103 DOI: 10.1007/s11427-021-1997-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Exosomes are nano-scale extracellular vesicles secreted by cells and constitute an important part in the cell-cell communication. The main contents of the exosomes include proteins, microRNAs, and lipids. The mechanism and safety of stem cell-derived exosomes have rendered them a promising therapeutic strategy for regenerative medicine. Nevertheless, limited yield has restrained full explication of their functions and clinical applications To address this, various attempts have been made to explore the up- and down-stream manipulations in a bid to increase the production of exosomes. This review has recapitulated factors which may influence the yield of stem cell-derived exosomes, including selection and culture of stem cells, isolation and preservation of the exosomes, and development of artificial exosomes.
Collapse
Affiliation(s)
- Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Jiang XC, Zhang T, Gao JQ. The in vivo fate and targeting engineering of crossover vesicle-based gene delivery system. Adv Drug Deliv Rev 2022; 187:114324. [PMID: 35640803 DOI: 10.1016/j.addr.2022.114324] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Exosomes and biomimetic vesicles are widely used for gene delivery because of their excellent gene loading capacity and stability and their natural targeting delivery potential. These vesicles take advantages of both cell-based bioactive delivery system and synthetical lipid-derived nanovectors to form crossover characteristics. To further optimize the specific targeting properties of crossover vesicles, studies of their in vivo fate and various engineering approaches including nanobiotechnology are required. This review describes the preparation process of exosomes and biomimetic vesicles, and summarizes the mechanism of loading and delivery of nucleic acids or gene editing systems. We provide a comprehensive overview of the techniques employed for preparing the targeting crossover vesicles based on their cellular uptake and targeting mechanism. To delineate the future prospects of crossover vesicle gene delivery systems, various challenges and clinical applications of vesicles have also been discussed.
Collapse
|
37
|
Mason HG, Bush J, Agrawal N, Hakami RM, Veneziano R. A Microfluidic Platform to Monitor Real-Time Effects of Extracellular Vesicle Exchange between Co-Cultured Cells across Selectively Permeable Barriers. Int J Mol Sci 2022; 23:3534. [PMID: 35408896 PMCID: PMC8998828 DOI: 10.3390/ijms23073534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes and other extracellular vesicles (EVs) play a significant yet poorly understood role in cell-cell communication during homeostasis and various pathological conditions. Conventional in vitro and in vivo approaches for studying exosome/EV function depend on time-consuming and expensive vesicle purification methods to obtain sufficient vesicle populations. Moreover, the existence of various EV subtypes with distinct functional characteristics and submicron size makes their analysis challenging. To help address these challenges, we present here a unique chip-based approach for real-time monitoring of cellular EV exchange between physically separated cell populations. The extracellular matrix (ECM)-mimicking Matrigel is used to physically separate cell populations confined within microchannels, and mimics tissue environments to enable direct study of exosome/EV function. The submicron effective pore size of the Matrigel allows for the selective diffusion of only exosomes and other smaller EVs, in addition to soluble factors, between co-cultured cell populations. Furthermore, the use of PEGDA hydrogel with a very small pore size of 1.2 nm in lieu of Matrigel allows us to block EV migration and, therefore, differentiate EV effects from effects that may be mediated by soluble factors. This versatile platform bridges purely in vitro and in vivo assays by enabling studies of EV-mediated cellular crosstalk under physiologically relevant conditions, enabling future exosome/EV investigations across multiple disciplines through real-time monitoring of vesicle exchange.
Collapse
Affiliation(s)
- Hunter G. Mason
- School of System Biology, George Mason University, Manassas, VA 20110, USA;
- Center for Infectious Disease Research, George Mason University, Manassas, VA 20110, USA
| | - Joshua Bush
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, USA; (J.B.); (N.A.)
| | - Nitin Agrawal
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, USA; (J.B.); (N.A.)
| | - Ramin M. Hakami
- School of System Biology, George Mason University, Manassas, VA 20110, USA;
- Center for Infectious Disease Research, George Mason University, Manassas, VA 20110, USA
| | - Remi Veneziano
- Department of Bioengineering, College of Engineering and Computing, George Mason University, Manassas, VA 20110, USA; (J.B.); (N.A.)
| |
Collapse
|
38
|
Emerging function and clinical significance of extracellular vesicle noncoding RNAs in lung cancer. Mol Ther Oncolytics 2022; 24:814-833. [PMID: 35317517 PMCID: PMC8908047 DOI: 10.1016/j.omto.2022.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a commonly diagnosed cancer with an unsatisfactory prognosis. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that mediate cell-cell communication by transporting various biomacromolecules, such as nucleic acids, proteins, and lipids. Noncoding RNAs (ncRNAs), including microRNAs, circular RNAs, and long noncoding RNAs, are important noncoding transcripts that play critical roles in a variety of physiological and pathological processes, especially in cancer. ncRNAs have been verified to be packaged into EVs and transported between LC cells and stromal cells, regulating multiple LC malignant phenotypes, such as proliferation, migration, invasion, epithelial-mesenchymal transition, metastasis, and treatment resistance. Additionally, EVs can be detected in various body fluids and are associated with the stage, grade, and metastasis of LC. Herein, we summarize the biological characteristics and functions of EV ncRNAs in the biological processes of LC, focusing on their potential to serve as diagnostic and prognostic biomarkers of LC as well as their probable role in the clinical treatment of LC. EV ncRNAs provide a new perspective for understanding the mechanism underlying LC pathogenesis and development, which might benefit numerous LC patients in the future.
Collapse
|
39
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
40
|
Heo J, Kang H. Exosome-Based Treatment for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23021002. [PMID: 35055187 PMCID: PMC8778342 DOI: 10.3390/ijms23021002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is an inflammatory disease in which lipids accumulate on the walls of blood vessels, thickening and clogging these vessels. It is well known that cell-to-cell communication is involved in the pathogenesis of atherosclerosis. Exosomes are extracellular vesicles that deliver various substances (e.g., RNA, DNA, and proteins) from the donor cell to the recipient cell and that play an important role in intercellular communication. Atherosclerosis can be either induced or inhibited through cell-to-cell communication using exosomes. An understanding of the function of exosomes as therapeutic tools and in the pathogenesis of atherosclerosis is necessary to develop new atherosclerosis therapies. In this review, we summarize the studies on the regulation of atherosclerosis through exosomes derived from multiple cells as well as research on exosome-based atherosclerosis treatment.
Collapse
Affiliation(s)
- Jeongyeon Heo
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Korea
| |
Collapse
|
41
|
Shin MJ, Park JY, Lee DH, Khang D. Stem Cell Mimicking Nanoencapsulation for Targeting Arthritis. Int J Nanomedicine 2022; 16:8485-8507. [PMID: 35002240 PMCID: PMC8725870 DOI: 10.2147/ijn.s334298] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a promising regenerative therapy due to their ability to migrate toward damaged tissues. The homing ability of MSCs is unique compared with that of non-migrating cells and MSCs are considered promising therapeutic vectors for targeting major cells in many pathophysiological sites. MSCs have many advantages in the treatment of malignant diseases, particularly rheumatoid arthritis (RA). RA is a representative autoimmune disease that primarily affects joints, and secreted chemokines in the joints are well recognized by MSCs following their migration to the joints. Furthermore, MSCs can regulate the inflammatory process and repair damaged cells in the joints. However, the functionality and migration ability of MSCs injected in vivo still show insufficient. The targeting ability and migration efficiency of MSCs can be enhanced by genetic engineering or modification, eg, overexpressing chemokine receptors or migration-related genes, thus maximizing their therapeutic effect. However, there are concerns about genetic changes due to the increased probability of oncogenesis resulting from genome integration of the viral vector, and thus, clinical application is limited. Furthermore, it is suspected that administering MSCs can promote tumor growth and metastasis in xenograft and orthotopic models. For this reason, MSC mimicking nanoencapsulations are an alternative strategy that does not involve using MSCs or bioengineered MSCs. MSC mimicking nanoencapsulations consist of MSC membrane-coated nanoparticles, MSC-derived exosomes and artificial ectosomes, and MSC membrane-fused liposomes with natural or genetically engineered MSC membranes. MSC mimicking nanoencapsulations not only retain the targeting ability of MSCs but also have many advantages in terms of targeted drug delivery. Specifically, MSC mimicking nanoencapsulations are capable of encapsulating drugs with various components, including chemotherapeutic agents, nucleic acids, and proteins. Furthermore, there are fewer concerns over safety issues on MSC mimicking nanoencapsulations associated with mutagenesis even when using genetically engineered MSCs, because MSC mimicking nanoencapsulations use only the membrane fraction of MSCs. Genetic engineering is a promising route in clinical settings, where nano-encapsulated technology strategies are combined. In this review, the mechanism underlying MSC homing and the advantages of MSC mimicking nanoencapsulations are discussed. In addition, genetic engineering of MSCs and MSC mimicking nanoencapsulation is described as a promising strategy for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Min Jun Shin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21999, South Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
42
|
Piffoux M, Silva AKA, Gazeau F, Salmon H. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022. [DOI: 10.1002/viw.20200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology Centre Léon Bérard Lyon France
- INSERM UMR 1197‐Interaction cellules souches‐niches: physiologie tumeurs et réparation tissulaire Villejuif France
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Hugo Salmon
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
- Université de Paris, T3S, INSERM Paris France
| |
Collapse
|
43
|
Packaging and Delivery of Asthma Therapeutics. Pharmaceutics 2021; 14:pharmaceutics14010092. [PMID: 35056988 PMCID: PMC8777963 DOI: 10.3390/pharmaceutics14010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is a life-altering, chronic disease of heterogenous origin that features a complex interplay of immune and environmental signaling. Although very little progress has been made in prevention, diverse types of medications and delivery systems, including nanoscale systems, have been or are currently being developed to control airway inflammation and prevent exacerbations and fibrosis. These medications are delivered through mechanical methods, with various inhalers (with benefits and drawbacks) existing, and new types offering some variety in delivery. Of particular interest is the progress being made in nanosized materials for efficient penetration into the epithelial mucus layer and delivery into the deepest parts of the lungs. Liposomes, nanoparticles, and extracellular vesicles, both natural and synthetic, have been explored in animal models of asthma and have produced promising results. This review will summarize and synthesize the latest developments in both macro-(inhaler) and micro-sized delivery systems for the purpose of treating asthma patients.
Collapse
|
44
|
Raghav A, Jeong GB. A systematic review on the modifications of extracellular vesicles: a revolutionized tool of nano-biotechnology. J Nanobiotechnology 2021; 19:459. [PMID: 34965878 PMCID: PMC8716303 DOI: 10.1186/s12951-021-01219-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tailoring extracellular vesicles (EVs) can bequeath them with diverse functions and efficient performance in nano-biotechnology. Engineering and modification of EVs improves the targeted drug delivery efficiency. Here, we performed systematic review of various methods for EVs modifications. Methods PubMed, Scopus, ISI Web of Science, EMBASE, and Google Scholar were searched for available articles on EVs modifications (up to March 2021). In total, 1208 articles were identified and assessed, and then only 36 articles were found eligible and included. Results Six studies demonstrate the application of click chemistry, seven studies used co-incubation, two studies used chemical transfection, four studies implicated electroporation and sonication approach for modification of EVs. Moreover, two studies utilized microfluidics as suitable approach for loading cargo into EVs, while eight studies showed freeze–thaw method as feasible for these biological nanoparticles. Conclusion Freeze–thaw approach is found to be convenient and popular among researchers for performing modifications in EVs for the purpose of targeted drug delivery loading. Clinical-grade EVs production with good clinical practices (GCPs) is challenging in the current scenario. More studies are needed to determine the best suitable approach for cargo loading of EVs that may be exploited for research and therapeutic use. Graphical Abstract ![]()
Extracellular vesicles (EVs) can be modified using various methods available including physical, chemical and engineering based. These tailoring methods are helpful in targeting drug delivery to treat various diseases. Moreover, EVs have the ability to modify that’s due to presence of lipid bilayer membrane, that’s effectively participate in loading and unloading of desired drug. EVs expressed from the specific cell types can give useful information about the pathogenesis of a particular disease in the form of unique nucleic acids, protein and lipid sequences and therefore, EVs derived from these cells can be used as specific diagnostic biomarker for diagnosis of diseases. Modified EVs using various drugs or miRNAs can be used for targeted drug delivery to specific cells.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India, 208002
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-roYeonsu-gu, Incheon, 21999, Korea.
| |
Collapse
|
45
|
Saad MG, Beyenal H, Dong WJ. Exosomes as Powerful Engines in Cancer: Isolation, Characterization and Detection Techniques. BIOSENSORS 2021; 11:518. [PMID: 34940275 PMCID: PMC8699402 DOI: 10.3390/bios11120518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Exosomes, powerful extracellular nanovesicles released from almost all types of living cells, are considered the communication engines (messengers) that control and reprogram physiological pathways inside target cells within a community or between different communities. The cell-like structure of these extracellular vesicles provides a protective environment for their proteins and DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and development. In addition to the unique structure of exosomes, their nanometer size and tendency of interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis, monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about the prospects of the current exosome research.
Collapse
Affiliation(s)
| | | | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (M.G.S.); (H.B.)
| |
Collapse
|
46
|
Yoon H, Chung YS, Lee YJ, Yu SE, Baek S, Kim H, Kim SW, Lee J, Kim S, Sung H. Cancer Patient Tissueoid with Self-Homing Nano-Targeting of Metabolic Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102640. [PMID: 34664430 PMCID: PMC8596099 DOI: 10.1002/advs.202102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Indexed: 05/11/2023]
Abstract
The current paradigm of cancer medicine focuses on patient- and/or cancer-specific treatments, which has led to continuous progress in the development of patient representatives (e.g., organoids) and cancer-targeting carriers for drug screening. As breakthrough concepts, i) living cancer tissues convey intact profiles of patient-specific microenvironmental signatures. ii) The growth mechanisms of cancer mass with intense cell-cell interactions can be harnessed to develop self-homing nano-targeting by using cancer cell-derived nanovesicles (CaNVs). Hence, a tissueoid model of ovarian cancer (OC) is developed by culturing OC patient tissues in a 3D gel chip, whose microchannel networks enable perfusion to maintain tissue viability. A novel model of systemic cancer responses is approached by xenografting OC tissueoids into ischaemic hindlimbs in nude mice. CaNVs are produced to carry general chemotherapeutics or new drugs under pre/clinical studies that target the BRCA mutation or energy metabolism, thereby increasing the test scope. This pioneer study cross-validates drug responses from the OC clinic, tissueoid, and animal model by demonstrating the alignment of results in drug type-specific efficiency, BRCA mutation-dependent drug efficiency, and metabolism inhibition-based anti-cancer effects. Hence, this study provides a directional foundation to accelerate the discovery of patient-specific drugs with CaNV application towards future precision medicine.
Collapse
Affiliation(s)
- Hyo‐Jin Yoon
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Young Shin Chung
- Department of Obstetrics and GynecologyInstitution of Women's Life Medical ScienceSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Yong Jae Lee
- Department of Obstetrics and GynecologyInstitution of Women's Life Medical ScienceSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Seung Eun Yu
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Sewoom Baek
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hye‐Seon Kim
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and GynecologyInstitution of Women's Life Medical ScienceSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Jung‐Yun Lee
- Department of Obstetrics and GynecologyInstitution of Women's Life Medical ScienceSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and GynecologyInstitution of Women's Life Medical ScienceSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Hak‐Joon Sung
- Department of Medical EngineeringYonsei University College of MedicineSeoul03722Republic of Korea
| |
Collapse
|
47
|
Zhuo Z, Wang J, Luo Y, Zeng R, Zhang C, Zhou W, Guo K, Wu H, Sha W, Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater 2021; 134:13-31. [PMID: 34284151 DOI: 10.1016/j.actbio.2021.07.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
In the past decade, the study of extracellular vesicles (EVs), especially exosomes (50-150 nm) have attracted growing interest in numerous areas of cancer and tissue regeneration due to their unique biological features. A low isolation yield and insufficient targeting abilities limit their therapeutic applicability. Recently, superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic navigation have been exploited to enhance the targeting ability of EVs. To construct targeted EV delivery systems engineered by SPIONs, several groups have pioneered the use of different techniques, such as electroporation, natural incubation, and cell extrusion, to directly internalize SPIONs into EVs. Furthermore, some endogenous ligands, such as transferrins, antibodies, aptamers, and streptavidin, were shown to enable modification of SPIONs, which increases binding with EVs. In this review, we summarized recent advances in targeted EV delivery systems engineered by SPIONs and focused on the key methodological approaches and the current applications of magnetic EVs. This report aims to address the existing challenges and provide comprehensive insights into targeted EV delivery systems. STATEMENT OF SIGNIFICANCE: Targeted extracellular vesicle (EV) delivery systems engineered by superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention and research interest in recent years. Such strategies employ external magnet fields to manipulate SPION-functionalized EVs remotely, aiming to enhance their accumulation and penetration in vivo. Although iron oxide nanoparticle laden EVs are interesting, they are controversial at present, hampering the progress in their clinical application. A thorough integration of these studies is needed for an advanced insight and rational design of targeted EV delivery systems. In this review, we summarize the latest advances in the design strategies of targeted EV delivery systems engineered by SPIONs with a focus on their key methodological approaches, current applications, limitation and future perspectives, which may facilitate the development of natural theranostic nanoplatforms.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
48
|
Dually targeted bioinspired nanovesicle delays advanced prostate cancer tumour growth in vivo. Acta Biomater 2021; 134:559-575. [PMID: 34274531 DOI: 10.1016/j.actbio.2021.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/03/2023]
Abstract
Prostate cancer (PC) is second-leading cancer in men, with limited treatment options available for men with advanced and metastatic PC. Prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) have been exploited as therapeutic targets in PC due to their upregulation in the advanced stages of the disease. To date, several PSA- and PSMA-activatable prodrugs have been developed to reduce the systemic toxicity of existing chemotherapeutics. Bioinspired nanovesicles have been exploited in drug delivery, offering prolonged drug blood circulation and higher tumour accumulation. For the first time, this study describes the engineering of dually targeted PSA/PSMA nanovesicles for advanced PC. PSMA-targeted bioinspired hybrids were prepared by hydrating a lipid film with anti-PSMA-U937 cell membranes and DOX-PSA prodrug, followed by extrusion. The bioinspired hybrids were characterised using dynamic light scattering, transmission electron microscopy, Dot blot, flow cytometry and Western blot. Cellular binding and toxicity studies in PC cancer cell lines were carried out using flow cytometry, confocal microscopy, and resazurin assay. Finally, tumour targeting and therapeutic efficacy studies were performed in solid and metastatic C4-2B-tumor-bearing mice. Interestingly, our PSMA-targeted hybrids demonstrated high cell uptake in PSMA-expressing cells with significant accumulation in solid and metastatic C4-2B tumour tissues following intravenous administration. More promisingly, our dually targeted PSA/PSMA hybrid significantly slowed down the C4-2B tumour growth in vivo, compared to free DOX-PSA and non-targeted PSA-hybrid. Our PSA/PSMA bioinspired hybrid could offer a highly selective treatment for advanced PC with lower side effects. STATEMENT OF SIGNIFICANCE: This study investigates a new approach to treat prostate cancer using dually targeted bioinspired nanovesicle . Our bioinspired vesicles are made mainly of a human blood cell membrane with a ligand recognising a specific marker (PSMA) on the surface of the prostate cancer cells. The present work describes the successful loading of a doxorubicin prodrug linked to a PSA- activatable peptide into these targeted bioinspired nanovesicle , where the active PSA enzyme presents in these cells converts the drug to its active form. Our dually targeted PSA/PSMA hybrid vesicles has successfully improved site-specific prodrug delivery to tackle advanced prostate cancer, offering a novel and effective prostate cancer treatment.
Collapse
|
49
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Abstract
Extracellular vesicles (EVs) are nanoscale phospholipid bilayer membrane vesicles which contain varied active biomolecules. As natural carriers, EVs can deliver endogenous cargos to target tissues safely and effectively. However, the applications of natural released EVs are limited by their low yield and heterogeneity. Engineering EVs can endow them with more functions and better performances to address these issues. EVs can be modified and engineered to improve the yield, targeting efficiency, and content of beneficial cargos. Herein, the strategies of engineering EVs through genetic modification of EVs are introduced; the molecular modification of the EV membrane and the loading of nucleic acids are summarized; the building of EV mimetic nanovesicles are reviewed. Overall, we anticipate that readers will gain a better understanding of the progress of EV engineering, which will help to promote the development of the technologies and applications in this field.
Collapse
Affiliation(s)
- Xuemei Jia
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|