1
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
2
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Vallesi A, Pucciarelli S, Buonanno F, Fontana A, Mangiagalli M. Bioactive molecules from protists: Perspectives in biotechnology. Eur J Protistol 2020; 75:125720. [PMID: 32569992 DOI: 10.1016/j.ejop.2020.125720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
For hundreds of years, mankind has benefited from the natural metabolic processes of microorganisms to obtain basic products such as fermented foods and alcoholic beverages. More recently, microorganisms have been exploited for the production of antibiotics, vitamins and enzymes to be used in medicine and chemical industries. Additionally, several modern drugs, including those for cancer therapy, are natural products or their derivatives. Protists are a still underexplored source of natural products potentially of interest for biotechnological and biomedical applications. This paper focuses on some examples of bioactive molecules from protists and associated bacteria and their possible use in biotechnology.
Collapse
Affiliation(s)
- Adriana Vallesi
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of E.C.H.T. Università degli Studi di Macerata, Macerata, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Pozzuoli, Napoli, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
4
|
Brown ER, Cepeda MR, Mascuch SJ, Poulson-Ellestad KL, Kubanek J. Chemical ecology of the marine plankton. Nat Prod Rep 2019; 36:1093-1116. [DOI: 10.1039/c8np00085a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A review of chemically mediated interactions in planktonic marine environments covering new studies from January 2015 to December 2017.
Collapse
Affiliation(s)
- Emily R. Brown
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Marisa R. Cepeda
- School of Chemistry and Biochemistry
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | - Samantha J. Mascuch
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| | | | - Julia Kubanek
- School of Biological Sciences
- Aquatic Chemical Ecology Center
- Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
| |
Collapse
|
5
|
Huang X, Zhu J, Cai Z, Lao Y, Jin H, Yu K, Zhang B, Zhou J. Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach. Microbiol Res 2018; 217:1-13. [PMID: 30384903 DOI: 10.1016/j.micres.2018.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
The complicated relationships among environmental microorganisms are regulated by quorum sensing (QS). Understanding QS-based signals could shed light on the interactions between microbial communities in certain environments. Although QS characteristics have been widely discussed, few studies have been conducted on the role of QS in phycospheric microorganisms. Here, we used metagenomics to examine the profile of AI-1 (AinS, HdtS, LuxI) and AI-2 (LuxS) autoinducers from a deeply sequenced microbial database, obtained from a complete dinoflagellate bloom. A total of 3001 putative AI-1 homologs and 130 AI-2 homologs were identified. The predominant member among the AI groups was HdtS. The abundance of HdtS, AinS, and LuxS increased as the bloom developed, whereas the abundance of LuxI showed the opposite trend. Phylogenetic analysis suggested that HdtS and LuxI synthase originated mainly from alpha-, beta-, and gamma-Proteobacteria, whereas AinS synthase originated solely from Vibrionales. In comparison to AI-1, the sequences related to AI-2 (LuxS) demonstrated a much wider taxonomic coverage. Some significant correlations were found between dominant species and QS signals. In addition to the QS, we also performed parallel analysis of the quorum quenching (QQ) sequences. In comparison to QS, the relative abundance of QQ signals was lower; however, an obvious frequency correlation was observed. These results suggested that QS and QQ signals co-participate in regulating microbial communities during an algal bloom. These data helped to reveal the characteristic behavior of algal symbiotic bacteria, and facilitated a better understanding of microbial dynamics during an algal bloom event from a chemical ecological perspective.
Collapse
Affiliation(s)
- Xinqing Huang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Yongmin Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Ke Yu
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Boya Zhang
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China.
| |
Collapse
|
6
|
Wang R, Wang J, Xue Q, Tan L, Cai J, Wang H. Preliminary analysis of allelochemicals produced by the diatom Phaeodactylum tricornutum. CHEMOSPHERE 2016; 165:298-303. [PMID: 27662391 DOI: 10.1016/j.chemosphere.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/21/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Marine diatom Phaeodactylum tricornutum is known to exude allelochemicals with negative effects on Heterosigma akashiwo according to our previous study, while the information about the allelochemical compounds remains unknown. The present study dealt with isolation and analysis of the active substances released by P. tricornutum into the culture medium. Filtrate of P. tricornutum was extracted using ethyl acetate and chloroform respectively. The anti-algal fractions were isolated using high performance liquid chromatography (HPLC) and screened using activity-guided fraction methods. Results demonstrated that fraction Ⅱ and Ⅵ showed significant allelopathic effect on H. akashiwo growth. Then the anti-algal activity fractions were analyzed preliminary using gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography-electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS). An active compound was derived from fraction Ⅵ with the molecular weight of 578 and possible molecular formula of C30H38N6O6, which was speculated to be TYR-PRO-PHE-PRO-GLY-NH2. a kind of glycinamides.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Qiaona Xue
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jun Cai
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hongyao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Abstract
Covering: January 2013 to online publication December 2014This review summarizes recent research in the chemical ecology of marine pelagic ecosystems, and aims to provide a comprehensive overview of advances in the field in the time period covered. In order to highlight the role of chemical cues and toxins in plankton ecology this review has been organized by ecological interaction types starting with intraspecific interactions, then interspecific interactions (including facilitation and mutualism, host-parasite, allelopathy, and predator-prey), and finally community and ecosystem-wide interactions.
Collapse
Affiliation(s)
- Emily R Schwartz
- School of Biology, Aquatic Chemical Ecology Center, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
9
|
Frenkel J, Vyverman W, Pohnert G. Pheromone signaling during sexual reproduction in algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:632-44. [PMID: 24597605 DOI: 10.1111/tpj.12496] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 05/26/2023]
Abstract
Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.
Collapse
Affiliation(s)
- Johannes Frenkel
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743, Jena, Germany
| | | | | |
Collapse
|
10
|
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep 2014; 31:1510-53. [DOI: 10.1039/c4np00017j] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|