1
|
Mansoor S, Hamid S, Tuan TT, Park JE, Chung YS. Advance computational tools for multiomics data learning. Biotechnol Adv 2024; 77:108447. [PMID: 39251098 DOI: 10.1016/j.biotechadv.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
The burgeoning field of bioinformatics has seen a surge in computational tools tailored for omics data analysis driven by the heterogeneous and high-dimensional nature of omics data. In biomedical and plant science research multi-omics data has become pivotal for predictive analytics in the era of big data necessitating sophisticated computational methodologies. This review explores a diverse array of computational approaches which play crucial role in processing, normalizing, integrating, and analyzing omics data. Notable methods such similarity-based methods, network-based approaches, correlation-based methods, Bayesian methods, fusion-based methods and multivariate techniques among others are discussed in detail, each offering unique functionalities to address the complexities of multi-omics data. Furthermore, this review underscores the significance of computational tools in advancing our understanding of data and their transformative impact on research.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea
| | - Saira Hamid
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Pulwama, J&K, India
| | - Thai Thanh Tuan
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea; Multimedia Communications Laboratory, University of Information Technology, Ho Chi Minh city 70000, Vietnam; Multimedia Communications Laboratory, Vietnam National University, Ho Chi Minh city 70000, Vietnam
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Jeju-do, Republic of Korea.
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
2
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Qin G, Liu Z, Xie L. Multiple Omics Data Integration. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
4
|
Mantini G, Pham TV, Piersma SR, Jimenez CR. Computational Analysis of Phosphoproteomics Data in Multi-Omics Cancer Studies. Proteomics 2020; 21:e1900312. [PMID: 32875713 DOI: 10.1002/pmic.201900312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/09/2020] [Indexed: 12/24/2022]
Abstract
Multiple types of molecular data for the same set of clinical samples are increasingly available and may be analyzed jointly in an integrative analysis to maximize comprehensive biological insight. This analysis is important as separate analyses of individual omics data types usually do not fully explain disease phenotypes. An increasing number of studies have now been focusing on multi-omics data integration, yet not many studies have included phosphoproteomics data, an important layer for understanding signaling pathways. Multi-omics integration methods with phosphoproteomics data are reviewed in the context of cancer research as well as multi-omics methods papers that would be promising to apply to phosphoproteomics data. Analysis of individual data types is still the major approach even in large cohort proteogenomics studies. Hence, a section is dedicated on possible integrative methods for multi-omics and phosphoproteomics data. In summary, this review provides the readers with both currently used integrative methods previously applied to phosphoproteomics and multi-omics data integration and other algorithms for multi-omics data integration promising for future application to phosphoproteomics data.
Collapse
Affiliation(s)
- Giulia Mantini
- Department of Medical Oncology, OncoProteomics Laboratory, CCA 1-60, Amsterdam UMC VUmc-location, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, OncoProteomics Laboratory, CCA 1-60, Amsterdam UMC VUmc-location, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, CCA 1-60, Amsterdam UMC VUmc-location, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, CCA 1-60, Amsterdam UMC VUmc-location, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
5
|
Bersanelli M, Mosca E, Milanesi L, Bazzani A, Castellani G. Frailness and resilience of gene networks predicted by detection of co-occurring mutations via a stochastic perturbative approach. Sci Rep 2020; 10:2643. [PMID: 32060296 PMCID: PMC7021762 DOI: 10.1038/s41598-020-59036-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
In recent years complex networks have been identified as powerful mathematical frameworks for the adequate modeling of many applied problems in disparate research fields. Assuming a Master Equation (ME) modeling the exchange of information within the network, we set up a perturbative approach in order to investigate how node alterations impact on the network information flow. The main assumption of the perturbed ME (pME) model is that the simultaneous presence of multiple node alterations causes more or less intense network frailties depending on the specific features of the perturbation. In this perspective the collective behavior of a set of molecular alterations on a gene network is a particularly adapt scenario for a first application of the proposed method, since most diseases are neither related to a single mutation nor to an established set of molecular alterations. Therefore, after characterizing the method numerically, we applied as a proof of principle the pME approach to breast cancer (BC) somatic mutation data downloaded from Cancer Genome Atlas (TCGA) database. For each patient we measured the network frailness of over 90 significant subnetworks of the protein-protein interaction network, where each perturbation was defined by patient-specific somatic mutations. Interestingly the frailness measures depend on the position of the alterations on the gene network more than on their amount, unlike most traditional enrichment scores. In particular low-degree mutations play an important role in causing high frailness measures. The potential applicability of the proposed method is wide and suggests future development in the control theory context.
Collapse
Affiliation(s)
- Matteo Bersanelli
- Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy. .,National Institute for Nuclear Physics (INFN), Bologna, 40127, Italy.
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, 20090, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, 20090, Italy
| | - Armando Bazzani
- Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, 40127, Italy
| |
Collapse
|
6
|
Chauvel C, Novoloaca A, Veyre P, Reynier F, Becker J. Evaluation of integrative clustering methods for the analysis of multi-omics data. Brief Bioinform 2019; 21:541-552. [DOI: 10.1093/bib/bbz015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Recent advances in sequencing, mass spectrometry and cytometry technologies have enabled researchers to collect large-scale omics data from the same set of biological samples. The joint analysis of multiple omics offers the opportunity to uncover coordinated cellular processes acting across different omic layers. In this work, we present a thorough comparison of a selection of recent integrative clustering approaches, including Bayesian (BCC and MDI) and matrix factorization approaches (iCluster, moCluster, JIVE and iNMF). Based on simulations, the methods were evaluated on their sensitivity and their ability to recover both the correct number of clusters and the simulated clustering at the common and data-specific levels. Standard non-integrative approaches were also included to quantify the added value of integrative methods. For most matrix factorization methods and one Bayesian approach (BCC), the shared and specific structures were successfully recovered with high and moderate accuracy, respectively. An opposite behavior was observed on non-integrative approaches, i.e. high performances on specific structures only. Finally, we applied the methods on the Cancer Genome Atlas breast cancer data set to check whether results based on experimental data were consistent with those obtained in the simulations.
Collapse
Affiliation(s)
- Cécile Chauvel
- BIOASTER Research Institute, avenue Tony Garnier, Lyon, France
| | | | - Pierre Veyre
- BIOASTER Research Institute, avenue Tony Garnier, Lyon, France
| | | | - Jérémie Becker
- BIOASTER Research Institute, avenue Tony Garnier, Lyon, France
| |
Collapse
|
7
|
Misra BB, Langefeld CD, Olivier M, Cox LA. Integrated Omics: Tools, Advances, and Future Approaches. J Mol Endocrinol 2018; 62:JME-18-0055. [PMID: 30006342 DOI: 10.1530/jme-18-0055] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
With the rapid adoption of high-throughput omic approaches to analyze biological samples such as genomics, transcriptomics, proteomics, and metabolomics, each analysis can generate tera- to peta-byte sized data files on a daily basis. These data file sizes, together with differences in nomenclature among these data types, make the integration of these multi-dimensional omics data into biologically meaningful context challenging. Variously named as integrated omics, multi-omics, poly-omics, trans-omics, pan-omics, or shortened to just 'omics', the challenges include differences in data cleaning, normalization, biomolecule identification, data dimensionality reduction, biological contextualization, statistical validation, data storage and handling, sharing, and data archiving. The ultimate goal is towards the holistic realization of a 'systems biology' understanding of the biological question in hand. Commonly used approaches in these efforts are currently limited by the 3 i's - integration, interpretation, and insights. Post integration, these very large datasets aim to yield unprecedented views of cellular systems at exquisite resolution for transformative insights into processes, events, and diseases through various computational and informatics frameworks. With the continued reduction in costs and processing time for sample analyses, and increasing types of omics datasets generated such as glycomics, lipidomics, microbiomics, and phenomics, an increasing number of scientists in this interdisciplinary domain of bioinformatics face these challenges. We discuss recent approaches, existing tools, and potential caveats in the integration of omics datasets for development of standardized analytical pipelines that could be adopted by the global omics research community.
Collapse
Affiliation(s)
- Biswapriya B Misra
- B Misra, Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, United States
| | - Carl D Langefeld
- C Langefeld, Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, United States
| | - Michael Olivier
- M Olivier, Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, United States
| | - Laura A Cox
- L Cox, Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, United States
| |
Collapse
|
8
|
Glaab E. Computational systems biology approaches for Parkinson's disease. Cell Tissue Res 2018; 373:91-109. [PMID: 29185073 PMCID: PMC6015628 DOI: 10.1007/s00441-017-2734-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a prime example of a complex and heterogeneous disorder, characterized by multifaceted and varied motor- and non-motor symptoms and different possible interplays of genetic and environmental risk factors. While investigations of individual PD-causing mutations and risk factors in isolation are providing important insights to improve our understanding of the molecular mechanisms behind PD, there is a growing consensus that a more complete understanding of these mechanisms will require an integrative modeling of multifactorial disease-associated perturbations in molecular networks. Identifying and interpreting the combinatorial effects of multiple PD-associated molecular changes may pave the way towards an earlier and reliable diagnosis and more effective therapeutic interventions. This review provides an overview of computational systems biology approaches developed in recent years to study multifactorial molecular alterations in complex disorders, with a focus on PD research applications. Strengths and weaknesses of different cellular pathway and network analyses, and multivariate machine learning techniques for investigating PD-related omics data are discussed, and strategies proposed to exploit the synergies of multiple biological knowledge and data sources. A final outlook provides an overview of specific challenges and possible next steps for translating systems biology findings in PD to new omics-based diagnostic tools and targeted, drug-based therapeutic approaches.
Collapse
Affiliation(s)
- Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
9
|
Zeng ISL, Lumley T. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science). Bioinform Biol Insights 2018; 12:1177932218759292. [PMID: 29497285 PMCID: PMC5824897 DOI: 10.1177/1177932218759292] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.
Collapse
Affiliation(s)
- Irene Sui Lan Zeng
- Department of Statistics, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Thomas Lumley
- Department of Statistics, Faculty of Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Castellani GC, Menichetti G, Garagnani P, Giulia Bacalini M, Pirazzini C, Franceschi C, Collino S, Sala C, Remondini D, Giampieri E, Mosca E, Bersanelli M, Vitali S, Valle IFD, Liò P, Milanesi L. Systems medicine of inflammaging. Brief Bioinform 2016; 17:527-40. [PMID: 26307062 PMCID: PMC4870395 DOI: 10.1093/bib/bbv062] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/29/2015] [Indexed: 12/30/2022] Open
Abstract
Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored computational, statistical and modeling tools. The three SM pillars are highly interconnected, and their balancing is crucial. Despite the great technological progresses producing huge amount of data (Big Data) and impressive computational facilities, the Bio-Medical hypotheses are still of primary importance. A paradigmatic example of unifying Bio-Medical theory is the concept of Inflammaging. This complex phenotype is involved in a large number of pathologies and patho-physiological processes such as aging, age-related diseases and cancer, all sharing a common inflammatory pathogenesis. This Biomedical hypothesis can be mapped into an ecological perspective capable to describe by quantitative and predictive models some experimentally observed features, such as microenvironment, niche partitioning and phenotype propagation. In this article we show how this idea can be supported by computational methods useful to successfully integrate, analyze and model large data sets, combining cross-sectional and longitudinal information on clinical, environmental and omics data of healthy subjects and patients to provide new multidimensional biomarkers capable of distinguishing between different pathological conditions, e.g. healthy versus unhealthy state, physiological versus pathological aging.
Collapse
|
11
|
Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L. Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 2016; 17 Suppl 2:15. [PMID: 26821531 PMCID: PMC4959355 DOI: 10.1186/s12859-015-0857-9] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methods for the integrative analysis of multi-omics data are required to draw a more complete and accurate picture of the dynamics of molecular systems. The complexity of biological systems, the technological limits, the large number of biological variables and the relatively low number of biological samples make the analysis of multi-omics datasets a non-trivial problem. RESULTS AND CONCLUSIONS We review the most advanced strategies for integrating multi-omics datasets, focusing on mathematical and methodological aspects.
Collapse
Affiliation(s)
- Matteo Bersanelli
- Department of Physics and Astronomy, Universita' di Bologna, Via B. Pichat 6/2, Bologna, 40127, Italy. .,Institute of Biomedical Technologies - CNR, Via Fratelli Cervi 93, Segrate MI, 20090, Italy.
| | - Ettore Mosca
- Institute of Biomedical Technologies - CNR, Via Fratelli Cervi 93, Segrate MI, 20090, Italy.
| | - Daniel Remondini
- Department of Physics and Astronomy, Universita' di Bologna, Via B. Pichat 6/2, Bologna, 40127, Italy.
| | - Enrico Giampieri
- Department of Physics and Astronomy, Universita' di Bologna, Via B. Pichat 6/2, Bologna, 40127, Italy.
| | - Claudia Sala
- Department of Physics and Astronomy, Universita' di Bologna, Via B. Pichat 6/2, Bologna, 40127, Italy.
| | - Gastone Castellani
- Department of Physics and Astronomy, Universita' di Bologna, Via B. Pichat 6/2, Bologna, 40127, Italy.
| | - Luciano Milanesi
- Institute of Biomedical Technologies - CNR, Via Fratelli Cervi 93, Segrate MI, 20090, Italy.
| |
Collapse
|
12
|
Mosca E, Alfieri R, Milanesi L. Diffusion of information throughout the host interactome reveals gene expression variations in network proximity to target proteins of hepatitis C virus. PLoS One 2014; 9:e113660. [PMID: 25461596 PMCID: PMC4251971 DOI: 10.1371/journal.pone.0113660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus infection is one of the most common and chronic in the world, and hepatitis associated with HCV infection is a major risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). The rapidly growing number of viral-host and host protein-protein interactions is enabling more and more reliable network-based analyses of viral infection supported by omics data. The study of molecular interaction networks helps to elucidate the mechanistic pathways linking HCV molecular activities and the host response that modulates the stepwise hepatocarcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to HCC. Simulating the impact of HCV-host molecular interactions throughout the host protein-protein interaction (PPI) network, we ranked the host proteins in relation to their network proximity to viral targets. We observed that the set of proteins in the neighborhood of HCV targets in the host interactome is enriched in key players of the host response to HCV infection. In opposition to HCV targets, subnetworks of proteins in network proximity to HCV targets are significantly enriched in proteins reported as differentially expressed in preneoplastic and neoplastic liver samples by two independent studies. Using multi-objective optimization, we extracted subnetworks that are simultaneously “guilt-by-association” with HCV proteins and enriched in proteins differentially expressed. These subnetworks contain established, recently proposed and novel candidate proteins for the regulation of the mechanisms of liver cells response to chronic HCV infection.
Collapse
Affiliation(s)
- Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
- * E-mail:
| | - Roberta Alfieri
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| |
Collapse
|