1
|
Delyanee M, Akbari S, Solouk A. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. Eur J Med Chem 2021; 221:113572. [PMID: 34087497 DOI: 10.1016/j.ejmech.2021.113572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
It is often challenging to design diagnostic and therapeutic agents that fulfill all functional requirements. So, bulk and surface modifications as a common approach for biomedical applications have been suggested. There have been considerable research interests in using nanomaterials to the prementioned methods. Among all nanomaterials, dendritic materials with three-dimensional structures, host-guest properties, and nano-polymeric dimensions have received considerable attention. Amine-terminated dendritic structures including, polyamidoamine (PAMAM), polypropyleneimine (PPI), and polyethyleneimine (PEI), have been enormously utilized in bio-modification. This review briefly described the structure of these three common dendritic polymers and their use to modify diagnostic and therapeutic agents in six major applications, including drug delivery, gene delivery, biosensor, bioimaging, tissue engineering, and antimicrobial activity. The current review covers amine-terminated dendritic polymers toxicity challenging and improvement strategies as well.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Docosahexaenoic acid triglyceride-based microemulsions with an added dendrimer – Structural considerations. J Colloid Interface Sci 2016; 483:374-384. [DOI: 10.1016/j.jcis.2016.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/22/2022]
|
3
|
Sonawane SJ, Kalhapure RS, Rambharose S, Mocktar C, Vepuri SB, Soliman M, Govender T. Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies. Int J Pharm 2016; 504:1-10. [PMID: 26992817 DOI: 10.1016/j.ijpharm.2016.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to explore the preparation of a new lipid-dendrimer hybrid nanoparticle (LDHN) system to effectively deliver vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) infections. Spherical LDHNs with particle size, polydispersity index and zeta potential of 52.21±0.22 nm, 0.105±0.01, and -14.2±1.49 mV respectively were prepared by hot stirring and ultrasonication using Compritol 888 ATO, G4 PAMAM- succinamic acid dendrimer, and Kolliphor RH-40. Vancomycin encapsulation efficiency (%) in LDHNs was almost 4.5-fold greater than in lipid-polymer hybrid nanoparticles formulated using Eudragit RS 100. Differential scanning calorimetry and Fourier transform-infrared studies confirmed the formation of LDHNs. The interactions between the drug-dendrimer complex and lipid molecules using in silico modeling revealed the molecular mechanism behind the enhanced encapsulation and stability. Vancomycin was released from LDHNs over the period of 72 h with zero order kinetics and super case II transport mechanism. The minimum inhibitory concentration (MIC) against S. aureus and MRSA were 15.62 μg/ml and 7.81 μg/ml respectively. Formulation showed sustained activity with MIC of 62.5 μg/ml against S. aureus and 500 μg/ml against MRSA at the end of 72 and 54 h period respectively. The results suggest that the LDHN system can be an effective strategy to combat resistant infections.
Collapse
Affiliation(s)
- Sandeep J Sonawane
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa.
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Suresh B Vepuri
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Mahmoud Soliman
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001 Durban, 4000, South Africa.
| |
Collapse
|
4
|
Grabchev I, Yordanova S, Vasileva-Tonkova E, Bosch P, Stoyanov S. Poly(propylenamine) dendrimers modified with 4-amino-1,8-naphthalimide: Synthesis, characterization and in vitro microbiological tests of their Cu(II) and Zn(II) complexes. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Wrońska N, Felczak A, Zawadzka K, Poszepczyńska M, Różalska S, Bryszewska M, Appelhans D, Lisowska K. Poly(Propylene Imine) Dendrimers and Amoxicillin as Dual-Action Antibacterial Agents. Molecules 2015; 20:19330-42. [PMID: 26512634 PMCID: PMC6331957 DOI: 10.3390/molecules201019330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX) against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine) (PPI) dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3). The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Martyna Poszepczyńska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143, Pomorska Street, 90-236 Lodz, Poland.
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Street 6, 01069 Dresden, Germany.
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|
6
|
Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 2014; 104:872-905. [PMID: 25546108 DOI: 10.1002/jps.24298] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022]
Abstract
Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanohybirds, nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery systems have for enhancing the treatment of patients with a range of infections.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | | | | | | | | |
Collapse
|
7
|
Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M, Majoral JP. Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromolecules 2014; 16:1-27. [PMID: 25426779 DOI: 10.1021/bm501285t] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The main objective of nanomedicine research is the development of nanoparticles as drug delivery systems or drugs per se to tackle diseases as cancer, which are a leading cause of death with developed nations. Targeted treatments against solid tumors generally lead to dramatic regressions, but, unfortunately, the responses are often short-lived due to resistant cancer cells. In addition, one of the major challenges of combination drug therapy (called "cocktail") is the crucial optimization of different drug parameters. This issue can be solved using combination nanotherapy. Nanoparticles developed in oncology based on combination nanotherapy are either (a) those designed to combat multidrug resistance or (b) those used to circumvent resistance to clinical cancer drugs. This review provides an overview of the different nanoparticles currently used in clinical treatments in oncology. We analyze in detail the development of combinatorial nanoparticles including dendrimers for dual drug delivery via two strategic approaches: (a) use of chemotherapeutics and chemosensitizers to combat multidrug resistance and (b) use of multiple cytotoxic drugs. Finally, in this review, we discuss the challenges, clinical outlook, and perspectives of the nanoparticle-based combination therapy in cancer.
Collapse
Affiliation(s)
- Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, 45, rue des Saints Pères, 75006 Paris, France
| | | | | | | | | |
Collapse
|