1
|
Higgins PM, Wehrli NG, Buller AR. Substrate-Multiplexed Assessment of Aromatic Prenyltransferase Activity. Chembiochem 2025; 26:e202400680. [PMID: 39317170 PMCID: PMC11727010 DOI: 10.1002/cbic.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
An increasingly effective strategy to identify synthetically useful enzymes is to sample the diversity already present in Nature. Here, we construct and assay a panel of phylogenetically diverse aromatic prenyltransferases (PTs). These enzymes catalyze a variety of C-C bond forming reactions in natural product biosynthesis and are emerging as tools for synthetic chemistry and biology. Homolog screening was further empowered through substrate-multiplexed screening, which provides direct information on enzyme specificity. We perform a head-to-head assessment of the model members of the PT family and further identify homologs with divergent sequences that rival these superb enzymes. This effort revealed the first bacterial O-Tyr PT and, together, provide valuable benchmarking for future synthetic applications of PTs.
Collapse
Affiliation(s)
- Peyton M. Higgins
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| | - Nicolette G. Wehrli
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| | - Andrew R. Buller
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| |
Collapse
|
2
|
Chaudhary NK, Vuong D, Lacey E, Piggott AM, Karuso P. Phenalenones and Polyesters from Talaromyces stipitatus and Structure Revision of Talaromycesone A. JOURNAL OF NATURAL PRODUCTS 2024; 87:2738-2745. [PMID: 39680718 DOI: 10.1021/acs.jnatprod.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Investigation of the secondary metabolites of the filamentous fungus Talaromyces stipitatus led to the isolation of two new phenalenone dimers, talarohemiketal A (1) and talaroazasone A (2), and one new macrolide polyester, talaromacrolactone A (3), along with the reported oxyphenalenone dimers talaromycesone A (4), bacillisporin A (5), bacillisporin B (6), bacillisporin C (7), epi-bacillisporin F (8), and bacillisporin J (9), the phenalenone monomer funalenone (10), the polyesters 15G256α (11) and 15G256ν (12), and 6-hydroxymellein (13). Detailed analysis of 2D NMR correlations, supported by TDDFT calculations, led to the structural revision of talaromycesone A as 4 from previously reported structure 14. In addition, the previously misassigned NMR spectra of compound 8 have been corrected.
Collapse
Affiliation(s)
- Nirmal K Chaudhary
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd., Smithfield, New South Wales 2164, Australia
| | - Ernest Lacey
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, New South Wales 2164, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Peter Karuso
- Department of Applied Biosciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
3
|
Zheng M, Li Q, Liao H, Li Y, Zhou C, Zhao X, Chen C, Sun W, Zhang Y, Zhu H. Adpressins A-G: Oligophenalenone Dimers from Talaromyces adpressus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1921-1929. [PMID: 39033406 DOI: 10.1021/acs.jnatprod.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Nine new oligophenalenone dimers, adpressins A-G (1-9), together with nine known compounds (10-18), were isolated from the fungus Talaromyces adpressus. Their chemical structures were determined on the basis of spectroscopic and mass spectral analyses. Their relative and absolute configurations were identified by 1H and 13C NMR calculations followed by DP4+ analyses, electronic circular dichroism (ECD) calculations, and ECD spectra comparison with related compounds. Compound 1 is the first example of a duclauxin derivative featuring an unusual 6/6/6/5/6/6/6 ring system, while compounds 6 and 7 contained a novel pyrrolidine ring. Compounds 5, 9, and 18 exhibited moderate inhibition against LPS-induced B lymphocyte proliferation with IC50 values ranging from 1.6 to 8.6 μM. Additionally, compounds 9 and 18 exhibited moderate inhibition against Con A-induced T lymphocyte proliferation with IC50 values of 9.3 and 2.6 μM, respectively.
Collapse
Affiliation(s)
- Meijia Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chenxi Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinyi Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
4
|
Catalá TS, Speidel LG, Wenzel-Storjohann A, Dittmar T, Tasdemir D. Bioactivity profile of dissolved organic matter and its relation to molecular composition. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:32. [PMID: 37721596 PMCID: PMC10507005 DOI: 10.1007/s13659-023-00395-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Dissolved organic matter (DOM) occupies a huge and uncharted molecular space. Given its properties, DOM can be presented as a promising biotechnological resource. However, research into bioactivities of DOM is still in early stages. In this study, the biotechnological potential of terrestrial and marine DOM, its molecular composition and their relationships are investigated. Samples were screened for their in vitro antibacterial, antifungal, anticancer and antioxidant activities. Antibacterial activity was detected against Staphylococcus aureus in almost all DOM samples, with freshwater DOM showing the lowest IC50 values. Most samples also inhibited Staphylococcus epidermidis, and four DOM extracts showed up to fourfold higher potency than the reference drug. Antifungal activity was limited to only porewater DOM towards human dermatophyte Trichophyton rubrum. No significant in vitro anticancer activity was observed. Low antioxidant potential was exerted. The molecular characterization by FT-ICR MS allowed a broad compositional overview. Three main distinguished groups have been identified by PCoA analyses. Antibacterial activities are related to high aromaticity content and highly-unsaturated molecular formulae (O-poor). Antifungal effect is correlated with highly-unsaturated molecular formulae (O-rich). Antioxidant activity is positively related to the presence of double bonds and polyphenols. This study evidenced for the first time antibacterial and antifungal activity in DOM with potential applications in cosmeceutical, pharmaceutical and aquaculture industry. The lack of cytotoxicity and the almost unlimited presence of this organic material may open new avenues in future marine bioprospecting efforts.
Collapse
Affiliation(s)
- Teresa S Catalá
- Global Society Institute, Wälderhaus, Hamburg, Germany.
- Organization for Science, Education and Global Society gGmbH, Stuttgart, Germany.
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany.
| | - Linn G Speidel
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
- Geological Institute, Department of Earth Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Arlette Wenzel-Storjohann
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106, Kiel, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106, Kiel, Germany
- Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
5
|
Andrade MA, Mottin M, Sousa BKDP, Barbosa JARG, Dos Santos Azevedo C, Lasse Silva C, Gonçalves de Andrade M, Motta FN, Maulay-Bailly C, Amand S, Santana JMD, Horta Andrade C, Grellier P, Bastos IMD. Identification of novel Zika virus NS3 protease inhibitors with different inhibition modes by integrative experimental and computational approaches. Biochimie 2023; 212:143-152. [PMID: 37088408 DOI: 10.1016/j.biochi.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
Zika virus (ZIKV) infection is associated with severe neurological disorders and congenital malformation. Despite efforts to eradicate the disease, there is still neither vaccine nor approved drugs to treat ZIKV infection. The NS2B-NS3 protease is a validated drug target since it is essential to polyprotein virus maturation. In the present study, we describe an experimental screening of 2,320 compounds from the chemical library of the Muséum National d'Histoire Naturelle of Paris on ZIKV NS2B-NS3 protease. A total of 96 hits were identified with 90% or more of inhibitory activity at 10 μM. Amongst the most active compounds, five were analyzed for their inhibitory mechanisms by kinetics assays and computational approaches such as molecular docking. 2-(3-methoxyphenoxy) benzoic acid (compound 945) show characteristics of a competitive inhibition (Ki = 0.49 μM) that was corroborated by its molecular docking at the active site of the NS2B-NS3 protease. Taxifolin (compound 2292) behaves as an allosteric inhibitor whereas 3,8,9-trihydroxy-2-methyl-1H-phenalen-1-one (compound 128), harmol (compound 368) and anthrapurpurin (compound 1499) show uncompetitive inhibitions. These new NS2B-NS3 protease inhibitors are valuable hits to further hit-to-lead optimization.
Collapse
Affiliation(s)
- Milene Aparecida Andrade
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Melina Mottin
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil; Laboratory for Molecular Modeling and Drug Design - LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Bruna K de P Sousa
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Clênia Dos Santos Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Camila Lasse Silva
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil; Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Christine Maulay-Bailly
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Séverine Amand
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Jaime Martins de Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Philippe Grellier
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France.
| | - Izabela M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
6
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
7
|
Liang Z, Zhang P, Xiong Y, Johnson SK, Fang Z. Phenolic and carotenoid characterization of the ethanol extract of an Australian native plant Haemodorum spicatum. Food Chem 2023; 399:133969. [DOI: 10.1016/j.foodchem.2022.133969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
|
8
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Silva DPD, Cardoso MS, Macedo AJ. Endophytic Fungi as a Source of Antibacterial Compounds-A Focus on Gram-Negative Bacteria. Antibiotics (Basel) 2022; 11:1509. [PMID: 36358164 PMCID: PMC9687006 DOI: 10.3390/antibiotics11111509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Bacterial resistance has become one of the main motives in the worldwide race for undescribed antibacterial agents. The difficulties in the treatment of bacterial infections are a public health issue that increasingly highlights the need for antimicrobial agents. Endophytic microorganisms are a promising alternative in the search for drugs, due to the vast number of metabolites produced with unique characteristics and bioactive potential. This review highlights the importance of endophytic microorganisms as a source of secondary metabolites in the search for active molecules against bacteria of medical importance, with a special focus on gram-negative species. This fact is supported by the findings raised in this review, which brings an arsenal of 166 molecules with characterized chemical structures and their antibacterial activities. In addition, the low cost, ease of maintenance, and optimization-controlled fermentation conditions favor reproducibility in commercial scale. Given their importance, it is necessary to intensify the search for new molecules from endophytic microorganisms, and to increasingly invest in this very promising font.
Collapse
|
10
|
Zhang T, Pang X, Zhao J, Guo Z, He W, Cai G, Su J, Cen S, Yu L. Discovery and Activation of the Cryptic Cluster from Aspergillus sp. CPCC 400735 for Asperphenalenone Biosynthesis. ACS Chem Biol 2022; 17:1524-1533. [PMID: 35616995 DOI: 10.1021/acschembio.2c00204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Postgenomic analysis manifested that filamentous fungi contain numerous natural product biosynthetic gene clusters in their genome, yet most clusters remain cryptic or down-regulated. Herein, we report the successful manipulation of strain Aspergillus sp. CPCC 400735 that enables its genetic engineering via targeted overexpression of pathway-specific transcriptional regulator AspE. The down-regulated metabolic pathway encoded by the biosynthetic gene cluster asp was successfully up-activated. Analyses of mutant Ai-OE::aspE extracts led to isolation and characterization of 13 asperphenalenone derivatives, of which 11 of them are new compounds. All of the asperphenalenones exhibited conspicuous anti-influenza A virus effects with IC50 values of 0.45-2.22 μM. Additionally, their identification provided insight into biosynthesis of asperphenalenones and might benefit studies of downstream combinatorial biosynthesis. Our study further demonstrates the effective application of targeted overexpressing pathway-specific activator and novel metabolite discovery in microorganisms. These will accelerate the exploitation of the untapped resources and biosynthetic capability in filamentous fungi.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenni He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guowei Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Sun C, Liu Q, Shah M, Che Q, Zhang G, Zhu T, Zhou J, Rong X, Li D. Talaverrucin A, Heterodimeric Oxaphenalenone from Antarctica Sponge-Derived Fungus Talaromyces sp. HDN151403, Inhibits Wnt/β-Catenin Signaling Pathway. Org Lett 2022; 24:3993-3997. [PMID: 35616425 DOI: 10.1021/acs.orglett.2c01394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wnt/β-catenin signaling pathway is an evolutionarily conserved signaling cascade involved in a broad range of biological roles. Dysregulation of the Wnt/β-catenin pathway is implicated in congenital malformations and various kinds of cancers. We discovered a novel Wnt/β-catenin inhibitor, talaverrucin A (1), featuring an unprecedented 6/6/6/5/5/5/6 fused ring system, from an Antarctica sponge-derived fungus Talaromyces sp. HDN151403. Talaverrucin A exhibits inhibitory activity on the Wnt/β-catenin pathway in both zebrafish embryos in vivo and cultured mammalian cells in vitro, providing a naturally inspired small molecule therapeutic lead to target the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Chunxiao Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Qianwen Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Mudassir Shah
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.,Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jianfeng Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaozhi Rong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
12
|
Ibrahim SRM, Bagalagel AA, Diri RM, Noor AO, Bakhsh HT, Muhammad YA, Mohamed GA, Omar AM. Exploring the Activity of Fungal Phenalenone Derivatives as Potential CK2 Inhibitors Using Computational Methods. J Fungi (Basel) 2022; 8:jof8050443. [PMID: 35628699 PMCID: PMC9143076 DOI: 10.3390/jof8050443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer represents one of the most prevalent causes of global death. CK2 (casein kinase 2) activation boosted cancer proliferation and progression. Therefore, CK2 inhibition can have a crucial role in prohibiting cancer progression and enhancing apoptosis. Fungi have gained vast interest as a wealthy pool of anticancer metabolites that could particularly target various cancer progression-linked signaling pathways. Phenalenones are a unique class of secondary metabolites that possess diverse bioactivities. In the current work, the CK2 inhibitory capacity of 33 fungal phenalenones was explored using computational studies. After evaluating the usefulness of the compounds as enzyme inhibitors by ADMET prediction, the compounds were prepared for molecular docking in the CK2-α1 crystal structure (PDB: 7BU4). Molecular dynamic simulation was performed on the top two scoring compounds to evaluate their binding affinity and protein stability through a simulated physiological environment. Compound 19 had a superior binding affinity to the co-crystallized ligand (Y49). The improved affinity can be attributed to the fact that the aliphatic chain makes additional contact with Asp120 in a pocket distant from the active site.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: ; Tel.: +966-581183034
| | - Alaa A. Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Hussain T. Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.B.); (R.M.D.); (A.O.N.); (H.T.B.)
| | - Yosra A. Muhammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.M.); (A.M.O.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Y.A.M.); (A.M.O.)
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
13
|
Yu JS, Jeong SY, Li C, Oh T, Kwon M, Ahn JS, Ko SK, Ko YJ, Cao S, Kim KH. New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2,3-dioxygenase 1 (IDO1). Arch Pharm Res 2022; 45:105-113. [PMID: 35201589 DOI: 10.1007/s12272-022-01372-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
Abstract
Phenalenone derivatives sourced from fungi are polyketides that have attracted significant interest because of their diverse chemical structures and potential bioactivities. As part of our ongoing quest to discover novel natural products with biological properties from diverse natural resources, three unreported phenalenone derivatives (1-3), named ent-12-methoxyisoherqueinone (1), (-)-scleroamide (2), and (+)-scleroamide (3), together with four known phenalenone derivatives, ent-atrovenetinone (4), isoherqueinone (5), herqueinone (6), and ent-peniciherquinone (7) were isolated from the Hawaiian soil fungus Penicillium herquei FT729, collected on the Big Island, Hawaii. Compounds 2 and 3 were enantiomers, which were separated using a chiral-phase HPLC column, which provided optically pure compounds 2 and 3. The structures of the novel compounds were established by extensive spectroscopic analyses, including 1D and 2D NMR and high-resolution ESIMS. Their absolute configurations were determined using quantum chemical electronic circular dichroism (ECD) calculations. The inhibitory activity of the isolated compounds (1-7) against indoleamine 2,3-dioxygenase 1 (IDO1) was assessed. Compounds 1, 5-7 inhibited IDO1, with IC50 values of 32.59, 36.86, 19.05, and 24.18 μM, respectively. These findings demonstrated that the phenalenone derivatives 1 and 5-7, as IDO1 inhibitors, are promising anticancer immunotherapeutic agents.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.,New Material Development Team, COSMAX BIO Ltd., 255 Pangyo-ro, Bungdang-gu, Seongnam, Gyeonggi-do, 13486, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chunshun Li
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Taehoon Oh
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Shugeng Cao
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
14
|
Zhang Y, Pan J, Hu H, Tang Y, Lin H, Ma Z, Fan P, Wang X. Antimicrobial Acetophenone and Phenalenone Derivatives from a Soil-Derived Fungus Penicillium Verrucisporum JX1. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Liang X, Huang ZH, Shen WB, Lu XH, Zhang XX, Ma X, Qi SH. Talaromyoxaones A and B: Unusual Oxaphenalenone Spirolactones as Phosphatase Inhibitors from the Marine-Derived Fungus Talaromyces purpureogenus SCSIO 41517. J Org Chem 2021; 86:12831-12839. [PMID: 34477382 DOI: 10.1021/acs.joc.1c01452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(+)- and (-)-talaromyoxaones A and B (1 and 2, respectively), two new oxaphenalenone derivatives with a hemiacetal frame and an unprecedented spirolactone frame of a 2'H,3H,4'H-spiro[isobenzofuran-1,3'-pyran]-3-one unit that show biosynthetic enantiodivergence, and two new oxaphenalenone analogues (±)-11-apopyrenulin (3) and (+)- or (-)-abeopyrenulin (4) were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and quantum chemical calculations of ECD spectra. Compounds 1 and 2 showed selective inhibitory activity against phosphatases SHP1, SHP2, and MEG2 with IC50 values of 1.3-3.4 μM, and the potential modes of action for 1 were investigated by a preliminary molecular docking study.
Collapse
Affiliation(s)
- Xiao Liang
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wen-Bin Shen
- New Drug Research Development Co., Ltd, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Xin-Hua Lu
- New Drug Research Development Co., Ltd, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Xue-Xia Zhang
- New Drug Research Development Co., Ltd, North China Pharmaceutical Group Corporation, Shijiazhuang 050015, China
| | - Xuan Ma
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
16
|
Elsebai MF, Schoeder CT, Müller CE. Fintiamin: A diketopiperazine from the marine sponge-derived fungus Eurotium sp. Arch Pharm (Weinheim) 2021; 354:e2100206. [PMID: 34368995 DOI: 10.1002/ardp.202100206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/06/2022]
Abstract
The fungus Eurotium sp., derived from the marine sponge Ircinia variabilis, was found to produce a diketopiperazine-indole alkaloid that we named fintiamin (1). Structural elucidation of 1 was achieved by extensive spectroscopic analysis including nuclear magnetic resonance spectroscopy and mass spectrometry. Compound 1 is a lipophilic terpenoid-dipeptide hybrid molecule that shows affinity for the cannabinoid CB1 receptor at low micromolar concentrations. Docking studies based on previous X-ray structures provide a plausible binding pose for compound 1 in the orthosteric binding site of the CB1 receptor.
Collapse
Affiliation(s)
- Mahmoud F Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Clara T Schoeder
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Siewert B. Does the chemistry of fungal pigments demand the existence of photoactivated defense strategies in basidiomycetes? Photochem Photobiol Sci 2021; 20:475-488. [PMID: 33738747 DOI: 10.1007/s43630-021-00034-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
The well-known photosensitizers hypericin, harmane, and emodin are typical pigments of certain mushroom species-is this a coincidence or an indication towards a photoactivated defense mechanism in the phylum Basidiomycota? This perspective article explores this hypothesis by cross-linking the chemistry of fungal pigments with structural requirements from known photosensitizers and insights from photoactivated strategies in the kingdom Plantae. Thereby, light is shed on a yet unexplored playground dealing with ecological questions, photopharmaceutical opportunities, and biotechnological potentials.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
18
|
Han Y, Sun C, Li C, Zhang G, Zhu T, Li D, Che Q. Antibacterial phenalenone derivatives from marine-derived fungus Pleosporales sp. HDN1811400. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
20
|
Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021; 38:1072-1099. [PMID: 33710221 DOI: 10.1039/d1np00004g] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering: 2015 to the end of 2020 Fungal-derived polyketides, non-ribosomal peptides, terpenoids and their hybrids contribute significantly to the chemical space of total natural products. Cytochrome P450 enzymes play essential roles in fungal natural product biosynthesis with their broad substrate scope, great catalytic versatility and high frequency of involvement. Due to the membrane-bound nature, the functional and mechanistic understandings for fungal P450s have been limited for quite a long time. However, recent technical advances, such as the efficient and precise genome editing techniques and the development of several filamentous fungal strains as heterologous P450 expression hosts, have led to remarkable achievements in fungal P450 studies. Here, we provide a comprehensive review to cover the most recent progresses from 2015 to 2020 on catalytic functions and mechanisms, research methodologies and remaining challenges in the fast-growing field of fungal natural product biosynthetic P450s.
Collapse
Affiliation(s)
- Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
21
|
Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, Sarma VV, Lücking R, Boonmee S, Bhat JD, Liu NG, Tennakoon DS, Pem D, Karunarathna A, Jiang SH, Jones GEB, Phillips AJL, Manawasinghe IS, Tibpromma S, Jayasiri SC, Sandamali D, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Phukhamsakda C, Dissanayake AJ, Zeng XY, Luo ZL, Tian Q, Thambugala KM, Dai D, Samarakoon MC, Chethana KWT, Ertz D, Doilom M, Liu JK(J, Pérez-Ortega S, Suija A, Senwanna C, Wijesinghe SN, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, Norphanphoun C, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-González R, Aptroot A, Kashiwadani H, Harishchandra D, Sérusiaux E, Abeywickrama PD, Bao DF, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Bhunjun CS, Chomnunti P, Suetrong S, Chaiwan N, Dayarathne MC, Yang J, Rathnayaka AR, Xu JC, Zheng J, Liu G, Feng Y, Xie N. Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00462-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractNumerous new taxa and classifications of Dothideomycetes have been published following the last monograph of families of Dothideomycetes in 2013. A recent publication by Honsanan et al. in 2020 expanded information of families in Dothideomycetidae and Pleosporomycetidae with modern classifications. In this paper, we provide a refined updated document on orders and families incertae sedis of Dothideomycetes. Each family is provided with an updated description, notes, including figures to represent the morphology, a list of accepted genera, and economic and ecological significances. We also provide phylogenetic trees for each order. In this study, 31 orders which consist 50 families are assigned as orders incertae sedis in Dothideomycetes, and 41 families are treated as families incertae sedis due to lack of molecular or morphological evidence. The new order, Catinellales, and four new families, Catinellaceae, Morenoinaceae Neobuelliellaceae and Thyrinulaceae are introduced. Seven genera (Neobuelliella, Pseudomicrothyrium, Flagellostrigula, Swinscowia, Macroconstrictolumina, Pseudobogoriella, and Schummia) are introduced. Seven new species (Acrospermum urticae, Bogoriella complexoluminata, Dothiorella ostryae, Dyfrolomyces distoseptatus, Macroconstrictolumina megalateralis, Patellaria microspora, and Pseudomicrothyrium thailandicum) are introduced base on morphology and phylogeny, together with two new records/reports and five new collections from different families. Ninety new combinations are also provided in this paper.
Collapse
|
22
|
Ent-Peniciherqueinone Suppresses Acetaldehyde-Induced Cytotoxicity and Oxidative Stress by Inducing ALDH and Suppressing MAPK Signaling. Pharmaceutics 2020; 12:pharmaceutics12121229. [PMID: 33352912 PMCID: PMC7765852 DOI: 10.3390/pharmaceutics12121229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Studies on ethanol-induced stress and acetaldehyde toxicity are actively being conducted, owing to an increase in alcohol consumption in modern society. In this study, ent-peniciherqueinone (EPQ) isolated from a Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 was found to reduce the acetaldehyde-induced cytotoxicity and oxidative stress in PC12 cells. EPQ increased cell viability in the presence of acetaldehyde-induced cytotoxicity in PC12 cells. In addition, EPQ reduced cellular reactive oxygen species (ROS) levels and restored acetaldehyde-mediated disruption of mitochondrial membrane potential. Western blot analyses revealed that EPQ treatment increased protein levels of ROS-scavenging heme oxygenase-1 and superoxide dismutase, as well as the levels of aldehyde dehydrogenase (ALDH) 1, ALDH2, and ALDH3, under acetaldehyde-induced cellular stress. Finally, EPQ reduced acetaldehyde-induced phosphorylation of p38 and c-Jun N-terminal kinase, which are associated with ROS-induced oxidative stress. Therefore, our results demonstrated that EPQ prevents cellular oxidative stress caused by acetaldehyde and functions as a potent agent to suppress hangover symptoms and alcohol-related stress.
Collapse
|
23
|
Kiyotaki K, Kayukawa T, Imayoshi A, Tsubaki K. Total Syntheses of FR-901235, Auxarthrones A-D, and Lamellicolic Anhydride. Org Lett 2020; 22:9220-9224. [PMID: 33196202 DOI: 10.1021/acs.orglett.0c03401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In our previous study, an unusual rearrangement reaction was discovered whereby dinaphthyl ketones with three hydroxy groups at restricted positions were transformed into a phenalenone ring and a benzene ring. Using the rearrangement as a key reaction, the first total syntheses of FR-901235 and auxarthrones A-D from an unstable triketone common intermediate are described. Furthermore, lamellicolic anhydride was synthesized from the triketone. This conversion is part of the putative biosynthetic pathway and was achieved experimentally for the first time.
Collapse
Affiliation(s)
- Kotaro Kiyotaki
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| | - Takuto Kayukawa
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| | - Ayumi Imayoshi
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| | - Kazunori Tsubaki
- Graduate School for Life and Environmental Sciences, Kyoto Prefectural University 1-5 Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 Japan
| |
Collapse
|
24
|
Separation and configurational assignment of stereoisomeric phenalenones from the marine mangrove-derived fungus Penicillium herquei MA-370. Bioorg Chem 2020; 106:104477. [PMID: 33279250 DOI: 10.1016/j.bioorg.2020.104477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
Eight phenalenone derivatives, including four new compounds, aceneoherqueinones A and B (1 and 2), (+)-aceatrovenetinone A (3a), and (+)-aceatrovenetinone B (3d), along with four known congeners, (-)-aceatrovenetinone A (3b), (-)-aceatrovenetinone B (3c), (-)-scleroderolide (4a), and (+)-scleroderolide (4b), were characterized from the marine mangrove-derived fungus Penicillium herquei MA-370. Among them, compounds 1 and 2 are rare phenalenone derivatives featuring cyclic ether unit between C-5 and C-2'. All of these compounds were subjected to chiral HPLC analysis, and the unstable stereoisomers 3a-3d, containing configurationally labile chirality centers, were characterized by online HPLC-ECD measurements supported with TDDFT-ECD calculations. The structures of these compounds were elucidated by detailed analysis of their NMR and mass spectroscopic data, and the absolute configuration of compound 1 was confirmed by X-ray diffraction analysis, while those of compounds 2 and 3a-3d were determined by TDDFT-ECD calculations of their ECD spectra. All of the isolated compounds were tested for the inhibitory activity against angiotensin-I-converting enzyme (ACE), and compounds 1 and 2 displayed activity with IC50 values 3.10 and 11.28 μM, respectively. The intermolecular interaction and potential binding sites of 1 and 2 with ACE were elaborated by molecular docking, showing that compound 1 bound well with ACE via hydrogen interactions with residues Ala261, Gln618, Trp621, and Asn624, while compound 2 interacted with residues Asp358 and Tyr360.
Collapse
|
25
|
Hüttel W, Müller M. Regio- and stereoselective intermolecular phenol coupling enzymes in secondary metabolite biosynthesis. Nat Prod Rep 2020; 38:1011-1043. [PMID: 33196733 DOI: 10.1039/d0np00010h] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2005 to 2020Phenol coupling is a key reaction in the biosynthesis of important biopolymers such as lignin and melanin and of a plethora of biarylic secondary metabolites. The reaction usually leads to several different regioisomeric products due to the delocalization of a radical in the reaction intermediates. If axial chirality is involved, stereoisomeric products are obtained provided no external factor influences the selectivity. Hence, in non-enzymatic organic synthesis it is notoriously difficult to control the selectivity of the reaction, in particular if the coupling is intermolecular. From biosynthesis, it is known that especially fungi, plants, and bacteria produce biarylic compounds regio- and stereoselectively. Nonetheless, the involved enzymes long evaded discovery. First progress was made in the late 1990s; however, the breakthrough came only with the genomic era and, in particular, in the last few years the number of relevant publications has dramatically increased. The discoveries reviewed in this article reveal a remarkable diversity of enzymes that catalyze oxidative intermolecular phenol coupling, including various classes of laccases, cytochrome P450 enzymes, and heme peroxidases. Particularly in the case of laccases, the catalytic systems are often complex and additional proteins, substrates, or reaction conditions have a strong influence on activity and regio- and atroposelectivity. Although the field of (selective) enzymatic phenol coupling is still in its infancy, the diversity of enzymes identified recently could make it easier to select suitable candidates for biotechnological development and to approach this challenging reaction through biocatalysis.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
26
|
Herqueilenone A, a unique rearranged benzoquinone-chromanone from the Hawaiian volcanic soil-associated fungal strain Penicillium herquei FT729. Bioorg Chem 2020; 105:104397. [PMID: 33130348 DOI: 10.1016/j.bioorg.2020.104397] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The study of a Hawaiian volcanic soil-associated fungal strain Penicillium herquei FT729 led to the isolation of one unprecedented benzoquinone-chromanone, herqueilenone A (1) and two phenalenone derivatives (2 and 3). Their structures were determined through extensive analysis of NMR spectroscopic data and gauge-including atomic orbital (GIAO) NMR chemical shifts and ECD calculations. Herqueilenone A (1) contains a chroman-4-one core flanked by a tetrahydrofuran and a benzoquinone with an acetophenone moiety. Plausible pathways for the biosynthesis of 1-3 are proposed. Compounds 2 and 3 inhibited IDO1 activity with IC50 values of 14.38 and 13.69 μM, respectively. Compounds 2 and 3 also demonstrated a protective effect against acetaldehyde-induced damage in PC-12 cells.
Collapse
|
27
|
Abdel-Razek AS, El-Ghonemy DH, Shaaban M. Production and purification of bioactive compounds with potent antimicrobial activity from a novel terrestrial fungus Aspergillus sp. DHE 4. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Ahmad S, Saleem M, Riaz N, Lee YS, Diri R, Noor A, Almasri D, Bagalagel A, Elsebai MF. The Natural Polypeptides as Significant Elastase Inhibitors. Front Pharmacol 2020; 11:688. [PMID: 32581778 PMCID: PMC7291377 DOI: 10.3389/fphar.2020.00688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Human neutrophil elastase (HNE) is a major cause of the destruction of tissues in cases of several different chronic andinflammatory diseases. Overexpression of the elastase enzyme plays a significant role in the pathogenesis of various diseases including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome, rheumatoid arthritis, the rare disease cyclic hematopoiesis (or cyclic neutropenia), infections, sepsis, cystic fibrosis, myocardial ischemia/reperfusion injury and asthma, inflammation, and atherosclerosis. Human neutrophil elastase is secreted by human neutrophils due to different stimuli. Medicine-based inhibition of the over-activation of neutrophils or production and activity of elastase have been suggested to mend inflammatory diseases. Although the development of new elastase inhibitors is an essential strategy for treating the different inflammatory diseases, it has been a challenge to specifically target the activity of elastase because of its overlapping functions with those of other serine proteases. This review article highlights the reported natural polypeptides as potential inhibitors of elastase enzyme. The mechanism of action, structural features, and activity of the polypeptides have also been correlated wherever they were available.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Chemistry, Post-Graduate College, Bahawalpur, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Riaz
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences & Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diena Almasri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Fahmi Elsebai
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
29
|
Zhang X, Tan X, Li Y, Wang Y, Yu M, Qing J, Sun B, Niu S, Ding G. Hispidulones A and B, two new phenalenone analogs from desert plant endophytic fungus Chaetosphaeronema hispidulum. J Antibiot (Tokyo) 2019; 73:56-59. [PMID: 31624336 DOI: 10.1038/s41429-019-0247-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023]
Abstract
Two new phenalenone analogs hispidulones A (1) and B (2) were isolated from the specially bioenvironmental desert plant endophytic fungus Chaetosphaeronema hispidulum. The structure of these two compounds were elucidated by extensive spectra analysis including HR-ESI-MS, NMR (1H, 13C, 1H-1H COSY, HSQC, and HMBC), CD, and electronic circular dichroism (ECD) combined with quantum-chemical calculations adopting time-dependent density functional theory (TDDFT) approaches. The W long-ranged 1H-1H COSY and HMBC correlations are very important in the structural elucidation of these two compounds. Hispidulone A (1) possesses a cyclohexa-2,5-dien-1-one moiety, whereas hispidulone B (2) contains a hemiacetal OCH3 group, which are very rare in the structures of phenalenone analogs. According to structural features of these two compounds together considering the literature, the possible biosynthetic pathway of 1 and 2 was postulated. Hispidulone B (2) displayed cytotoxic activities against three cancer cell lines A549, Huh7, and HeLa with IC50 values of 2.71 ± 0.08, 22.93 ± 1.61, and 23.94 ± 0.33 μM.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Xiangmei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Meng Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Jianchun Qing
- College of Plant Sciences, Jilin University, 130062, Changchun, China
| | - Bingda Sun
- Institute of Microbiology, Chinese Academy of Sciences, 100090, Beijing, China
| | - Shubin Niu
- School of Biological Medicine, Beijing City University, 100083, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China.
| |
Collapse
|
30
|
Purgett TJ, Dyer MW, Bickel B, McNeely J, Porco JA. Gold(I)-Mediated Cycloisomerization/Cycloaddition Enables Bioinspired Syntheses of Neonectrolides B-E and Analogues. J Am Chem Soc 2019; 141:15135-15144. [PMID: 31469554 DOI: 10.1021/jacs.9b06355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of a synthetic route to the oxaphenalenone (OP) natural products neonectrolides B-E is described. The synthesis relies on gold-catalyzed 6-endo-dig hydroarylation of an unusual enynol substrate as well as a one-pot Rieche formylation/cyclization/deprotection sequence to efficiently construct the tricyclic oxaphenalenone framework in the form of a masked ortho-quinone methide (o-QM). A tandem cycloisomerization/[4 + 2] cycloaddition strategy was employed to quickly construct molecules resembling the neonectrolides. The tricyclic OP natural product SF226 could be converted to corymbiferan lactone E and a related masked o-QM. Our study culminates with the application of the tandem reaction sequence to syntheses of neonectrolides B-E as well as previously unreported exo-diastereomers.
Collapse
Affiliation(s)
- Thomas J Purgett
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Matthew W Dyer
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - Bryce Bickel
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - James McNeely
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD) , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
31
|
Wang M, Yang L, Feng L, Hu F, Zhang F, Ren J, Qiu Y, Wang Z. Verruculosins A-B, New Oligophenalenone Dimers from the Soft Coral-Derived Fungus Talaromyces verruculosus. Mar Drugs 2019; 17:md17090516. [PMID: 31480659 PMCID: PMC6780165 DOI: 10.3390/md17090516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022] Open
Abstract
In an effort to discover new bioactive anti-tumor lead compounds, a specific tyrosine phosphatase CDC25B and an Erb family receptor EGFR were selected as drug screening targets. This work led to the investigation of the soft coral-derived fungus Talaromyces verruculosus and identification of two new oligophenalenone dimers, verruculosins A–B (1–2), along with three known analogues, bacillisporin F (3), duclauxin (4), and xenoclauxin (5). Compound 1 was the first structure of the oligophenalenone dimer possessing a unique octacyclic skeleton. The detailed structures and absolute configurations of the new compounds were elucidated on the basis of spectroscopic data, X-ray crystallography, optical rotation, Electronic Circular Dichroism (ECD) analysis, and nuclear magnetic resonance (NMR) calculations. Among which, compounds 1, 3, and 5 exhibited modest inhibitory activity against CDC25B with IC50 values of 0.38 ± 0.03, 0.40 ± 0.02, and 0.26 ± 0.06 µM, respectively.
Collapse
Affiliation(s)
- Minghui Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
- School of Nursing and Health, Qingdao Huanghai University, Linghai Road 1145, Qingdao 266427, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
| | - Liubin Feng
- High-field NMR Center College of Chemistry and Chemical Engineering, Xiamen University, Siming South Road 422, Xiamen 361005, China
| | - Fan Hu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
| | - Fang Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 184, Xiamen 361000, China.
| |
Collapse
|
32
|
Elsebai MF. Secondary metabolites from the marine-derived fungus Phaeosphaeria spartinae. Nat Prod Res 2019; 35:1504-1509. [PMID: 31441663 DOI: 10.1080/14786419.2019.1656623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Investigation of the marine-derived fungus Phaeosphaeria spartinae led to the isolation of a new enantiomer of tricinonoic acid, namely (-)-tricinonoic acid (1), and a new polyketide spartinol E (2), together with three known compounds (3-5).
Collapse
Affiliation(s)
- Mahmoud Fahmi Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Siewert B, Stuppner H. The photoactivity of natural products - An overlooked potential of phytomedicines? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152985. [PMID: 31257117 DOI: 10.1016/j.phymed.2019.152985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photoactivity, though known for centuries, is only recently shifting back into focus as a treatment option against cancer and microbial infections. The external factor light is the ingenious key-component of this therapy: Since light activates the drug locally, a high level of selectivity is reached and side effects are avoided. The first reported photoactive medicines were plant extracts. Synthetic entities (so-called photosensitizers PSs), however, paved the route towards the clinical approval of the so-called photodynamic therapy (PDT), and thus natural PSs took a backseat in the past. HYPOTHESIS Many isolated bioactive phytochemicals hold a hidden photoactive potential, which is overlooked due to the reduced common awareness of photoactivity. METHODS A systematic review of reported natural PSs and their supposed medicinal application was conducted by employing PubMed, Scifinder, and Web of Science. The identified photoactive natural products were compiled including information about their natural sources, their photoyield, and their pharmacological application. Furthermore, the common chemical scaffolds of natural PS are shown to enable the reader to recognize potentially overlooked natural PSs. RESULTS The literature review revealed over 100 natural PS, excluding porphyrins. The PSs were classified according to their scaffold. Thereby it was shown that some PS-scaffolds were analyzed in a detailed way, while other classes were only scarcely investigated, which leaves space for future discoveries. In addition, the literature revealed that many PSs are phytoalexins, thus the selection of the starting material significantly matters in order to find new PSs. CONCLUSION Photoactive principles are ubiquitous and can be found in various plant extracts. With the increasing availability of light-irradiation setups for the identification of photoactive natural products, we anticipate the discovery of many new natural PSs in the near future. With the accumulation of chemically diverse PSs, PDT itself might finally reach its clinical breakthrough as a promising alternative treatment against multi-resistant microbes and cancer types.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
34
|
Phenalenones from a Marine-Derived Fungus Penicillium Sp. Mar Drugs 2019; 17:md17030176. [PMID: 30889916 PMCID: PMC6470642 DOI: 10.3390/md17030176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
Six new phenalenone derivatives (1–6), along with five known compounds (7–11) of the herqueinone class, were isolated from a marine-derived fungus Penicillium sp. The absolute configurations of these compounds were assigned based on chemical modifications and their specific rotations. 4-Hydroxysclerodin (6) and an acetone adduct of a triketone (7) exhibited moderate anti-angiogenetic and anti-inflammatory activities, respectively, while ent-peniciherqueinone (1) and isoherqueinone (9) exhibited moderate abilities to induce adipogenesis without cytotoxicity.
Collapse
|
35
|
Siewert B, Vrabl P, Hammerle F, Bingger I, Stuppner H. A convenient workflow to spot photosensitizers revealed photo-activity in basidiomycetes. RSC Adv 2019; 9:4545-4552. [PMID: 30931108 PMCID: PMC6394893 DOI: 10.1039/c8ra10181g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 02/03/2023] Open
Abstract
Photodynamic therapy (PDT) is an alternative approach for the treatment of neoplastic diseases employing photosensitizers activated by light. In order to discover new natural photosensitizers, a convenient workflow was established. To validate the workflow, fungi were selected, because we hypothesized that fruiting bodies and mycelia are an overlooked source. The results proved the hypothesis, as exorbitant high photo-cytotoxicity values were detected. For example, the acetone extract of Cortinarius croceus was characterized by an EC50, 9.3 J cm-2 of 1 μg mL-1 against cells of a lung cancer cell-line (A549). In sum, a low-cost workflow for the detection and biological evaluation of photosensitizers is presented and discussed. Furthermore, this paper provides the first experimental evidence for phototoxic metabolites in basidiomycetes. This hints towards a new assignable function of fungal pigments, i.e. photochemical defense.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020 Austria
| | - Fabian Hammerle
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Isabella Bingger
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020 Austria
- Management Center Innsbruck, Maximilianstraße 2, Innsbruck, 6020 Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| |
Collapse
|
36
|
Norman EO, Lever J, Brkljača R, Urban S. Distribution, biosynthesis, and biological activity of phenylphenalenone-type compounds derived from the family of plants, Haemodoraceae. Nat Prod Rep 2019; 36:753-768. [DOI: 10.1039/c8np00067k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review provides a summary of the current state of research concerning the unique specialised metabolites from Haemodoraceae.
Collapse
Affiliation(s)
- Edward Owen Norman
- School of Science (Applied Chemistry and Environmental Science)
- RMIT University
- Melbourne
- Australia
| | - James Lever
- School of Science (Applied Chemistry and Environmental Science)
- RMIT University
- Melbourne
- Australia
| | - Robert Brkljača
- School of Science (Applied Chemistry and Environmental Science)
- RMIT University
- Melbourne
- Australia
| | - Sylvia Urban
- School of Science (Applied Chemistry and Environmental Science)
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
37
|
Salmerón ML, Quintana-Aguiar J, De La Rosa JV, López-Blanco F, Castrillo A, Gallardo G, Tabraue C. Phenalenone-photodynamic therapy induces apoptosis on human tumor cells mediated by caspase-8 and p38-MAPK activation. Mol Carcinog 2018; 57:1525-1539. [PMID: 30035337 DOI: 10.1002/mc.22875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/23/2018] [Accepted: 07/18/2018] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) is a rising and hopeful treatment for solid tumors and others malignancies. PDT uses harmless visible light to activate a tumor-associated photosensitizer (PS). The excited PS generates cytotoxic reactive oxygen species (ROS) that induce damage and death of tumor cells. It is known that certain phytoalexins and phytoanticipins derived from plants often display a PS-like activity due to a phenalenone (PN) moiety-an efficient singlet oxygen photosensitizer-in its skeleton. The aim of this study is to explore the phototoxic properties of PN on the human cell line tumor-derived HL60 (acute promyelocytic leukemia) and to identify the cell-specific targets of ROS involved in the tumor cell death. Our results reveal that PN acts as an excellent PS, showing a potent antitumor cell activity in presence of light. PN-PDT generates intracellular ROS, via oxidation reaction mechanisms type I and II, resulting in an induction of apoptosis. Moreover, both extrinsic (through direct activation of caspase-3) and intrinsic (through mitochondrial depolarization) pathways of apoptosis are induced by PN-PDT. Using pharmacologic inhibitors, we also find that PN-PDT activates caspase-8/tBid and p38-MAPK, triggering the activation of the apoptotic pathways. Although, survival pathways are also promoted through PI3 K/Akt and JNK activation, the net result of PN-PDT is the tumor cell death. The present work identifies to PN, for the first time, as a potent photosensitizer in human tumor cell lines and proposes a mechanism by which ROS induces apoptosis of tumor cell.
Collapse
Affiliation(s)
- María L Salmerón
- Facultad de Ciencias, Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - José Quintana-Aguiar
- Departamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología. Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Juan V De La Rosa
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Félix López-Blanco
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Germán Gallardo
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Carlos Tabraue
- Unidad de Biomedicina Asociada al Consejo Superior de Investigaciones Científicas (Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Grupo de Investigación Medio Ambiente y Salud (GIMAS), Universidad de las Palmas de Gran Canaria, Las Palmas, Spain.,Departamento de Morfología, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
38
|
Elsebai MF, Ghabbour HA, Legrave N, Fontaine-Vive F, Mehiri M. New bioactive chlorinated cyclopentene derivatives from the marine-derived Fungus Phoma sp. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2201-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Gao SS, Zhang T, Garcia-Borràs M, Hung YS, Billingsley JM, Houk KN, Hu Y, Tang Y. Biosynthesis of Heptacyclic Duclauxins Requires Extensive Redox Modifications of the Phenalenone Aromatic Polyketide. J Am Chem Soc 2018; 140:6991-6997. [PMID: 29741874 DOI: 10.1021/jacs.8b03705] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Duclauxins are dimeric and heptacyclic fungal polyketides with notable bioactivities. We characterized the cascade of redox transformations in the biosynthetic pathway of duclauxin from Talaromyces stipitatus. The redox reaction sequence is initiated by a cupin family dioxygenase DuxM that performs an oxidative cleavage of the peri-fused tricyclic phenalenone and affords a transient hemiketal-oxaphenalenone intermediate. Additional redox enzymes then morph the oxaphenoalenone into either an anhydride or a dihydrocoumarin-containing monomeric building block that is found in dimeric duxlauxins. Oxidative coupling between the monomers to form the initial C-C bond was shown to be catalyzed by a P450 monooxygenase, although the enzyme responsible for the second C-C bond formation was not found in the pathway. Collectively, the number and variety of redox enzymes used in the duclauxin pathway showcase Nature's strategy to generate structural complexity during natural product biosynthesis.
Collapse
Affiliation(s)
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | | | | | | | | | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | | |
Collapse
|
40
|
Abstract
Exploration of structurally novel natural products greatly facilitates the discovery of biologically active pharmacophores that are biologically validated starting points for the development of new drugs. Endophytes that colonize the internal tissues of plant species, have been proven to produce a large number of structurally diverse secondary metabolites. These molecules exhibit remarkable biological activities, including antimicrobial, anticancer, anti-inflammatory and antiviral properties, to name but a few. This review surveys the structurally diverse natural products with new carbon skeletons, unusual ring systems, or rare structural moieties that have been isolated from endophytes between 1996 and 2016. It covers their structures and bioactivities. Biosynthesis and/or total syntheses of some important compounds are also highlighted. Some novel secondary metabolites with marked biological activities might deserve more attention from chemists and biologists in further studies.
Collapse
Affiliation(s)
- Han Gao
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266021, China.
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.
| |
Collapse
|
41
|
Fukuyama T, Sugimori T, Maetani S, Ryu I. Synthesis of perinaphthenones through rhodium-catalyzed dehydrative annulation of 1-naphthoic acids with alkynes. Org Biomol Chem 2018; 16:7583-7587. [DOI: 10.1039/c8ob01453a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient method for the synthesis of perinaphthenones via rhodium-catalyzed dehydrative annulation of naphthoic acids with alkynes, which gave good to high yields of perinaphthenones, was developed.
Collapse
Affiliation(s)
- Takahide Fukuyama
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Taiki Sugimori
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Shinji Maetani
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| | - Ilhyong Ryu
- Department of Chemistry
- Graduate School of Science
- Osaka Prefecture University
- Osaka 599-8531
- Japan
| |
Collapse
|
42
|
Kaya U, Chauhan P, Mahajan S, Deckers K, Valkonen A, Rissanen K, Enders D. Squaramide-Catalyzed Asymmetric aza-Friedel-Crafts/N,O-Acetalization Domino Reactions Between 2-Naphthols and Pyrazolinone Ketimines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Uğur Kaya
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Pankaj Chauhan
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Suruchi Mahajan
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Arto Valkonen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Dieter Enders
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
43
|
Kaya U, Chauhan P, Mahajan S, Deckers K, Valkonen A, Rissanen K, Enders D. Squaramide-Catalyzed Asymmetric aza-Friedel-Crafts/N,O-Acetalization Domino Reactions Between 2-Naphthols and Pyrazolinone Ketimines. Angew Chem Int Ed Engl 2017; 56:15358-15362. [DOI: 10.1002/anie.201709224] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Uğur Kaya
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Pankaj Chauhan
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Suruchi Mahajan
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Kristina Deckers
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Arto Valkonen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center; University of Jyvaskyla; 40014 JYU Finland
| | - Dieter Enders
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
44
|
Pang X, Zhao JY, Fang XM, Zhang T, Zhang DW, Liu HY, Su J, Cen S, Yu LY. Metabolites from the Plant Endophytic Fungus Aspergillus sp. CPCC 400735 and Their Anti-HIV Activities. JOURNAL OF NATURAL PRODUCTS 2017; 80:2595-2601. [PMID: 29016131 DOI: 10.1021/acs.jnatprod.6b00878] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Thirty-three metabolites including five phenalenone derivatives (1-5), seven cytochalasins (6-12), thirteen butenolides (13-25), and eight phenyl derivatives (26-33) were isolated from Aspergillus sp. CPCC 400735 cultured on rice. The structures of all compounds were elucidated by NMR, MS, and CD experiments, of which 1-5 (asperphenalenones A-E), 6 (aspochalasin R), and 13 (aspulvinone R) were identified as new compounds. Specifically, asperphenalenones A-E (1-5) represent an unusual structure composed of a linear diterpene derivative linked to a phenalenone derivative via a C-C bond. Compounds 1, 4, 10, and 26 exhibited anti-HIV activity with IC50 values of 4.5, 2.4, 9.2, and 6.6 μM, respectively (lamivudine 0.1 μM; efavirenz, 0.4 × 10-3 μM).
Collapse
Affiliation(s)
- Xu Pang
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - Jian-Yuan Zhao
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - Xiao-Mei Fang
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - De-Wu Zhang
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - Hong-Yu Liu
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Academy of Medical Science & Peking Union Medical College , Beijing 100050, China
| |
Collapse
|
45
|
Li Y, Yue Q, Jayanetti DR, Swenson DC, Bartholomeusz GA, An Z, Gloer JB, Bills GF. Anti-Cryptococcus Phenalenones and Cyclic Tetrapeptides from Auxarthron pseudauxarthron. JOURNAL OF NATURAL PRODUCTS 2017; 80:2101-2109. [PMID: 28657331 PMCID: PMC5629637 DOI: 10.1021/acs.jnatprod.7b00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Auxarthrones A-E (1-5), five new phenalenones, and two new naturally occurring cyclic tetrapeptides, auxarthrides A (7) and B (8), were obtained from three different solvent extracts of cultures of the coprophilous fungus Auxarthron pseudauxarthron. Auxarthrones C (3) and E (5) possess an unusual 7a,8-dihydrocyclopenta[a]phenalene-7,9-dione ring system that has not been previously observed in natural products. Formation of 1-5 was found to be dependent on the solvent used for culture extraction. The structures of these new compounds were elucidated primarily by analysis of NMR and MS data. Auxarthrone A (1) was obtained as a mixture of chromatographically inseparable racemic diastereomers (1a and 1b) that cocrystallized, enabling confirmation of their structures by X-ray crystallography. The absolute configurations of 7 and 8 were assigned by analysis of their acid hydrolysates using Marfey's method. Compound 1 displayed moderate antifungal activity against Cryptococcus neoformans and Candida albicans, but did not affect human cancer cell lines.
Collapse
Affiliation(s)
- Yan Li
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Qun Yue
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Dinith R. Jayanetti
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dale C. Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Geoffrey A. Bartholomeusz
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Zhiqiang An
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - James B. Gloer
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Gerald F. Bills
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| |
Collapse
|
46
|
Gombodorj S, Yang MH, Shang ZC, Liu RH, Li TX, Yin GP, Kong LY. New phenalenone derivatives from Pinellia ternata tubers derived Aspergillus sp. Fitoterapia 2017; 120:72-78. [PMID: 28577908 DOI: 10.1016/j.fitote.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/13/2023]
Abstract
Nine new phenalenone derivatives (1-9), along with two known analogues (10-11) have been isolated from the solid cultures of an endophytic fungus Aspergillus sp. which was obtained from Pinellia ternate. Their structures were established through interpretations of spectroscopic evidence, and some of their absolute configurations were determined by electronic circular dichroism (ECD) and Mo2(OCOCH3)4 induced ECD. All of the phenalenones are unusual acyclic diterpenoid adducts, which are diversely oxidized and partly epoxidized to form different heterocycles. In addition, compound 10 exhibited significant antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis with MIC50 values of 1.87, 2.77, and 4.80μg/mL, respectively.
Collapse
Affiliation(s)
- Surenmandakh Gombodorj
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhi-Chun Shang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Rui-Huan Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Tian-Xiao Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Guo-Ping Yin
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
47
|
|
48
|
Feng J, Lei X, Guo Z, Tang Y. Total Synthesis of Homodimericin A. Angew Chem Int Ed Engl 2017; 56:7895-7899. [PMID: 28510326 DOI: 10.1002/anie.201702893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Juan Feng
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Xiaoqiang Lei
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Zhen Guo
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
| | - Yefeng Tang
- School of Pharmaceutical Sciences; Tsinghua University; Beijing 100084 China
- Collaborative Innovation Center for Biotherapy; State Key Laboratory of Biotherapy and Cancer Center; West China Medical School; Sichuan University; Chengdu 610041 China
| |
Collapse
|
49
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Akkachairin B, Tummatorn J, Supantanapong N, Nimnual P, Thongsornkleeb C, Ruchirawat S. Silver-Catalyzed Cyclization of ortho-Carbonylarylacetylenols for the Synthesis of Dihydronaphthofurans. J Org Chem 2017; 82:3727-3740. [DOI: 10.1021/acs.joc.7b00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bhornrawin Akkachairin
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology
(EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology
(EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng
Phet 6, Laksi, Bangkok 10210, Thailand
| | - Nantamon Supantanapong
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology
(EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Phongprapan Nimnual
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology
(EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology
(EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng
Phet 6, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology
(EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng
Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|