1
|
Zhu W, Chen Z, Pan Y, Dai R, Wu Y, Zhuang Z, Wang D, Peng Q, Chen C, Li Y. Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800426. [PMID: 30125990 DOI: 10.1002/adma.201800426] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Hollow nanomaterials have attracted a broad interest in multidisciplinary research due to their unique structure and preeminent properties. Owing to the high specific surface area, well-defined active site, delimited void space, and tunable mass transfer rate, hollow nanostructures can serve as excellent catalysts, supports, and reactors for a variety of catalytic applications, including photocatalysis, electrocatalysis, heterogeneous catalysis, homogeneous catalysis, etc. Based on state-of-the-art synthetic methods and characterization techniques, researchers focus on the purposeful functionalization of hollow nanomaterials for catalytic mechanism studies and intricate catalytic reactions. Herein, an overview of current reports with respect to the catalysis of functionalized hollow nanomaterials is given, and they are classified into five types of versatile strategies with a top-down perspective, including textual and composition modification, encapsulation, multishelled construction, anchored single atomic site, and surface molecular engineering. In the detailed case studies, the design and construction of hierarchical hollow catalysts are discussed. Moreover, since hollow structure offers more than two types of spatial-delimited sites, complicated catalytic reactions are elaborated. In summary, functionalized hollow nanomaterials provide an ideal model for the rational design and development of efficient catalysts.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Pan
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruoyun Dai
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yue Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Dergunov SA, Kim MD, Shmakov SN, Pinkhassik E. Building Functional Nanodevices with Vesicle-Templated Porous Polymer Nanocapsules. Acc Chem Res 2019; 52:189-198. [PMID: 30561994 DOI: 10.1021/acs.accounts.8b00442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vesicle-templated nanocapsules offer a unique combination of properties enabled by robust shells with single-nanometer thickness containing programmed uniform pores capable of fast and selective mass transfer. These capsules emerged as a versatile platform for creating functional devices, such as nanoreactors, nanosensors, and containers for the delivery of drugs and imaging agents. Nanocapsules are synthesized by a directed assembly method using self-assembled bilayers of vesicles as temporary scaffolds. In this approach, hydrophobic building blocks are loaded into the hydrophobic interior of vesicles formed from lipids or surfactants. Pore-forming templates are codissolved with the monomers and cross-linkers in the interior of the bilayer. The polymerization forms a cross-linked shell with embedded pore-forming templates. Removal of the surfactant scaffold and pore-forming templates leads to free-standing nanocapsules with shells containing uniform imprinted nanopores. Development of reliable and scalable synthetic methods for the modular construction of capsules with tunable properties has opened the opportunity to pursue practical applications of nanocapsules. In this Account, we discuss how unique properties of vesicle-templated nanocapsules translate into the creation of functional nanodevices. Specifically, we focus the conversation on applications aiming at the delivery of drugs and imaging agents, creation of fast-acting and selective nanoreactors, and fabrication of nanoprobes for sensing and imaging. We present a brief overview of the synthesis of nanocapsules with an emphasis on recent developments leading to robust synthetic methods including the synthesis under physiological conditions and creation of biodegradable nanocapsules. We then highlight unique properties of nanocapsules essential for practical applications, such as precise control of pore size and chemical environment, selective permeability, and ultrafast transport through the pores. We discuss new motifs for catch and release of small molecules with porous nanocapsules based on controlling the microenvironment inside the nanocapsules, regulating the charge on the orifice of nanopores in the shells, and reversible synergistic action of host and guest forming a supramolecular complex in nanocapsules. We demonstrate successful creation of fast-acting and selective nanoreactors by encapsulation of diverse homogeneous and nanoparticle catalysts. Due to unhindered flow of substrates and products through the nanopores, encapsulation did not compromise catalytic efficiency and, in fact, improved the stability of entrapped catalysts. We present robust nanoprobes based on nanocapsules with entrapped sensing agents and show how the encapsulation resulted in selective measurements with fast response times in challenging conditions, such as small volumes and complex mixtures. Throughout this Account, we highlight the advantages of encapsulation and discuss the opportunities for future design of nanodevices.
Collapse
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Mariya D. Kim
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Sergey N. Shmakov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
3
|
Wang Q, Luo W, Chen X, Fan J, Jiang W, Wang L, Jiang W, Zhang W, Yang J. Porous‐Carbon‐Confined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction. Chemistry 2018; 24:15663-15668. [DOI: 10.1002/chem.201803433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Qingqing Wang
- State Key Laboratory for Modification of Chemical Fibers, and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers, and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 P. R. China
| | - Xinqi Chen
- State Key Laboratory for Modification of Chemical Fibers, and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 P. R. China
- School of Physics and Mechanical & Electrical Engineering Hubei University of Education Wuhan 430205 P. R. China
| | - Jianwei Fan
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse Tongji University Shanghai 200092 China
| | - Weizhong Jiang
- State Key Laboratory for Modification of Chemical Fibers, and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 P. R. China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers, and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 P. R. China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers, and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 P. R. China
- School of Materials Science and Engineering Jingdezhen Ceramic Institute Jingdezhen 333001 P. R. China
| | - Wei‐xian Zhang
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse Tongji University Shanghai 200092 China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers, and Polymer Materials College of Materials Science and Engineering Institute of Functional Materials Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
4
|
Kim MD, Dergunov SA, Pinkhassik E. Controlling the Encapsulation of Charged Molecules in Vesicle-Templated Nanocontainers through Electrostatic Interactions with the Bilayer Scaffold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7732-7740. [PMID: 28679052 DOI: 10.1021/acs.langmuir.7b01706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work addresses the challenge of creating hollow nanocapsules with a controlled quantity of encapsulated molecules. Such nanocontainers or nanorattle-like structures represent an attractive platform for building functional devices, including nanoreactors and nanosensors. By taking advantage of the electrostatic attraction between oppositely charged cargo molecules and the surface of the templating bilayer of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, we were able to achieve a substantial increase in the local concentration of molecules inside the vesicle-templated nanocapsules. Control of electrostatic interactions through changes in the formulation of catanionic vesicles or the pH of the solution enabled fine tuning of the encapsulation efficiency in capturing ionic solutes. The ability to control the quantity of entrapped molecules greatly expands the application of nanocontainers in the creation of functional nanodevices.
Collapse
Affiliation(s)
- Mariya D Kim
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Sergey A Dergunov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
5
|
Richter AG, Dergunov SA, Kim MD, Shmakov SN, Pingali SV, Urban VS, Liu Y, Pinkhassik E. Unraveling the Single-Nanometer Thickness of Shells of Vesicle-Templated Polymer Nanocapsules. J Phys Chem Lett 2017; 8:3630-3636. [PMID: 28715200 DOI: 10.1021/acs.jpclett.7b01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vesicle-templated nanocapsules have emerged as a viable platform for diverse applications. Shell thickness is a critical structural parameter of nanocapsules, where the shell plays a crucial role providing mechanical stability and control of permeability. Here we used small-angle neutron scattering (SANS) to determine the thickness of freestanding and surfactant-stabilized nanocapsules. Despite being at the edge of detectability, we were able to show the polymer shell thickness to be typically 1.0 ± 0.1 nm, which places vesicle-templated nanocapsules among the thinnest materials ever created. The extreme thinness of the shells has implications for several areas: mass-transport through nanopores is relatively unimpeded; pore-forming molecules are not limited to those spanning the entire bilayer; the internal volume of the capsules is maximized; and insight has been gained on how polymerization occurs in the confined geometry of a bilayer scaffold, being predominantly located at the phase-separated layer of monomers and cross-linkers between the surfactant leaflets.
Collapse
Affiliation(s)
- Andrew G Richter
- Department of Physics and Astronomy, Valparaiso University , Valparaiso, Indiana 46383, United States
| | - Sergey A Dergunov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Mariya D Kim
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Sergey N Shmakov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Sai Venkatesh Pingali
- Center for Structural Molecular Biology, Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge, Tennessee 37831-6430, United States
| | - Volker S Urban
- Center for Structural Molecular Biology, Oak Ridge National Laboratory , P.O. Box 2008 MS-6430, Oak Ridge, Tennessee 37831-6430, United States
| | - Yun Liu
- Department of Chemical and Biological Engineering, University of Delaware , Newark, Delaware 19716, United States
- Center for Neutron Science, National Institute of Standards and Technology , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
6
|
Dergunov SA, Khabiyev AT, Shmakov SN, Kim MD, Ehterami N, Weiss MC, Birman VB, Pinkhassik E. Encapsulation of Homogeneous Catalysts in Porous Polymer Nanocapsules Produces Fast-Acting Selective Nanoreactors. ACS NANO 2016; 10:11397-11406. [PMID: 28024370 DOI: 10.1021/acsnano.6b06735] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoreactors were created by entrapping homogeneous catalysts in hollow nanocapsules with 200 nm diameter and semipermeable nanometer-thin shells. The capsules were produced by the polymerization of hydrophobic monomers in the hydrophobic interior of the bilayers of self-assembled surfactant vesicles. Controlled nanopores in the shells of nanocapsules ensured long-term retention of the catalysts coupled with the rapid flow of substrates and products in and out of nanocapsules. The study evaluated the effect of encapsulation on the catalytic activity and stability of five different catalysts. Comparison of kinetics of five diverse reactions performed in five different solvents revealed the same reaction rates for free and encapsulated catalysts. Identical reaction kinetics confirmed that placement of catalysts in the homogeneous interior of polymer nanocapsules did not compromise catalytic efficiency. Encapsulated organometallic catalysts showed no loss of metal ions from nanocapsules suggesting stabilization of the complexes was provided by nanocapsules. Controlled permeability of the shells of nanocapsules enabled size-selective catalytic reactions.
Collapse
Affiliation(s)
- Sergey A Dergunov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Alibek T Khabiyev
- Kazakh National Research Technical University , 22 Satpayev St., Almaty 050013, Kazakhstan
| | - Sergey N Shmakov
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Mariya D Kim
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| | - Nasim Ehterami
- Department of Chemistry, Saint Louis University , 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Mary Clare Weiss
- Department of Chemistry, Saint Louis University , 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Vladimir B Birman
- Department of Chemistry, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Eugene Pinkhassik
- Department of Chemistry, University of Connecticut , 55 North Eagleville Rd, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
7
|
Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang GH, Schüth F. Hollow Nano- and Microstructures as Catalysts. Chem Rev 2016; 116:14056-14119. [DOI: 10.1021/acs.chemrev.6b00374] [Citation(s) in RCA: 550] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gonzalo Prieto
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Harun Tüysüz
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Nicolas Duyckaerts
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Johannes Knossalla
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Guang-Hui Wang
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Ferdi Schüth
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
8
|
Dergunov SA, Ehterami N, Pinkhassik E. Rotaxane‐Like Structures Threaded through the Pores of Hollow Porous Nanocapusles. Chemistry 2016; 22:14137-40. [DOI: 10.1002/chem.201602731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs CT 06269 (USA)
| | - Nasim Ehterami
- Department of Chemistry Saint Louis University 3501 Laclede Avenue St. Louis MO 63103 USA
| | - Eugene Pinkhassik
- Department of Chemistry University of Connecticut 55 North Eagleville Road Storrs CT 06269 (USA)
| |
Collapse
|
9
|
Miksa B. Recent progress in designing shell cross-linked polymer capsules for drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra12882j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This tutorial review highlights the progress made during recent years in the development of the shell cross-linked (SCL) polymer nanocapsules and the impact of the most important scientific ideas on this field of knowledge.
Collapse
Affiliation(s)
- Beata Miksa
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- Lodz
- Poland
| |
Collapse
|
10
|
Jin J, Kim B, Park N, Kang S, Park JH, Lee SM, Kim HJ, Son SU. Porphyrin entrapment and release behavior of microporous organic hollow spheres: fluorescent alerting systems for existence of organic solvents in water. Chem Commun (Camb) 2014; 50:14885-8. [DOI: 10.1039/c4cc06065b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|