1
|
Wikeley S, Przybylowski J, Gardiner JE, James TD, Fletcher PJ, Isaacs MA, Lozano-Sanchez P, Caffio M, Marken F. Pyrene-Appended Boronic Acids on Graphene Foam Electrodes Provide Quantum Capacitance-Based Molecular Sensors for Lactate. ACS Sens 2024; 9:1565-1574. [PMID: 38447101 PMCID: PMC10964244 DOI: 10.1021/acssensors.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Molecular recognition and sensing can be coupled to interfacial capacitance changes on graphene foam surfaces linked to double layer effects and coupled to enhanced quantum capacitance. 3D graphene foam film electrodes (Gii-Sens; thickness approximately 40 μm; roughness factor approximately 100) immersed in aqueous buffer media exhibit an order of magnitude jump in electrochemical capacitance upon adsorption of a charged molecular receptor based on pyrene-appended boronic acids (here, 4-borono-1-(pyren-2-ylmethyl)pyridin-1-ium bromide, or abbreviated T1). This pyrene-appended pyridinium boronic acid receptor is employed here as a molecular receptor for lactate. In the presence of lactate and at pH 4.0 (after pH optimization), the electrochemical capacitance (determined by impedance spectroscopy) doubles again. Lactic acid binding is expressed with a Hillian binding constant (Klactate = 75 mol-1 dm3 and α = 0.8 in aqueous buffer, Klactate = 460 mol-1 dm3 and α = 0.8 in artificial sweat, and Klactate = 340 mol-1 dm3 and α = 0.65 in human serum). The result is a selective molecular probe response for lactic acid with LoD = 1.3, 1.4, and 1.8 mM in aqueous buffer media (pH 4.0), in artificial sweat (adjusted to pH 4.7), and in human serum (pH adjusted to 4.0), respectively. The role of the pyrene-appended boronic acid is discussed based on the double layer structure and quantum capacitance changes. In the future, this new type of molecular capacitance sensor could provide selective enzyme-free analysis without analyte consumption for a wider range of analytes and complex environments.
Collapse
Affiliation(s)
- Simon
M. Wikeley
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Jakub Przybylowski
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Jordan E. Gardiner
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Tony D. James
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | | | - Mark A. Isaacs
- HarwellXPS,
Research Complex at Harwell, STFC Rutherford
Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, U.K.
- Department
of Chemistry, University College London, London WC1H 0AJ, U.K.
| | | | - Marco Caffio
- Integrated
Graphene Ltd., Euro House, Wellgreen Place, Stirling FK8 2DJ, U.K.
| | - Frank Marken
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
2
|
Wikeley SM, Przybylowski J, Lozano-Sanchez P, Caffio M, James TD, Bull SD, Fletcher PJ, Marken F. Polymer indicator displacement assay: electrochemical glucose monitoring based on boronic acid receptors and graphene foam competitively binding with poly-nordihydroguaiaretic acid. Analyst 2022; 147:661-670. [DOI: 10.1039/d1an01991k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A poly-nordihydroguaiaretic acid film is employed as a voltammetric indicator for bound/unbound boronic acid sites to report on glucose and fructose concentration.
Collapse
Affiliation(s)
- Simon M. Wikeley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Jakub Przybylowski
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | - Marco Caffio
- Integrated Graphene Ltd., Euro House, Wellgreen Place, Stirling FK8 2DJ, UK
| | - Tony D. James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Steven D. Bull
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Philip J. Fletcher
- University of Bath, Materials & Chemical Characterisation Facility, MC2, Bath BA2 7AY, UK
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
3
|
Takahashi S, Suzuki I, Ojima T, Minaki D, Anzai JI. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component. SENSORS (BASEL, SWITZERLAND) 2018; 18:E317. [PMID: 29361775 PMCID: PMC5795570 DOI: 10.3390/s18010317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/08/2023]
Abstract
Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.
Collapse
Affiliation(s)
- Shigehiro Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaorui, Takasaki 370-0033, Japan.
| | - Iwao Suzuki
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaorui, Takasaki 370-0033, Japan.
| | - Takuto Ojima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Daichi Minaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
4
|
A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2440-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Takahashi S, Suzuki I, Sugawara T, Seno M, Minaki D, Anzai JI. Alizarin Red S-Confined Layer-By-Layer Films as Redox-Active Coatings on Electrodes for the Voltammetric Determination of L-Dopa. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E581. [PMID: 28772942 PMCID: PMC5552174 DOI: 10.3390/ma10060581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022]
Abstract
The preparation of redox-active coatings is a key step in fabricating electrochemical biosensors. To this goal, a variety of coating materials have been used in combination with redox-active compounds. In this study, alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of poly(ethyleneimine) (PEI) and carboxymethylcellulose (CMC) to study the redox properties. A gold (Au) disc electrode coated with PEI/CMC LbL film was immersed in an ARS solution to uptake ARS into the film. ARS was successfully confined in the LbL film through electrostatic interactions. The cyclic voltammogram (CV) of ARS-confined PEI/CMC film-coated electrodes thus prepared exhibited redox waves in the potential range from -0.5 to -0.7 V originating from 9,10-anthraquinone moiety in ARS, demonstrating that ARS preserves its redox activity in the LbL film. An additional oxidation peak appeared around -0.4 V in the CV recorded in the solution containing phenylboronic acid (PBA), due to the formation of a boronate ester of ARS (ARS-PBA) in the film. The oxidation peak current at -0.4 V decreased upon addition of 3,4-dihydroxyphenylalanine (L-dopa) to the solution. Thus, the results suggest a potential use of the ARS-confined PEI/CMC films for constructing voltammetric sensors for L-dopa.
Collapse
Affiliation(s)
- Shigehiro Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaorui, Takasaki 370-0033, Japan.
| | - Iwao Suzuki
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaorui, Takasaki 370-0033, Japan.
| | - Tatsuro Sugawara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Masaru Seno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Daichi Minaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
James TD. Self and directed assembly: people and molecules. Beilstein J Org Chem 2016; 12:391-405. [PMID: 27340435 PMCID: PMC4902004 DOI: 10.3762/bjoc.12.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/07/2016] [Indexed: 11/23/2022] Open
Abstract
Self-assembly and directed-assembly are two very important aspects of supramolecular chemistry. As a young postgraduate student working in Canada with Tom Fyles my introduction to Supramolecular Chemistry was through the self-assembly of phospholipid membranes to form vesicles for which we were developing unimolecular and self-assembling transporter molecules. The next stage of my development as a scientist was in Japan with Seiji Shinkai where in a “Eureka” moment, the boronic acid templating unit (directed-assembly) of Wulff was combined with photoinduced electron transfer systems pioneered by De Silva. The result was a turn-on fluorescence sensor for saccharides; this simple result has continued to fuel my research to the present day. Throughout my career as well as assembling molecules, I have enjoyed bringing together researchers in order to develop collaborative networks. This is where molecules meet people resulting in assemblies worth more than the individual “molecule” or “researcher”. My role in developing networks with Japan was rewarded by the award of a Daiwa-Adrian Prize in 2013 and I was recently rewarded for developing networks with China with an Inaugural CASE Prize in 2015.
Collapse
Affiliation(s)
- Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
7
|
Salehniya H, Amiri M, Mansoori Y. Positively charged carbon nanoparticulate/sodium dodecyl sulphate bilayer electrode for extraction and voltammetric determination of ciprofloxacin in real samples. RSC Adv 2016. [DOI: 10.1039/c6ra03170f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modified electrode was prepared using a layer-by-layer method with functionalized CNPs and SDS. The ability of modified electrode to adsorb ciprofloxacin was investigated. Ciprofloxacin was analyzed in real samples.
Collapse
Affiliation(s)
- Haneie Salehniya
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Mandana Amiri
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Yaghoub Mansoori
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| |
Collapse
|
8
|
Stephenson-Brown A, Yong S, Mansor MH, Hussein Z, Yip NC, Mendes PM, Fossey JS, Rawson FJ. Electronic communication of cells with a surface mediated by boronic acid saccharide interactions. Chem Commun (Camb) 2015; 51:17213-6. [PMID: 26413585 PMCID: PMC4668958 DOI: 10.1039/c5cc04311e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/10/2015] [Indexed: 01/11/2023]
Abstract
The fabrication of a molecularly tailored surface functionalised with a saccharide binding motif, a phenyl boronic acid derivative is reported. The functionalised surface facilitated the transfer of electrons, via unique electronic interactions mediated by the presence of the boronic acid, from a macrophage cell line. This is the first example of eukaryotic cellular-electrical communication mediated by the binding of cells via their cell-surface saccharide units.
Collapse
Affiliation(s)
- Alex Stephenson-Brown
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Sue Yong
- School of Pharmacy, University of Nottingham, University Park Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Muhammad H Mansor
- School of Pharmacy, University of Nottingham, University Park Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Zarrar Hussein
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Nga-Chi Yip
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Frankie J Rawson
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK.
| |
Collapse
|
9
|
|
10
|
Li M, Xu SY, Gross AJ, Hammond JL, Estrela P, Weber J, Lacina K, James TD, Marken F. Ferrocene-Boronic Acid-Fructose Binding Based on Dual-Plate Generator-Collector Voltammetry and Square-Wave Voltammetry. ChemElectroChem 2015; 2:867-871. [PMID: 27525210 PMCID: PMC4964879 DOI: 10.1002/celc.201500016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Indexed: 11/08/2022]
Abstract
The interaction of ferrocene‐boronic acid with fructose is investigated in aqueous 0.1 m phosphate buffer at pH 7, 8 and 9. Two voltammetric methods, based on 1) a dual‐plate generator–collector micro‐trench electrode (steady state) and 2) a square‐wave voltammetry (transient) method, are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene‐boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene‐boronic acid (pH independent and strongly binding).
Collapse
Affiliation(s)
- Meng Li
- Department of Chemistry, University of Bath Claverton Down, Bath BA2 7AY (UK) E-mail:
| | - Su-Ying Xu
- Department of Chemistry, University of Bath Claverton Down, Bath BA2 7AY (UK) E-mail:
| | - Andrew J Gross
- Department of Chemistry, University of Bath Claverton Down, Bath BA2 7AY (UK) E-mail:
| | - Jules L Hammond
- Department of Electronic and Electrical Engineering, University of Bath Claverton Down, Bath BA2 7AY (UK)
| | - Pedro Estrela
- Department of Electronic and Electrical Engineering, University of Bath Claverton Down, Bath BA2 7AY (UK)
| | - James Weber
- Department of Chemistry, University of Bath Claverton Down, Bath BA2 7AY (UK) E-mail:
| | - Karel Lacina
- CEITEC, Masaryk University Kamenice 5, CS-62500 Brno (Czech Republic)
| | - Tony D James
- Department of Chemistry, University of Bath Claverton Down, Bath BA2 7AY (UK) E-mail:
| | - Frank Marken
- Department of Chemistry, University of Bath Claverton Down, Bath BA2 7AY (UK) E-mail:
| |
Collapse
|
11
|
Sanjoh M, Iizuka D, Matsumoto A, Miyahara Y. Boronate based metal-free platform for diphosphate-specific molecular recognitions. Org Lett 2015; 17:588-91. [PMID: 25594134 DOI: 10.1021/ol5036003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A reversible boronate-diol interaction provides a versatile synthetic platform for molecular recognitions whose binding specificity can be molecularly tailored. We found that boronate derivatives with relatively strong acidity generally undergo a diphosphate-specific recognition among other phosphates under weakly acidic pH conditions, a feature relevant to DNA sequencing. (11)B and (31)P NMR studies identified "tetrahedral boronate and divalent diphosphate" as a pair responsible for forming a 1:1 stoichiometric complex, which manifests as a unique pH-dependent stability.
Collapse
Affiliation(s)
- Mai Sanjoh
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Kanda-surugadai 2-3-10, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | |
Collapse
|
12
|
Li M, Zhu W, Marken F, James TD. Electrochemical sensing using boronic acids. Chem Commun (Camb) 2015; 51:14562-73. [DOI: 10.1039/c5cc04976h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Boronic acids can bind with 1,2- or 1,3-diols to form five or six-membered cyclic complexes and also can interact with Lewis bases to generate boronate anions, making them suitable for the electrochemical sensing of these species
Collapse
Affiliation(s)
- Meng Li
- Department of Chemistry
- University of Bath
- Claverton Down
- Bath
- UK
| | - Weihong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- P. R. China
| | - Frank Marken
- Department of Chemistry
- University of Bath
- Claverton Down
- Bath
- UK
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Claverton Down
- Bath
- UK
| |
Collapse
|
13
|
Lacina K, Skládal P, James TD. Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chem Cent J 2014; 8:60. [PMID: 25371705 PMCID: PMC4218984 DOI: 10.1186/s13065-014-0060-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013.
Collapse
Affiliation(s)
- Karel Lacina
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Petr Skládal
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tony D James
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| |
Collapse
|
14
|
Lawrence K, Baker CL, James TD, Bull SD, Lawrence R, Mitchels JM, Opallo M, Arotiba OA, Ozoemena KI, Marken F. Functionalized Carbon Nanoparticles, Blacks and Soots as Electron-Transfer Building Blocks and Conduits. Chem Asian J 2014; 9:1226-41. [DOI: 10.1002/asia.201301657] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/05/2022]
|