2
|
Kronfeld K, Ellinger T, Köhler JM. Micro flow photochemical synthesis of Ca-sensitive fluorescent sensor particles. Eng Life Sci 2021; 21:518-526. [PMID: 34584516 PMCID: PMC8456324 DOI: 10.1002/elsc.202100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Fluorescence probes have widely been used for detecting and imaging Ca2+-enriched parts of cells but more rarely for quantitative determination of concentrations. In this study we show how this can be achieved by a novel approach using hydrogel particles. In a microfluidic co-flow arrangement spherical droplets were generated from an aqueous solution of acrylamide, N,N'-methylenebisacrylamide crosslinker and photoinitiator and subsequently photo-cured in situ yielding gel particles in a sub millimeter range. These particles were separated, dried under reduced pressure and re-swollen in water containing Rhod-5N tri potassium salt as calcium ion selective fluorescence probe. After that the particles were dried again and stored for further investigations. Upon exposure of dried particles to calcium chloride solutions they swell and take up Ca2+-ions forming a strong fluorescing complex with Rhod-5N. Thus, fluorescence intensity increases with calcium ion concentration. Up to ca. 0.50 mM the enhancement effect is strong and then becomes considerably weaker. The intensity-concentration-dependence is well described by an equation derived from the equilibrium of the formation of a 1:1 Ca2+:Rhod-5N complex. The particles allow for a fast optical determination of Ca2+-concentrations up to 0.50 mM in analyte volumes down to below 10 μL.
Collapse
Affiliation(s)
- Klaus‐Peter Kronfeld
- Department of Physical Chemistry and Microreaction TechnologyTechnical University IlmenauIlmenauGermany
| | | | - Johann Michael Köhler
- Department of Physical Chemistry and Microreaction TechnologyTechnical University IlmenauIlmenauGermany
| |
Collapse
|
3
|
Park HJ, Lee SS. Detection of miR‐155 Using Two Types of Electrochemical Approaches. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hyeoun Ji Park
- Department of Pharmaceutical Engineering Soonchunhhyang University Chungnam 31538 South Korea
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering Soonchunhhyang University Chungnam 31538 South Korea
| |
Collapse
|
4
|
Li H, Jie G. A versatile dendritical amplification photoelectric biosensing platform based on Bi2S3 nanorods and a perylene-based polymer for signal “on” and “off” double detection of DNA. Analyst 2020; 145:5524-5531. [DOI: 10.1039/d0an01040e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel versatile dendritical amplification photoelectric biosensing platform using Bi2S3 nanorods and a perylene-based polymer as double signal probes is proposed for the detection of trace target DNA.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| |
Collapse
|
5
|
Li Y, Liu H, Huang H, Deng J, Fang L, Luo J, Zhang S, Huang J, Liang W, Zheng J. A sensitive electrochemical strategy via multiple amplification reactions for the detection of E. coli O157: H7. Biosens Bioelectron 2019; 147:111752. [PMID: 31630033 DOI: 10.1016/j.bios.2019.111752] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
The sensitive and efficient strategy remains a central challenge for early diagnosis of pathogenic bacteria. Herein, an ultrasensitive electrochemical biosensor was proposed based on the multiple amplification strategy via the 3D DNA walker, rolling circle amplification (RCA) and hybridization chain reaction (HCR) for the accurate detection of Escherichiacoli O157:H7 (E. coli O157:H7). Firstly, the target sequence extracted from E. coli O157:H7 was transformed and amplified by the DNA walker firstly. Subsequently, a large number of transformed nucleic acid sequences were amplified by the RCA reaction. And then, the progress of HCR was triggered by every fragment in RCA products to form a long double-stranded DNA sequence to immobilize electrochemical indicators, generating a significantly enhanced electrochemical signal. As expected, a high sensitivity with a detection limit of 7 CFU/mL was achieved based on the proposed multiple amplification strategy, which is superior to most current methods for E. coli O157: H7 assay. The multiple amplification strategy could be readily expanded for the detection of various pathogenic bacteria, providing a new approach for early diagnosis of pathogenic microorganisms or other diseases.
Collapse
Affiliation(s)
- Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Huamin Liu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China; Department of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Jing Luo
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China; Department of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Shu Zhang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Wenbin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Liang W, Fan C, Zhuo Y, Zheng Y, Xiong C, Chai Y, Yuan R. Multiparameter Analysis-Based Electrochemiluminescent Assay for Simultaneous Detection of Multiple Biomarker Proteins on a Single Interface. Anal Chem 2016; 88:4940-8. [DOI: 10.1021/acs.analchem.6b00878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wenbin Liang
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
- Department
of Clinical Biochemistry, Laboratory Sciences, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba
District, Chongqing 400038, PR China
| | - Chenchen Fan
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhuo
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Yingning Zheng
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Chengyi Xiong
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key
Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
University), Ministry of Education, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
8
|
Affiliation(s)
- Wen Zhou
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xia Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
10
|
Fu X, Huang R, Wang J, Chang B. Sensitive electrochemical immunoassay of a biomarker based on biotin-avidin conjugated DNAzyme concatamer with signal tagging. RSC Adv 2013. [DOI: 10.1039/c3ra41429a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Pei X, Xu Z, Zhang J, Liu Z, Tian J. Sensitive electrochemical immunoassay of IgG1 based on poly(amido amine) dendrimer-encapsulated CdS quantum dots. RSC Adv 2013. [DOI: 10.1039/c3ra41665h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|