1
|
Liénard-Mayor T, Taverna M, Descroix S, Mai TD. Droplet-interfacing strategies in microscale electrophoresis for sample treatment, separation and quantification: A review. Anal Chim Acta 2020; 1143:281-297. [PMID: 33384124 DOI: 10.1016/j.aca.2020.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
In this study, for the first time we report on a comprehensive overview of different strategies to hyphenate droplet-based sample handling and preparation with electrophoretic separation in different formats (i.e. microchip and capillary electrophoresis). Droplet-interfaced electrophoresis is an emerging technique in which micro/nanometric droplets are used as a bridge and carrier of target analytes between sample treatment and electrokinetic separation steps, thus being expected to overcome the challenges of working dimension mismatch and low degree of module integration. This review covers all works on this topic from 2006 (the year of the first communication) up to 2020, with focus being given to three principal interfacing strategies, including droplets in immiscible phases, digital microfluidics with electrowetting-on-dielectric principle and inkjet droplet generation. Different instrumental developments for such purpose, the viewpoints on pros and cons of these designs as well as application demonstrations of droplet-interfaced electrokinetic strategies are discussed.
Collapse
Affiliation(s)
- Théo Liénard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France; Institut Universitaire de France, France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
2
|
Lyu W, Yu M, Qu H, Yu Z, Du W, Shen F. Slip-driven microfluidic devices for nucleic acid analysis. BIOMICROFLUIDICS 2019; 13:041502. [PMID: 31312285 PMCID: PMC6625959 DOI: 10.1063/1.5109270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 05/17/2023]
Abstract
Slip-driven microfluidic devices can manipulate fluid by the relative movement of microfluidic plates that are in close contact. Since the demonstration of the first SlipChip device, many slip-driven microfluidic devices with different form factors have been developed, including SlipPAD, SlipDisc, sliding stripe, and volumetric bar chart chip. Slip-driven microfluidic devices can be fabricated from glass, quartz, polydimethylsiloxane, paper, and plastic with various fabrication methods: etching, casting, wax printing, laser cutting, micromilling, injection molding, etc. The slipping operation of the devices can be performed manually, by a micrometer with a base station, or autonomously, by a clockwork mechanism. A variety of readout methods other than fluorescence microscopy have been demonstrated, including both fluorescence detection and colorimetric detection by mobile phones, direct visual detection, and real-time fluorescence imaging. This review will focus on slip-driven microfluidic devices for nucleic acid analysis, including multiplex nucleic acid detection, digital nucleic acid quantification, real-time nucleic acid amplification, and sample-in-answer-out nucleic acid analysis. Slip-driven microfluidic devices present promising approaches for both life science research and clinical molecular diagnostics.
Collapse
Affiliation(s)
- Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Mengchao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Haijun Qu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | | | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
van Kooten XF, Bercovici M, Kaigala GV. Extraction of electrokinetically separated analytes with on-demand encapsulation. LAB ON A CHIP 2018; 18:3588-3597. [PMID: 30358796 DOI: 10.1039/c8lc00912k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microchip electrokinetic methods are capable of increasing the sensitivity of molecular assays by enriching and purifying target analytes. However, their use is currently limited to assays that can be performed under a high external electric field, as spatial separation and focusing is lost when the electric field is removed. We present a novel method that uses two-phase encapsulation to overcome this limitation. The method uses passive filling and pinning of an oil phase in hydrophobic channels to encapsulate electrokinetically separated and focused analytes with a brief pressure pulse. The resulting encapsulated sample droplet maintains its concentration over long periods of time without requiring an electric field and can be manipulated for further analysis, either on- or off-chip. We demonstrate the method by encapsulating DNA oligonucleotides in a 240 pL aqueous segment after isotachophoresis (ITP) focusing, and show that the concentration remains at 60% of the initial value for tens of minutes, a 22-fold increase over free diffusion after 20 minutes. Furthermore, we demonstrate manipulation of a single droplet by selectively encapsulating amplicon after ITP purification from a polymerase chain reaction (PCR) mix, and performing parallel off-chip detection reactions using the droplet. We provide geometrical design guidelines for devices implementing the encapsulation method, and show how the method can be scaled to multiple analyte zones.
Collapse
Affiliation(s)
- Xander F van Kooten
- IBM Research - Zurich, Rüschlikon, Switzerland. and Technion - Israel Institute of Technology, Haifa, Israel.
| | - Moran Bercovici
- Technion - Israel Institute of Technology, Haifa, Israel. and The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
4
|
Wang Z, Ivory C, Minerick AR. Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient. Electrophoresis 2017; 38:2565-2575. [PMID: 28722147 DOI: 10.1002/elps.201600565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
Isoelectric focusing (IEF) is a powerful tool for amphoteric protein separations because of high sensitivity, bio-compatibility, and reduced complexity compared to chromatography or mechanical separation techniques. IEF miniaturization is attractive because it enables rapid analysis, easier adaptation to point of care applications, and smaller sample demands. However, existing small-scale IEF tools have not yet been able to analyze single protein spots from array libraries, which are ubiquitous in many pharmaceutical discovery and screening protocols. Thus, we introduce an in situ, novel, miniaturized protein analysis approach that we have termed surface isoelectric focusing (sIEF). Low volume printed sIEF gels can be run at length scales of ∼300 μm, utilize ∼0.9 ng of protein with voltages below 10 V. Further, the sIEF device platform is so simple that it can be integrated with protein library arrays to reduce cost; devices demonstrate reusability above 50 uses. An acrylamide monomer solution containing broad-range carrier ampholytes was microprinted with a Nano eNablerTM between micropatterned gold electrodes spaced 300 μm apart on a glass slide. The acrylamide gel was polymerized in situ followed by protein loading via printed diffusional exchange. A pH gradient formed via carrier ampholyte stacking when electrodes were energized; the gradient was verified using ratiometric pH-sensitive FITC/TRITC dyes. Green fluorescent protein (GFP) and R-phycoerythrin (R-PE) were utilized both as pI markers and to test sIEF performance as a function of electric field strength and ampholyte concentration. Factors hampering sIEF included cathodic drift and pH gradient compression, but were reduced by co-printing non-ionic Synperonic® F-108 surfactant to reduce protein-gel interactions. sIEF gels achieved protein separations in <10 min yielding bands < 50 μm wide with peak capacities of ∼8 and minimum pI differences from 0.12 to 0.14. This new sIEF technique demonstrated comparable focusing at ∼100 times smaller dimensions than any previous IEF. Further, sample volumes required were reduced four orders of magnitude from 20 μL for slab gel IEF to 0.002 μL for sIEF. In summary, sIEF advantages include smaller volumes, reduced power consumption, and microchip surface accessibility to focused bands along with equivalent separation resolutions to prior IEF tools. These attributes position this new technology for rapid, in situ protein library analysis in clinical and pharmaceutical settings.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Cornelius Ivory
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Adrienne R Minerick
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
5
|
Holtze C, Weisse SA, Vranceanu M. Commercial Value and Challenges of Drop-Based Microfluidic Screening Platforms–An Opinion. MICROMACHINES 2017. [PMCID: PMC6190191 DOI: 10.3390/mi8060193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Developments in High Throughput Screening aim at maximizing the number of samples per time and reducing the cost per sample, e.g., by applying very small sample volumes. The ultimate technological step in miniaturization is moving from microtiter plate wells to droplets, and from batch-wise characterization to the continuous preparation and analysis of samples. A range of drop-based microfluidic screening platforms has emerged that benefit from drop-formation rates of thousands per second, perfect drop size uniformity, plug-flow and compartmentalization, and the possibility of continuously analyzing a train of drops. However, after many years of intensive research, only few commercial applications have been developed and substantial development in the field is still required to make them reliable and broadly applicable. Can academic research achieve this, given that most of the fundamental concepts have been described already, making it hard to publish a big story? Can start-up companies raise enough money to overcome the technical issues of drop-based screening platforms? This contribution addresses the question, focusing on how the different stakeholders in the field should interact so that disillusionment will not put a premature end to the development of drop-based screening technologies.
Collapse
|
6
|
Abstract
Digital nucleic acid amplification (Digital NAA) quantifies nucleic acid by compartmentalizing a sample of DNA or RNA into a large number of discrete partitions and performing parallel nucleic acid amplification, such as polymerase chain reaction (PCR) or isothermal amplification reactions. With the counts of positive wells, total number of wells, and volumes of wells, the concentration of the target nucleic acid in the sample can be quantified. Digital NAA is considered increasingly powerful for ultra-sensitive detection and accurate quantification of nucleic acid for biological research and potentially medical diagnostics. Here, we describe glass SlipChip devices to perform digital NAA without cumbersome manual manipulation or complex fluidic control systems.
Collapse
Affiliation(s)
- Feng Shen
- SlipChip Corporation, 230 Constitution Drive, Menlo Park, CA, 94025, USA.
| |
Collapse
|
7
|
Cybulski O, Jakiela S, Garstecki P. Whole Teflon valves for handling droplets. LAB ON A CHIP 2016; 16:2198-210. [PMID: 27182628 DOI: 10.1039/c6lc00375c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose and test a new whole-Teflon gate valve for handling droplets. The valve allows droplet plugs to pass through without disturbing them. This is possible due to the geometric design, the choice of material and lack of any pulses of flow generated by closing or opening the valve. The duct through the valve resembles a simple segment of tubing, without constrictions, change in lumen or side pockets. There are no extra sealing materials with different wettability or chemical resistance. The only material exposed to liquids is FEP Teflon, which is resistant to aggressive chemicals and fully biocompatible. The valve can be integrated into microfluidic systems: we demonstrate a complex system for culturing bacteria in hundreds of microliter droplet chemostats. The valve effectively isolates modules of the system to increase precision of operations on droplets. We verified that the valve allowed millions of droplet plugs to safely pass through, without any cross-contamination with bacteria between the droplets. The valve can be used in automating complex microfluidic systems for experiments in biochemistry, biology and organic chemistry.
Collapse
Affiliation(s)
- Olgierd Cybulski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
8
|
Farzi GA, Nejad AP. An Image-Based Technique for Measuring Droplet Size Distribution: The Use of CNN Algorithm. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1090321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Tsaloglou MN, Watson RJ, Rushworth CM, Zhao Y, Niu X, Sutton JM, Morgan H. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform. Analyst 2015; 140:258-64. [PMID: 25371968 DOI: 10.1039/c4an01683a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clostridium difficile is one of the key bacterial pathogens that cause infectious diarrhoea both in the developed and developing world. Isothermal nucleic acid amplification methods are increasingly used for identification of toxinogenic infection by clinical labs. For this purpose, we developed a low-cost microfluidic platform based on the SlipChip concept and implemented real-time isothermal recombinase polymerase amplification (RPA). The on-chip RPA assay targets the Clostridium difficile toxin B gene (tcdB) coding for toxin B, one of the proteins responsible for bacterial toxicity. The device was fabricated in clear acrylic using rapid prototyping methods. It has six replicate 500 nL reaction wells as well as two sets of 500 nL control wells. The reaction can be monitored in real-time using exonuclease fluorescent probes with an initial sample volume of as little as 6.4 μL. We demonstrated a limit of detection of 1000 DNA copies, corresponding to 1 fg, at a time-to-result of <20 minutes. This miniaturised platform for pathogen detection has potential for use in resource-limited environments or at the point-of-care because of its ease of use and low cost, particularly if combined with preserved reagents.
Collapse
Affiliation(s)
- M-N Tsaloglou
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Hassan SU, Morgan H, Zhang X, Niu X. Droplet Interfaced Parallel and Quantitative Microfluidic-Based Separations. Anal Chem 2015; 87:3895-901. [DOI: 10.1021/ac504695w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sammer-ul Hassan
- Faculty
of Engineering and the Environment, University of Southampton, Southampton, U.K. SO17 1BJ
| | - Hywel Morgan
- Faculty
of Physical Sciences and Engineering, University of Southampton, Southampton, U.K. SO17 1BJ
- Institute
for Life Sciences, University of Southampton, Southampton, U.K. SO17 1BJ
| | - Xunli Zhang
- Faculty
of Engineering and the Environment, University of Southampton, Southampton, U.K. SO17 1BJ
- Institute
for Life Sciences, University of Southampton, Southampton, U.K. SO17 1BJ
| | - Xize Niu
- Faculty
of Engineering and the Environment, University of Southampton, Southampton, U.K. SO17 1BJ
- Institute
for Life Sciences, University of Southampton, Southampton, U.K. SO17 1BJ
| |
Collapse
|
11
|
Abstract
Preconcentration of biomolecules by electrokinetic trapping at the nano/microfluidic interface has been extensively studied due to its significant efficiency. Conventionally, sample preconcentration takes place in continuous flow and therefore suffers from diffusion and dispersion. Encapsulation of the preconcentrated sample into isolated droplets offers a superior way to preserve the sample concentration for further analysis. Nevertheless, the rationale for an optimal design to obviate the sample dilution prior to encapsulation is still lacking. Herein, we propose a pressure-assisted strategy for positioning the concentrated sample plug directly at the ejecting nozzle, which greatly eliminates the concentration decline during sample ejection. A distinctive mechanism for this plug localization was elucidated by two-dimensional numerical simulations. Based on the simulation results, we developed an on-demand nanofluidic concentrator in which the nanochannels were facilely generated through lithography-free nanocracking on a polystyrene substrate. By wisely implementing an on-demand droplet generation module, our system can adaptively encapsulate the highly concentrated sample and effectively enhance the long-term stability. We experimentally demonstrated the preconcentration of a fluorescently labelled biomolecule, bovine serum albumin (BSA), by using an amplification factor of 10(4). We showed that, by adjusting the applied voltage, accumulation time, and pulsed pressure imposed on the control microchannel, our system can generate a droplet of the desired volume with a target sample concentration at a prescribed time. This study not only provides insights into the previously unidentified role of assisted pressure in sample positioning, but also offers an avenue for varied requirements in low-abundance biomolecule detection and analysis.
Collapse
Affiliation(s)
- Miao Yu
- Bioengineering Graduate Program, Biomedical Engineering Division, The Hong Kong University of Science and Technology, Hong Kong, China.
| | | | | | | |
Collapse
|
12
|
Abstract
Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation.
Collapse
Affiliation(s)
- Evgenia Yu Basova
- Masaryk University
- CEITEC, Central European Institute Technology
- Brno
- Czech Republic
| | - Frantisek Foret
- Masaryk University
- CEITEC, Central European Institute Technology
- Brno
- Czech Republic
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic
| |
Collapse
|
13
|
Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 2014; 1382:66-85. [PMID: 25529267 DOI: 10.1016/j.chroma.2014.11.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Microchip electrophoresis (MCE) was one of the earliest applications of the micro-total analysis system (μ-TAS) concept, whose aim is to reduce analysis time and reagent and sample consumption while increasing throughput and portability by miniaturizing analytical laboratory procedures onto a microfluidic chip. More than two decades on, electrophoresis remains the most common separation technique used in microfluidic applications. MCE-based instruments have had some commercial success and have found application in many disciplines. This review will consider the present state of MCE including recent advances in technology and both novel and routine applications in the laboratory. We will also attempt to assess the impact of MCE in the scientific community and its prospects for the future.
Collapse
|
14
|
Abdul Keyon AS, Guijt RM, Bolch CJ, Breadmore MC. Droplet Microfluidics for Postcolumn Reactions in Capillary Electrophoresis. Anal Chem 2014; 86:11811-8. [DOI: 10.1021/ac5033963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aemi S. Abdul Keyon
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, GPO Box 252-75, Hobart, Tasmania 7001, Australia
- Pharmacy
School of Medicine, Australian Centre for Research on Separation Science, University of Tasmania, GPO Box 252-26, Hobart, Tasmania 7001, Australia
- National
Centre for Marine Conservation and Resource Sustainability, Australian
Maritime College, University of Tasmania, 7250, Launceston, Tasmania Australia
- Department
of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor Malaysia
| | - Rosanne M. Guijt
- Pharmacy
School of Medicine, Australian Centre for Research on Separation Science, University of Tasmania, GPO Box 252-26, Hobart, Tasmania 7001, Australia
| | - Christopher J. Bolch
- National
Centre for Marine Conservation and Resource Sustainability, Australian
Maritime College, University of Tasmania, 7250, Launceston, Tasmania Australia
| | - Michael C. Breadmore
- Australian
Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, GPO Box 252-75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
15
|
Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2014; 36:159-78. [DOI: 10.1002/elps.201400392] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
16
|
Wang S, Chen S, Wang J, Xu P, Luo Y, Nie Z, Du W. Interface solution isoelectric focusing with in situ MALDI-TOF mass spectrometry. Electrophoresis 2014; 35:2528-33. [DOI: 10.1002/elps.201400083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Shujun Wang
- Department of Chemistry; Renmin University of China; Beijing China
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Suming Chen
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Jianing Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Peng Xu
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems; Institute of Chemistry; Chinese Academy of Sciences; Beijing China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
- Department of Chemistry; Renmin University of China; Beijing China
| |
Collapse
|