1
|
THIRUMALAI A, ELBOUGHDIRI N, HARINI K, GIRIGOSWAMI K, GIRIGOSWAMI A. Phosphorus-carrying cascade molecules: inner architecture to biomedical applications. Turk J Chem 2023; 47:667-688. [PMID: 38174062 PMCID: PMC10760543 DOI: 10.55730/1300-0527.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/25/2023] [Accepted: 06/23/2023] [Indexed: 01/05/2024] Open
Abstract
Cascade molecules are nearly uniform-sized macromolecules of small molecules or linear polymer cores built around symmetric branching units. A wide range of biological properties can be achieved with phosphorus-containing dendrimers, depending on their terminal functions, ranging from biomaterials to imaging, drug delivery, and acting as a drug by themselves. This feature article presents significant examples of phosphorus-containing dendrimers used to develop biochips, support cell cultures, carry or deliver biomacromolecules and drugs, bioimaging, and combinational benefits. Because of the thermal stability, ferrocene function, and physical and chemical properties of phosphorus, dendrimers show greater rigidity, mobility, and strength. These dendrimers will be discussed as having a favorable effect on cell growths, especially on neuronal cells, as well as human immune cells like natural killer cells and monocytes, which have a crucial part in preventing cancerous and viral infections. Several phosphorus dendrimers are effective as drugs by themselves (drug per se) and show their activity against neurodegenerative diseases, cancer, inflammation, ocular hypertension, and transmissible spongiform encephalopathies (TSEs) in both in vivo and in vitro. The present review discusses the synthetic route, fabrications, and biomedical applications of phosphorus-containing dendrimers. The toxicity of these dendrimers was also reported.
Collapse
Affiliation(s)
- Anbazhagan THIRUMALAI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Noureddine ELBOUGHDIRI
- Department of Chemical Engineering, College of Engineering, University of Hail, Hail,
Saudi Arabia
- Department of Chemical Engineering Process, National School of Engineers Gabes, University of Gabes, Gabes,
Tunisia
| | - Karthick HARINI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Koyeli GIRIGOSWAMI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| | - Agnishwar GIRIGOSWAMI
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, TN,
India
| |
Collapse
|
2
|
Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023; 14:1159131. [PMID: 37006997 PMCID: PMC10060650 DOI: 10.3389/fphar.2023.1159131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
Collapse
Affiliation(s)
- Monika Kaurav
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Ghaziabad, India
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Dhani Ramachandran
- Department of Pathology, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
- *Correspondence: Ram Kumar Sahu,
| | | | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
| |
Collapse
|
3
|
PEG-cored phosphorus dendrimers: synthesis and functionalization. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Chen L, Li J, Fan Y, Qiu J, Cao L, Laurent R, Mignani S, Caminade AM, Majoral JP, Shi X. Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules 2020; 21:2502-2511. [DOI: 10.1021/acs.biomac.0c00458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jieru Qiu
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Serge Mignani
- Universite′ Paris Descartes, PRES Sorbonne Paris Cite′, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, 75006 Paris, France
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
5
|
Su D, Coste M, Diaconu A, Barboiu M, Ulrich S. Cationic dynamic covalent polymers for gene transfection. J Mater Chem B 2020; 8:9385-9403. [DOI: 10.1039/d0tb01836h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic covalent polymers have revealed strong potential in gene delivery, thanks to their versatile self-assembly, adaptive and responsive behaviors.
Collapse
Affiliation(s)
- Dandan Su
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| | - Andrei Diaconu
- Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy
- Iasi
- Romania
| | - Mihail Barboiu
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- University of Montpellier
- ENSCM
- CNRS
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- CNRS
- Université of Montpellier
- ENSCM
- Montpellier
| |
Collapse
|
6
|
Zhu Y, Liu C, Pang Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019; 9:E790. [PMID: 31783573 PMCID: PMC6995517 DOI: 10.3390/biom9120790] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Human neuroscience has made remarkable progress in understanding basic aspects of functional organization; it is a renowned fact that the blood-brain barrier (BBB) impedes the permeation and access of most drugs to central nervous system (CNS) and that many neurological diseases remain undertreated. Therefore, a number of nanocarriers have been designed over the past few decades to deliver drugs to the brain. Among these nanomaterials, dendrimers have procured an enormous attention from scholars because of their nanoscale uniform size, ease of multi-functionalization, and available internal cavities. As hyper-branched 3D macromolecules, dendrimers can be maneuvered to transport diverse therapeutic agents, incorporating small molecules, peptides, and genes; diminishing their cytotoxicity; and improving their efficacy. Herein, the present review will give exhaustive details of extensive researches in the field of dendrimer-based vehicles to deliver drugs through the BBB in a secure and effectual manner. It is also a souvenir in commemorating Donald A. Tomalia on his 80th birthday.
Collapse
Affiliation(s)
- Yuefei Zhu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
- Department of Biomedical Engineering, Columbia University Medical Center, 3960 Broadway, New York, NY 10032, USA
| | - Chunying Liu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| |
Collapse
|
7
|
Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, Ionov M, Shcharbin D, Bryszewska M. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Caminade AM, Zibarov A, Cueto Diaz E, Hameau A, Klausen M, Moineau-Chane Ching K, Majoral JP, Verlhac JB, Mongin O, Blanchard-Desce M. Fluorescent phosphorus dendrimers excited by two photons: synthesis, two-photon absorption properties and biological uses. Beilstein J Org Chem 2019; 15:2287-2303. [PMID: 31598181 PMCID: PMC6774077 DOI: 10.3762/bjoc.15.221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Different types of two-photon absorbing (TPA) fluorophores have been synthesized and specifically functionalized to be incorporated in the structure of phosphorus dendrimers (highly branched macromolecules). The TPA fluorophores were included in the periphery as terminal functions, in the core, or in the branches of the dendrimer structures, respectively. Also the functionalization in two compartments (core and surface, or branches and surface) was achieved. The consequences of the location of the fluorophores on the fluorescence and TPA properties have been studied. Several of these TPA fluorescent dendrimers have water-solubilizing functions as terminal groups, and fluorophores at the core or in the branches. They have been used as fluorescent tools in biology for different purposes, such as tracers for imaging blood vessels of living animals, for determining the phenotype of cells, for deciphering the mechanism of action of anticancer compounds, and for safer photodynamic therapy.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Artem Zibarov
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Eduardo Cueto Diaz
- Univ. Bordeaux, ISM (CNRS-UMR5255), Bat A12, 351 Cours de la Libération, 33400 Talence, France
| | - Aurélien Hameau
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Maxime Klausen
- Univ. Bordeaux, ISM (CNRS-UMR5255), Bat A12, 351 Cours de la Libération, 33400 Talence, France
| | - Kathleen Moineau-Chane Ching
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France.,LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Jean-Baptiste Verlhac
- Univ. Bordeaux, ISM (CNRS-UMR5255), Bat A12, 351 Cours de la Libération, 33400 Talence, France
| | - Olivier Mongin
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
9
|
Ardic Alidagi H, Tümay SO, Şenocak A, Çiftbudak ÖF, Çoşut B, Yeşilot S. Constitutional isomers of dendrimer-like pyrene substituted cyclotriphosphazenes: synthesis, theoretical calculations, and use as fluorescence receptors for the detection of explosive nitroaromatics. NEW J CHEM 2019. [DOI: 10.1039/c9nj03695d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two constitutionally isomeric bis-pyrenyl phenol dendrons (4 and 6) and their dendrimer-like cyclotriphosphazene derivatives (5 and 7) are designed, synthesized and fluorescence detection behaviors are evaluated for nitro aromatic compounds (NACs).
Collapse
Affiliation(s)
| | | | - Ahmet Şenocak
- Department of Chemistry
- Gebze Technical University
- Kocaeli
- Turkey
| | | | - Bünyemin Çoşut
- Department of Chemistry
- Gebze Technical University
- Kocaeli
- Turkey
| | - Serkan Yeşilot
- Department of Chemistry
- Gebze Technical University
- Kocaeli
- Turkey
| |
Collapse
|
10
|
Majoral J, Caminade A. Phosphorhydrazones as Useful Building Blocks for Special Architectures: Macrocycles and Dendrimers. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jean‐Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination CNRS 205, route de Narbonne 31077 Toulouse Cedex 04 France
- LCC‐CNRS Université de Toulouse CNRS Toulouse France
| |
Collapse
|
11
|
Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, Abashkin V, Shcharbin D, Bryszewska M. Dendrimers Show Promise for siRNA and microRNA Therapeutics. Pharmaceutics 2018; 10:E126. [PMID: 30096839 PMCID: PMC6161126 DOI: 10.3390/pharmaceutics10030126] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
The lack of an appropriate intracellular delivery system for therapeutic nucleic acids (TNAs) is a major problem in molecular biology, biotechnology, and medicine. A relatively new class of highly symmetrical hyperbranched polymers, called dendrimers, shows promise for transporting small TNAs into both cells and target tissues. Dendrimers have intrinsic advantages for this purpose: their physico-chemical and biological properties can be controlled during synthesis, and they are able to transport large numbers of TNA molecules that can specifically suppress the expression of single or multiple targeted genes. Numerous chemical modifications of dendrimers extend the biocompatibility of synthetic materials and allow targeted vectors to be designed for particular therapeutic purposes. This review summarizes the latest experimental data and trends in the medical application of various types of dendrimers and dendrimer-based nanoconstructions as delivery systems for short small interfering RNAs (siRNAs) and microRNAs at the cell and organism levels. It provides an overview of the structural features of dendrimers, indicating their advantages over other types of TNA transporters.
Collapse
Affiliation(s)
- Volha Dzmitruk
- Institute of Biophysics and Cell Engineering of NASB, 220072 Minsk, Belarus.
| | - Evgeny Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
| | - Aliaksei Ihnatsyeu-Kachan
- Institute of Biophysics and Cell Engineering of NASB, 220072 Minsk, Belarus.
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02972 Seoul, Korea.
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, 220072 Minsk, Belarus.
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, 220072 Minsk, Belarus.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland.
| |
Collapse
|
12
|
Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. COLLOIDS AND INTERFACES 2017. [DOI: 10.3390/colloids1010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Gillon BH, Gates DP, Henderson MA, Janusson E, McIndoe JS. Mass spectrometric characterization of oligomeric phosphaalkenes. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oligomeric phosphaalkenes are readily characterized using electrospray ionization mass spectrometry (ESI-MS). The high affinity of phosphines for silver ions permits the detection of the unadulterated polymer as [M + xAg]x+ions (x = 2–3). When the oligomers are oxidized using H2O2, the resulting phosphine oxide polymer may be treated with sodium ions to produce [M + xNa]x+ions (x = 2–3). Both methods predict a similar distribution of oligomers: Mnvalues of 3450 ± 100 Da and a PDI of 1.09 ± 0.01 cover both analyses. This distribution represents oligomers of the general formula Me(PMesCPh2)nH from n = 4–20, maximizing at ∼n = 10.
Collapse
Affiliation(s)
- Bronwyn H. Gillon
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Derek P. Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Matthew A. Henderson
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - Eric Janusson
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| | - J. Scott McIndoe
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada
| |
Collapse
|
14
|
Andreozzi E, Antonelli A, Cangiotti M, Canonico B, Sfara C, Pianetti A, Bruscolini F, Sahre K, Appelhans D, Papa S, Ottaviani MF. Interactions of Nitroxide-Conjugated and Non-Conjugated Glycodendrimers with Normal and Cancer Cells and Biocompatibility Studies. Bioconjug Chem 2017; 28:524-538. [PMID: 28068077 DOI: 10.1021/acs.bioconjchem.6b00635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(propyleneimine) glycodendrimers fully modified with maltose units were administered to different cancer cell lines and their effect on cell viability was evaluated by using MTS assay and flow cytometry. The mechanism of dendrimer-cell interactions was investigated by the electron paramagnetic resonance (EPR) technique by using a new nitroxide-conjugated glycodendrimer. The nitroxide groups did not modify both the biological properties (cell viability and apoptosis degree) of the dendrimers in the presence of the cells and the dendrimer-cell interactions. Since this class of dendrimers is already known to be biocompatible for human healthy cells, noncancer cells such as human peripheral blood mononuclear cells (PBMCs) and macrophages were also treated with the glycodendrimer, and EPR spectra of the nitroxide-conjugated glycodendrimer were compared for cancer and noncancer cells. It was found that this dendrimer selectively affects the cell viability of tumor cells, while, surprisingly, PBMC proliferation is induced. Moreover, H-bond-active glycodendrimer-cell interactions were different for the different cancer cell lines and noncancer cells. The nitroxide-conjugated glycodendrimer was able to interact with the cell membrane and eventually cross it, getting in contact with cytosol antioxidants. This study helps to clarify the potential anticancer effect of this class of dendrimers opening to future applications of these macromolecules as new antitumor agents.
Collapse
Affiliation(s)
- Elisa Andreozzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo , Via Ca' Le Suore 2/4, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Carla Sfara
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Anna Pianetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Francesca Bruscolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Karin Sahre
- Leibniz Institute of Polymer Research Dresden , Department Bioactive and Responsive Polymers, Hohe Strasse 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden , Department Bioactive and Responsive Polymers, Hohe Strasse 6, 01069 Dresden, Germany
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo , Via Saffi 2, 61029 Urbino, Italy
| | - Maria Francesca Ottaviani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo , Via Ca' Le Suore 2/4, 61029 Urbino, Italy
| |
Collapse
|
15
|
Mignani S, Bryszewska M, Zablocka M, Klajnert-Maculewicz B, Cladera J, Shcharbin D, Majoral JP. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Lombardo D, Calandra P, Bellocco E, Laganà G, Barreca D, Magazù S, Wanderlingh U, Kiselev MA. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2769-2777. [PMID: 27521487 DOI: 10.1016/j.bbamem.2016.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/02/2016] [Accepted: 08/07/2016] [Indexed: 12/25/2022]
Abstract
In spite of the growing variety of biological applications of dendrimer-based nanocarriers, a major problem of their potential applications in bio-medicine is related to the disruption of lipid bilayers and the cytotoxicity caused by the aggregation processes involved onto cellular membranes. With the aim to study model dendrimer-biomembrane interaction, the self-assembly processes of a mixture of charged polyamidoamine (PAMAM) dendrimers and dipalmitoylphosphatidylcholine (DPPC) lipids were investigated by means of Zeta potential analysis, Raman and x-ray scattering. Zwitterionic DPPC liposomes showed substantially different behaviors during their interaction with negatively charged (generation G=2.5) sodium carboxylate terminated (COO- Na+) dendrimers or positively charged (generation G=3.0) amino terminated (-NH2) dendrimers. More specifically the obtained results evidence the sensitive interactions between dendrimer terminals and lipid molecules at the surface of the liposome, with an enhancement of the liposome surface zeta potential, as well as in the hydrophobic region of the bilayers, where dendrimer penetration produce a perturbation of the hydrophobic alkyl chains of the bilayers. Analysis of the SAXS structure factor with a suitable model for the inter-dendrimers electrostatic potential allows an estimation of an effective charge of 15 ǀeǀ for G=2.5 and 7.6 ǀeǀ for G=3.0 PAMAM dendrimers. Only a fraction (about 1/7) of this charge contributes to the linear increase of liposome zeta-potential with increasing PAMAM/DPPC molar fraction. The findings of our investigation may be applied to rationalize the effect of the nanoparticles electrostatic interaction in solution environments for the design of new drug carriers combining dendrimeric and liposomal technology.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, Viale F. S. D'Alcontres 37, 98158 Messina, Italy.
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km 29.300, Monterotondo Stazione, 00015 Roma, Italy
| | - Ersilia Bellocco
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Laganà
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche ed ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy; LE STUDIUM, Loire Valley Institute for Advanced Studies, Orléans & Tours; and CBM (CNRS), rue Charles Sandron, 45071 Orléans, France
| | - Ulderico Wanderlingh
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Mikhail A Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Ulica Joliot-Curie 6, Dubna, Moscow 141980, Russia
| |
Collapse
|
17
|
Recoverable Dendritic Phase-Transfer Catalysts that Contain (+)-Cinchonine-Derived Ammonium Salts. ChemCatChem 2016. [DOI: 10.1002/cctc.201600283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Çetindere S, Tümay SO, Kılıç A, Durmuş M, Yeşilot S. Hexa-BODIPY Linked-Triazole Based on a Cyclotriphosphazene Core as a Highly Selective and Sensitive Fluorescent Sensor for Fe2+ Ions. J Fluoresc 2016; 26:1173-81. [DOI: 10.1007/s10895-016-1797-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/27/2016] [Indexed: 10/21/2022]
|
19
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
20
|
Caminade AM, Hameau A, Majoral JP. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans 2015; 45:1810-22. [PMID: 26525036 DOI: 10.1039/c5dt03047a] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hexachlorocyclotriphosphazene is an old compound which affords very new properties in the field of dendrimers. Indeed, it can be used as a branching point for the rapid synthesis of highly dense dendrimers, but also for the synthesis of dendrimers having precisely one function different from all the others. These types of dendrimers are useful in the field of materials, affording highly reusable catalysts, chemical sensors, or supports for cell cultures. However, the most developed uses concern fluorescence. These dendrimers have been used for in vivo imaging, and for trying to elucidate biological mechanisms, in particular for anti-inflammatory dendrimers. This review will display important examples in the field.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France.
| | | | | |
Collapse
|
21
|
Abstract
A survey of the state-of-the-art in the development of synthetic methods to incorporate p-block elements into polymers is given. The incorporation of main group elements (groups 13-16) into long chains provides access to materials with fascinating chemical and physical properties imparted by the presence of inorganic groups. Perhaps the greatest impedance to the widespread academic and commercial use of p-block element-containing macromolecules is the synthetic challenge associated with linking inorganic elements into long chains. In recent years, creative methodologies have been developed to incorporate heteroatoms into polymeric structures, with perhaps the greatest advances occurring with hybrid organic-inorganic polymers composed of boron, silicon, phosphorus and sulfur. With these developments, materials are currently being realized that possess exciting chemical, photophysical and thermal properties that are not possible for conventional organic polymers. This review focuses on highlighting the most significant recent advances whilst giving an appropriate background for the general reader. Of particular focus will be advances made over the last two decades, with emphasis on the novel synthetic methodologies employed.
Collapse
Affiliation(s)
- Andrew M Priegert
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouer, British Columbia, CanadaV6T 1Z1.
| | | | | | | |
Collapse
|
22
|
Baczko K, Fensterbank H, Berini B, Bordage N, Clavier G, Méallet-Renault R, Larpent C, Allard E. Azide-functionalized nanoparticles as quantized building block for the design of soft-soft fluorescent polystyrene core-PAMAM shell nanostructures. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Krystyna Baczko
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Hélène Fensterbank
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Bruno Berini
- Groupe d'Etude de la Matière Condensée UMR-CNRS 8635, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Nadège Bordage
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Gilles Clavier
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Rachel Méallet-Renault
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Chantal Larpent
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Emmanuel Allard
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| |
Collapse
|
23
|
Moreno S, Szwed A, El Brahmi N, Milowska K, Kurowska J, Fuentes-Paniagua E, Pedziwiatr-Werbicka E, Gabryelak T, Katir N, Javier de la Mata F, Muñoz-Fernández MA, Gomez-Ramirez R, Caminade AM, Majoral JP, Bryszewska M. Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Adv 2015. [DOI: 10.1039/c5ra00960j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hybrid carbosilane–viologen–phosphorus dendrimers were prepared, as an example of the synthetic “onion peel” approach, on the search of new physical–chemical and biological properties, respecting traditional dendritic architectures.
Collapse
|
24
|
Ozay H, Kagit R, Yildirim M, Yesilot S, Ozay O. Novel hexapodal triazole linked to a cyclophosphazene core rhodamine-based chemosensor for selective determination of Hg2+ ions. J Fluoresc 2014; 24:1593-601. [DOI: 10.1007/s10895-014-1444-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/20/2014] [Indexed: 11/29/2022]
|
25
|
Kagit R, Yildirim M, Ozay O, Yesilot S, Ozay H. Phosphazene Based Multicentered Naked-Eye Fluorescent Sensor with High Selectivity for Fe3+ Ions. Inorg Chem 2014; 53:2144-51. [DOI: 10.1021/ic402783x] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Reyhan Kagit
- Department of Chemistry, Inorganic Chemistry Laboratory,
Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Mehmet Yildirim
- Department
of Materials Science and Engineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
- Department of Chemistry, Polymer Synthesis and Analysis
Laboratory, Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Ozgur Ozay
- Lapseki Vocational School, Department of Chemistry and Chemical Processing
Technologies, Canakkale Onsekiz Mart University, Lapseki/Canakkale 17800, Turkey
| | - Serkan Yesilot
- Department of Chemistry, Gebze Institute of Technology, Gebze/Kocaeli 41400, Turkey
| | - Hava Ozay
- Department of Chemistry, Inorganic Chemistry Laboratory,
Faculty of Science and Arts, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| |
Collapse
|
26
|
Szulc A, Zablocka M, Coppel Y, Bijani C, Dabkowski W, Bryszewska M, Klajnert-Maculewicz B, Majoral JP. A viologen phosphorus dendritic molecule as a carrier of ATP and Mant-ATP: spectrofluorimetric and NMR studies. NEW J CHEM 2014. [DOI: 10.1039/c4nj01176g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A viologen phosphorus dendritic molecule is able to create non-covalent interactions with model molecules of drugs belonging to the group of nucleoside analogues.
Collapse
Affiliation(s)
- Aleksandra Szulc
- Department of General Biophysics
- University of Lodz
- 90-236 Lodz, Poland
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Lodz, Poland
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination du CNRS (LCC)
- F-31077 Toulouse cedex 4, France
| | - Christian Bijani
- Laboratoire de Chimie de Coordination du CNRS (LCC)
- F-31077 Toulouse cedex 4, France
| | - Wojciech Dabkowski
- Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- 90-363 Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics
- University of Lodz
- 90-236 Lodz, Poland
| | | | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS (LCC)
- F-31077 Toulouse cedex 4, France
| |
Collapse
|
27
|
Murugavel K. Benzylic viologen dendrimers: a review of their synthesis, properties and applications. Polym Chem 2014. [DOI: 10.1039/c4py00718b] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendrimers containing benzylic viologen branching units, their guest complexation, photophysical and biological applications has been reviewed.
Collapse
Affiliation(s)
- Kathiresan Murugavel
- ElectroOrganic Division
- CSIR-CECRI Central Electro Chemical Research Institute
- Karaikkudi-630006, India
| |
Collapse
|
28
|
Ottaviani MF, El Brahmi N, Cangiotti M, Coppola C, Buccella F, Cresteil T, Mignani S, Caminade AM, Costes JP, Majoral JP. Comparative EPR studies of Cu(ii)-conjugated phosphorous-dendrimers in the absence and presence of normal and cancer cells. RSC Adv 2014. [DOI: 10.1039/c4ra06066k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
EPR analysis revealed peculiar structural and dynamical properties of anticancer-activeG3B–Cu(ii) in absence and presence of normal and cancer cells.
Collapse
Affiliation(s)
- M. F. Ottaviani
- Department of Earth, Life and Environment Sciences
- University of Urbino
- 61029 Urbino, Italy
| | - N. El Brahmi
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4, France
- Euro-Mediterranean University of Fez
- Fès, Morocco
| | - M. Cangiotti
- Department of Earth, Life and Environment Sciences
- University of Urbino
- 61029 Urbino, Italy
| | - C. Coppola
- Department of Earth, Life and Environment Sciences
- University of Urbino
- 61029 Urbino, Italy
| | - F. Buccella
- Department of Earth, Life and Environment Sciences
- University of Urbino
- 61029 Urbino, Italy
| | - T. Cresteil
- ICSN-CNRS UPR 2301
- 91198 Gif sur Yvette, France
| | - S. Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Université Paris Descartes
- PRES Sorbonne Paris Cité
- CNRS UMR 860
- Paris 75006, France
| | - A. M. Caminade
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4, France
| | - J. P. Costes
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4, France
| | - J. P. Majoral
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse Cedex 4, France
| |
Collapse
|
29
|
Nierengarten I, Nothisen M, Sigwalt D, Biellmann T, Holler M, Remy J, Nierengarten J. Polycationic Pillar[5]arene Derivatives: Interaction with DNA and Biological Applications. Chemistry 2013; 19:17552-8. [DOI: 10.1002/chem.201303029] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| | - Marc Nothisen
- Laboratoire V‐SAT and laboratory of excellence Medalis, Université de Strasbourg et CNRS (UMR 7199), Faculté de Pharmacie, 74 route du Rhin, B.P. 60024, 67401 Illkirch (France)
| | - David Sigwalt
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
- Laboratoire V‐SAT and laboratory of excellence Medalis, Université de Strasbourg et CNRS (UMR 7199), Faculté de Pharmacie, 74 route du Rhin, B.P. 60024, 67401 Illkirch (France)
| | - Thomas Biellmann
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| | - Jean‐Serge Remy
- Laboratoire V‐SAT and laboratory of excellence Medalis, Université de Strasbourg et CNRS (UMR 7199), Faculté de Pharmacie, 74 route du Rhin, B.P. 60024, 67401 Illkirch (France)
| | - Jean‐François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| |
Collapse
|