1
|
Chen L, Lv C, Meng Y, Yang Z, Xin W, Zhu Y, Wang X, Wang B, Ding X, Wang Z, Wei X, Zhang X, Fu X, Meng X, Zhang M, Huo M, Li Y, Yu H, Wei Y, Geng L. The Latest Progress in the Chemistry of Daphniphyllum Alkaloids. Molecules 2024; 29:5498. [PMID: 39683658 DOI: 10.3390/molecules29235498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing a reference for future studies.
Collapse
Affiliation(s)
- Lujuan Chen
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yinping Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhen Yang
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Wenbin Xin
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yuxue Zhu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuehan Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Baozhen Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuan Ding
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhaoxia Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuyue Wei
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinyue Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuexue Fu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangru Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Meimei Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Manyu Huo
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying Li
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Hui Yu
- Health and Medicine College, Dezhou University, Dezhou 253023, China
| | - Yuxia Wei
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
2
|
Wright BA, Okada T, Regni A, Luchini G, Sowndarya S V S, Chaisan N, Kölbl S, Kim SF, Paton RS, Sarpong R. Molecular Complexity-Inspired Synthetic Strategies toward the Calyciphylline A-Type Daphniphyllum Alkaloids Himalensine A and Daphenylline. J Am Chem Soc 2024. [PMID: 39565045 DOI: 10.1021/jacs.4c11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this report, we detail two distinct synthetic approaches to calyciphylline A-type Daphniphyllum alkaloids himalensine A and daphenylline, which are inspired by our analysis of the structural complexity of these compounds. Using MolComplex, a Python-based web application that we have developed, we quantified the structural complexity of all possible precursors resulting from one-bond retrosynthetic disconnections. This led to the identification of transannular bonds as especially simplifying to the molecular graph, and, based on this analysis, we pursued a total synthesis of himalensine A from macrocyclic intermediates with planned late-stage transannular ring formations. Despite initial setbacks in accessing an originally designed macrocycle, targeting a simplified macrocycle ultimately enabled investigation of this intermediate's unique transannular reactivity. Given the lack of success to access himalensine A based solely on molecular graph analysis, we revised our approach to the related alkaloid, daphenylline. Herein, we also provide the details of the various synthetic challenges that we encountered and overcame en route to a total synthesis of daphenylline. First, optimization of a Rh-mediated intramolecular Buchner/6π-electrocyclic ring-opening sequence enabled construction of the pentacyclic core. We then describe various attempts to install a key quaternary methyl group and, ultimately, our solution to leverage a [2 + 2] photocycloaddition/bond cleavage sequence to achieve this elusive goal. Finally, a late-stage Friedel-Crafts cyclization and deoxygenation facilitated the 11-step total synthesis, which was made formally enantioselective by a Rh-mediated dihydropyridone conjugate arylation. Complexity analysis of the daphenylline synthesis highlights how complexity-building/C-C cleavage combinations can be uniquely effective in achieving synthetic outcomes.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Taku Okada
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alessio Regni
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Guilian Luchini
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shree Sowndarya S V
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nattawadee Chaisan
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sebastian Kölbl
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Xu Z, Peng W, Huang J, Shen J, Guo JJ, Hu A. Photoinduced formal [4 + 2] cycloaddition of two electron-deficient olefins and its application to the synthesis of lucidumone. Nat Commun 2024; 15:9748. [PMID: 39528531 PMCID: PMC11555068 DOI: 10.1038/s41467-024-54117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Electronically mismatched Diels-Alder reaction between two electron-deficient components is synthetically useful and yet underdeveloped under thermal conditions. Herein, a photoinduced formal [4 + 2] cycloaddition of enone with a variety of electron-deficient dienes is described. Key to the success of this stepwise methodology relies on a C - C bond cleavage/rearrangement of the cyclobutane based overbred intermediate via diversified mechanistic pathways. Based on this annulation method, total synthesis of lucidumone is achieved in nine steps.
Collapse
Affiliation(s)
- Zhezhe Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Weibo Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jiarui Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jinhui Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jing-Jing Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | - Anhua Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Zhao Z, Deng G, Li CC. Synthesis of the [6-6-7-5-5] Pentacyclic Core of Calyciphylline N. Org Lett 2024; 26:2238-2242. [PMID: 38442391 DOI: 10.1021/acs.orglett.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A new approach for the concise 11-step synthesis of the [6-6-7-5-5] BCDEF pentacyclic core of calyciphylline N is described. A type II [5 + 2] cycloaddition was employed to construct the strained BCD skeleton, which encompasses the challenging bicyclo[2.2.2] and bicyclo[4.3.1] ring systems. With a regio- and diastereoselective Lu's [3 + 2] cycloaddition, followed by intramolecular aldol cyclization and elimination, the desired [5-5]-fused EF ring system has been successfully installed, resulting in the complete carbocyclic skeleton of calyciphylline N.
Collapse
Affiliation(s)
- Zhiwen Zhao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Guowei Deng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, People's Republic of China
| |
Collapse
|
5
|
Zhang W, Lu M, Ren L, Zhang X, Liu S, Ba M, Yang P, Li A. Total Synthesis of Four Classes of Daphniphyllum Alkaloids. J Am Chem Soc 2023; 145:26569-26579. [PMID: 38032297 DOI: 10.1021/jacs.3c06088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The macrodaphniphyllamine-type, calyciphylline A-type, daphnilongeranin A-type, and daphnicyclidin D-type alkaloids are four structurally related classes of Daphniphyllum alkaloids. On the basis of a systematic analysis of the biogenetic network of these classes, we developed synthetic strategies centered on the C4-N and C1-C8 bonds of calyciphylline A, which took full advantage of the suitable substrates, reactions, and pathways that are altered from their counterparts in the postulated biogenetic network. Through this generalized biomimetic approach, we achieved the first synthesis of 14 Daphniphyllum alkaloids from the four subfamilies.
Collapse
Affiliation(s)
- Wenhao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming Lu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lu Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shaonan Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mengyu Ba
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Henan Institute of Advanced Technology and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Yang
- Henan Institute of Advanced Technology and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ang Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Henan Institute of Advanced Technology and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Xu Z, Li X, Rose JA, Herzon SB. Finding activity through rigidity: syntheses of natural products containing tricyclic bridgehead carbon centers. Nat Prod Rep 2023; 40:1393-1431. [PMID: 37140079 PMCID: PMC10472132 DOI: 10.1039/d3np00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Covering: up to 2022Tricyclic bridgehead carbon centers (TBCCs) are a synthetically challenging substructure found in many complex natural products. Here we review the syntheses of ten representative families of TBCC-containing isolates, with the goal of outlining the strategies and tactics used to install these centers, including a discussion of the evolution of the successful synthetic design. We provide a summary of common strategies to inform future synthetic endeavors.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Xin Li
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - John A Rose
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, USA.
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| |
Collapse
|
7
|
Zou YP, Lai ZL, Zhang MW, Peng J, Ning S, Li CC. Total Synthesis of (±)- and (-)-Daphnillonin B. J Am Chem Soc 2023; 145:10998-11004. [PMID: 37167083 DOI: 10.1021/jacs.3c03755] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first total synthesis of (±)- and (-)-daphnillonin B, a daphnicyclidin-type alkaloid with a new [7-6-5-7-5-5] A/B/C/D/E/F hexacyclic core, has been achieved. The [6-5-7] B/C/D ring system was efficiently and diastereoselectively constructed via a mild type I intramolecular [5+2] cycloaddition, followed by a Grubbs II catalyst-catalyzed radical cyclization. The [5-5] fused E/F ring system was synthesized via a diastereoselective intramolecular Pauson-Khand reaction. Notably, the synthetically challenging [7-6-5-7-5-5] hexacyclic core was reassembled by a unique Wagner-Meerwein-type rearrangement from the [6-6-5-7-5-5] hexacyclic framework found in calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Yun-Peng Zou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng-Lin Lai
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhao Peng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Ning
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
8
|
Hu J, Chen W, Jiang Y, Xu J. Synthesis of Tetracyclic Core Structure of Daphnezomines A and B. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Nakajima D, Yokoshima S. Construction of the [7-5-5] Tricyclic Core of Daphniphyllum Alkaloids via a Cationic Cascade Reaction. Org Lett 2022; 24:9520-9524. [PMID: 36524720 DOI: 10.1021/acs.orglett.2c04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The [7-5-5] tricyclic core of daphniphyllum alkaloids, containing contiguous stereogenic centers at C14 and C15 and a tetrasubstituted alkene moiety between C9 and C10, was constructed via a cascade reaction that involved an electrocyclic reaction of a pentadienyl cation and intramolecular interception of the resultant cyclopentenyl cation.
Collapse
Affiliation(s)
- Daisuke Nakajima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Li LX, Min L, Yao TB, Ji SX, Qiao C, Tian PL, Sun J, Li CC. Total Synthesis of Yuzurine-type Alkaloid Daphgraciline. J Am Chem Soc 2022; 144:18823-18828. [PMID: 36198113 DOI: 10.1021/jacs.2c09548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total synthesis of daphgraciline has been achieved, which also represents the first example of the synthesis of Daphniphyllum yuzurine-type alkaloids (∼50 members). The unique bridged azabicyclo[4.3.1] ring system in the yuzurine-type subfamily was efficiently and diastereoselectively assembled via a mild type II [5+2] cycloaddition for the first time. The compact tetracyclic [6-7-5-5] skeleton was installed efficiently via an intramolecular Diels-Alder reaction, followed by a benzilic acid-type rearrangement. The synthetically challenging spiro tetrahydropyran moiety in the final product was installed diastereoselectively via a TiIII-mediated reductive epoxide coupling reaction. Potential access to enantioenriched daphgraciline is presented.
Collapse
Affiliation(s)
- Li-Xuan Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Long Min
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian-Bing Yao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shu-Xiao Ji
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang Qiao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pei-Lin Tian
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
11
|
Hu J, Guo LD, Chen W, Jiang Y, Pu F, Ning C, Xu J. Total Syntheses of Daphnezomine L-type and Secodaphniphylline-type Daphniphyllum Alkaloids via Late-Stage C-N Bond Activation. Org Lett 2022; 24:7416-7420. [PMID: 36191161 DOI: 10.1021/acs.orglett.2c02988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here, we report the first total syntheses of daphnezomine L-type alkaloids daphnezomine L methyl ester and calyciphylline K via late-stage C-N bond activation. The first synthesis of secodaphniphylline-type alkaloid caldaphnidine D was also achieved via a similar strategy. Other key transformations employed in our synthesis were a facile vicinal diol olefination and an efficient radical cyclization cascade. Biological studies indicated two synthetic compounds possess promising neuroprotective activity.
Collapse
Affiliation(s)
- Jingping Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China.,Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Fan Pu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, Guangdong518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,Shenzhen Bay Laboratory, Shenzhen518132, China
| |
Collapse
|
12
|
Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements. J Am Chem Soc 2022; 144:16042-16051. [PMID: 36007885 DOI: 10.1021/jacs.2c05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Manrong Song
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujia Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Yan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Hu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengqian Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Marquès C, Diaba F, Gómez-Bengoa E, Bonjoch J. Synthesis of the ABC Ring of Calyciphylline A-Type Alkaloids by a Stereocontrolled Aldol Cyclization: Formal Synthesis of (±)-Himalensine A. J Org Chem 2022; 87:10516-10522. [PMID: 35862855 PMCID: PMC9881646 DOI: 10.1021/acs.joc.2c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A synthetic approach to a functionalized ABC-tricyclic framework of calyciphilline A-type alkaloids, a building block toward this class of alkaloids, is reported. The key synthetic steps involve a radical cyclization to form the hydroindole system and piperidine ring closure through a stereocontrolled aldol cyclization. The resulting alcohol allows the methyl group to be installed in the bowl-shaped azatricyclic structure; this crucial reaction takes place with configuration retention. The synthesis of azatricyclic compound I constitutes a formal synthesis of himalensine A.
Collapse
Affiliation(s)
- Clàudia Marquès
- Laboratori de Química Orgànica, Facultat
de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan
XXIII 27-31, 08028-Barcelona, Spain
| | - Faïza Diaba
- Laboratori de Química Orgànica, Facultat
de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan
XXIII 27-31, 08028-Barcelona, Spain,
| | - Enrique Gómez-Bengoa
- Departamento de Química Orgánica I,
Universidad del País Vasco, Manuel Lardizábal
3, 20018 San Sebastián, Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat
de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan
XXIII 27-31, 08028-Barcelona, Spain,
| |
Collapse
|
14
|
Cao MY, Ma BJ, Gu QX, Fu B, Lu HH. Concise Enantioselective Total Synthesis of Daphenylline Enabled by an Intramolecular Oxidative Dearomatization. J Am Chem Soc 2022; 144:5750-5755. [PMID: 35289615 DOI: 10.1021/jacs.2c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Daphenylline is a structurally unique member of the triterpenoid Daphniphyllum natural alkaloids, which exhibit intriguing biological activities. Six total syntheses have been reported, five of which utilize aromatization approaches. Herein, we report a concise protecting-group-free total synthesis by means of a novel intramolecular oxidative dearomatization reaction, which concurrently generates the critical seven-membered ring and the quaternary-containing vicinal stereocenters. Other notable transformations include a tandem reductive amination/amidation double cyclization reaction, to assemble the cage-like architecture, and installation of the other two chiral stereocenters via a highly enantioselective rhodium-catalyzed challenging hydrogenation of the diene intermediate (90% e.e.) and an unprecedented remote acid-directed Mukaiyama-Michael reaction of the complex benzofused cyclohexanone (13:1 d.r.).
Collapse
Affiliation(s)
- Meng-Yue Cao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qing-Xiu Gu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bei Fu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hai-Hua Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
15
|
Zhang X, Xu J. Five-membered carbocycle construction in the synthesis of Daphniphyllum alkaloids: recent strategic and methodological advances. Org Chem Front 2022. [DOI: 10.1039/d2qo01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review article, we summarize novel or non-standard strategies and methods for the five-membered carbocycle construction in recent Daphniphyllum alkaloid synthesis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
16
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
17
|
Chen Y, Guo LD, Xu J. Synthesis of the tricyclic skeleton of Daphniphyllum alkaloids daphnimacropodines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A‐Type Alkaloids: Divergent Total Syntheses of (−)‐Daphenylline and (−)‐Himalensine A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A-Type Alkaloids: Divergent Total Syntheses of (-)-Daphenylline and (-)-Himalensine A. Angew Chem Int Ed Engl 2021; 60:9439-9443. [PMID: 33569888 DOI: 10.1002/anie.202016212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Indexed: 12/16/2022]
Abstract
An efficient general strategy for the synthesis of the Daphniphyllum alkaloids via the rapid construction of a common core intermediate has been established, based on which a divergent total synthesis of (-)-daphenylline and (-)-himalensine A has been accomplished in 16 and 19 steps, respectively. The present work features an enantioselective Mg(ClO4 )2 -catalyzed intramolecular amidocyclization to construct the aza-bridged core structure; a Cu-catalyzed intramolecular cyclopropanation and subsequent phosphine-catalyzed Cope-type rearrangement to furnish the himalensine A scaffold; and a one-pot Diels-Alder/aromatization method to assemble the aromatic skeleton of daphenylline.
Collapse
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fayang G Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Li H, Zhang J, She X. The Total Synthesis of Diquinane-Containing Natural Products. Chemistry 2021; 27:4839-4858. [PMID: 32955141 DOI: 10.1002/chem.202003741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Diquinane or bicyclo[3.3.0]octane is a conspicuous structural unit existing in the carbo-frameworks of a wide range of natural products such as alkaloids and terpenoids. These diquinane-containing molecules not merely exhibit intriguing architectures, but also showcase a broad spectrum of significant bioactivities, which draw widespread attention from the global synthetic community. During the past decade, with an aim to accomplish the total syntheses of such specified cornucopias of natural products, a variety of elegant strategies for construction of the diquinane ring system have been disclosed. In this Minireview, the achievements on this subject in the timeline from 2010 to June 2020 are demonstrated and it is discussed how the diquinane unit is strategically forged in the context of the specific target structure. In addition, impacts of the selected works to the field of natural product total synthesis is highlighted and the particular outlook of diquinane-containing natural product synthesis is provided.
Collapse
Affiliation(s)
- Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| | - Jing Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, Gansu, P. R. China
| |
Collapse
|
21
|
Abstract
The triterpenoids Daphniphyllum alkaloids share the unique fused hexacyclic ring framework are isolated from the genus Daphniphyllum. These natural products possess comprehensive biological activities and exhibit excellent potential medicinal appliment. This review covers the reported isolation studies and biological activities of Daphniphyllum alkaloids spanning the period from 1966 to the beginning of 2020, In the meantime, the total synthesis of Daphniphyllum alkaloids will be emphatically summarized for supplement over this review series.
Collapse
|
22
|
Shen SM, Li H, Wang JR, Zeng YB, Guo YW. Further new complex daphniphyllum alkaloids from the stems and leaves of Daphniphyllum calycinum: Structure and stereochemistry. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Guo LD, Chen Y, Xu J. Total Synthesis of Daphniphyllum Alkaloids: From Bicycles to Diversified Caged Structures. Acc Chem Res 2020; 53:2726-2737. [PMID: 33074659 DOI: 10.1021/acs.accounts.0c00532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Native to the Asia-Pacific region and widely applied in traditional Chinese medicine, the genus Daphniphyllum has produced over 330 known Daphniphyllum alkaloids. Investigations into these alkaloids have shown an exceptional range of interesting bioactivities. Challenging and caged polycyclic architectures and the promising biological profiles make Daphniphyllum alkaloids intriguing synthetic targets. Based on their backbones, these alkaloids can be categorized into 13-35 structurally distinct subfamilies. In addition to our work, almost 30 impressive total syntheses of Daphniphyllum alkaloids from seven subfamilies, namely, daphniphylline-type, secodaphniphylline-type, daphnilactone A-type, bukittinggine-type, daphmanidin A-type, calyciphylline A-type, and calyciphylline B-type alkaloids, have been reported by 11 research groups. However, many Daphniphyllum alkaloid subfamilies remain inaccessible by chemical synthesis.In this Account, we summarize our recent endeavors in the total synthesis of Daphniphyllum alkaloids commencing from simple chiral bicyclic synthons. Daphniphyllum alkaloids with diversified skeletons from four different subfamilies, namely, calyciphylline A-type, daphnezomine A-type, bukittinggine-type, and yuzurimine-type alkaloids, have been achieved. Furthermore, the tricyclic core structure of daphniglaucin C-type alkaloids daphnimacropodines was also synthesized. First, we describe a 14-step synthesis of calyciphylline A-type alkaloid (-)-himalensine A, which features a mild Cu-mediated nitrile hydration, an intramolecular Heck reaction to assemble the pivotal 2-azabicyclo[3.3.1]nonane moiety, and a Meinwald rearrangement to introduce the critical oxidative state into the skeleton. We then introduce the synthesis of daphnezomine A-type alkaloid dapholdhamine B, which possesses a unique aza-adamantane core. This target molecule was fabricated using key reactions including Huang's amide-activation-annulation. An unexpected radical detosylation during the synthesis of dapholdhamine B further inspired an ambitious radical cyclization cascade strategy, which eventually led to an efficient total synthesis of bukittinggine-type alkaloid (-)-caldaphnidine O. This highly chemo-, regio-, and stereoselective radical reaction cascade also shed light on the synthetic strategy of other alkaloids with caged structures. We next describe the first total synthesis of yuzurimine-type alkaloid (+)-caldaphnidine J. The key steps in our approach include a Pd-catalyzed regioselective hydroformylation and a novel Swern oxidation/ketene dithioacetal Prins reaction cascade. The work has achieved the first synthesis of a member of the largest subfamily of Daphniphyllum alkaloids. Finally, we show our efforts toward the total synthesis of daphniglaucin C-type alkaloids. Overall, we hope that the interesting strategies and synthetic methods demonstrated in our efforts could inspire a wide variety of additional applications to natural product synthesis.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
24
|
|
25
|
Abstract
Daphnezomines A and B are structurally unusual Daphniphyllum alkaloids that contain a unique aza-adamantane core skeleton. Herein, a modular approach to these alkaloids is presented that exploits a diverse array of reaction strategies. Commencing from a chiral pool terpene-(S)-carvone, the azabicyclo[3.3.1]nonane backbone, which occurs widely in Daphniphyllum alkaloids, was easily accessed through a Sharpless allylic amination and a palladium-catalyzed oxidative cyclization. A protecting group enabled a stereoselective B-alkyl Suzuki-Miyaura coupling sequence and an Fe-mediated hydrogen atom transfer (HAT)-based radical cyclization were then applied to construct C6 and C8 stereocenters. A final epimer locking strategy enabled the assembly of the highly congested aza-adamantane core, thereby achieving the first total synthesis of (-)-daphnezomines A and B in 14 steps.
Collapse
Affiliation(s)
- Guangpeng Xu
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Yunan Lu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Chao Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Vchislo NV, Verochkina EA. Recent Advances in Total Synthesis of Alkaloids from α,β‐Unsaturated Aldehydes. ChemistrySelect 2020. [DOI: 10.1002/slct.202002872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nadezhda V. Vchislo
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences Favorsky Str., 1 Irkutsk 664033 Russia
| | - Ekaterina A. Verochkina
- A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of Sciences Favorsky Str., 1 Irkutsk 664033 Russia
| |
Collapse
|
27
|
Komine K, Lambert KM, Savage QR, Cox JB, Wood JL. Synthetic studies toward longeracemine: a SmI 2-mediated spirocyclization and rearrangement cascade to construct the 2-azabicyclo[2.2.1]heptane framework. Chem Sci 2020; 11:9488-9493. [PMID: 34094215 PMCID: PMC8162136 DOI: 10.1039/d0sc03422c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Longeracemine, a member of the Daphniphyllum family of alkaloids contains a novel carbon framework featuring a highly functionalized 2-azabicyclo[2.2.1]heptane core as part of an overall 5/6/5/5/6/5 skeleton. A synthetic intermediate containing the core of longeracemine has been efficiently prepared by employing a stereoselective SmI2-mediated cascade reaction to advance a 7-azabicyclo[2.2.1]heptadiene to a 2-azabicyclo[2.2.1]heptene that is functionally poised for conversion to the natural product.
Collapse
Affiliation(s)
- Keita Komine
- Department of Chemistry and Biochemistry, Baylor University One Bear Place 97348 Waco TX 76798 USA
| | - Kyle M. Lambert
- Department of Chemistry and Biochemistry, Baylor UniversityOne Bear Place 97348WacoTX 76798USA
| | - Quentin R. Savage
- Department of Chemistry and Biochemistry, Baylor UniversityOne Bear Place 97348WacoTX 76798USA
| | - Joshua B. Cox
- Department of Chemistry and Biochemistry, Baylor UniversityOne Bear Place 97348WacoTX 76798USA
| | - John L. Wood
- Department of Chemistry and Biochemistry, Baylor UniversityOne Bear Place 97348WacoTX 76798USA
| |
Collapse
|
28
|
Matheau-Raven D, Gabriel P, Leitch JA, Almehmadi YA, Yamazaki K, Dixon DJ. Catalytic Reductive Functionalization of Tertiary Amides using Vaska’s Complex: Synthesis of Complex Tertiary Amine Building Blocks and Natural Products. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02377] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel Matheau-Raven
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Pablo Gabriel
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jamie A. Leitch
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Yaseen A. Almehmadi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ken Yamazaki
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Darren J. Dixon
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
29
|
Guo LD, Zhang Y, Hu J, Ning C, Fu H, Chen Y, Xu J. Asymmetric total synthesis of yuzurimine-type Daphniphyllum alkaloid (+)-caldaphnidine J. Nat Commun 2020; 11:3538. [PMID: 32669587 PMCID: PMC7363893 DOI: 10.1038/s41467-020-17350-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Ever since Hirata’s report of yuzurimine in 1966, nearly fifty yuzurimine-type alkaloids have been isolated, which formed the largest subfamily of the Daphniphyllum alkaloids. Despite extensive synthetic studies towards this synthetically challenging and biologically intriguing family, no total synthesis of any yuzurimine-type alkaloids has been achieved to date. Here, the first enantioselective total synthesis of (+)-caldaphnidine J, a highly complex yuzurimine-type Daphniphyllum alkaloid, is described. Key transformations of this approach include a highly regioselective Pd-catalyzed hydroformylation, a samarium(II)-mediated pinacol coupling, and a one-pot Swern oxidation/ketene dithioacetal Prins reaction. Our approach paves the way for the synthesis of other yuzurimine-type alkaloids and related natural products. Despite being known for more than 50 years, yuzurimine-type alkaloids have not been accessed by total synthesis. Here, the authors report the first enantioselective total synthesis of (+)-Caldaphnidine J, a highly complex yuzurimine-type Daphniphyllum alkaloid.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yan Zhang
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jingping Hu
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Chengqing Ning
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Heyifei Fu
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yuye Chen
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jing Xu
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
30
|
Heravi MM, Zadsirjan V, Hamidi H, Daraie M, Momeni T. Recent applications of the Wittig reaction in alkaloid synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 84:201-334. [PMID: 32416953 DOI: 10.1016/bs.alkal.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Wittig reaction is the chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (the Wittig reagent) to afford an alkene and triphenylphosphine oxide. Noteworthy, this reaction results in the synthesis of alkenes in a selective and predictable fashion. Thus, it became as one of the keystone of synthetic organic chemistry, especially in the total synthesis of natural products, where the selectivity of a reaction is paramount of importance. A literature survey disclosed the existence of vast numbers of related reports and comprehensive reviews on the applications of this important name reaction in the total synthesis of natural products. However, the aim of this chapter is to underscore, the applications of the Wittig reaction in the total synthesis of one the most important and prevalent classes of natural products, the alkaloids, especially those showing important and diverse biological activities.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran.
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Hoda Hamidi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| |
Collapse
|
31
|
|
32
|
Jansana S, Coussanes G, Puig J, Diaba F, Bonjoch J. Synthesis of Azabicyclic Building Blocks for
Daphniphyllum
Alkaloid Intermediates Featuring
N
‐Trichloroacetyl Enamide 5‐
endo
‐
trig
Radical Cyclizations. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sergi Jansana
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUBUniversitat de Barcelona Av. Joan XXIII s/n 08028 Barcelona Spain
| | - Guilhem Coussanes
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUBUniversitat de Barcelona Av. Joan XXIII s/n 08028 Barcelona Spain
- Syngenta Crop Protection AG Route de l'Ile au Bois–site chimique CH-1870 Monthey
| | - Jordi Puig
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUBUniversitat de Barcelona Av. Joan XXIII s/n 08028 Barcelona Spain
| | - Faiza Diaba
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUBUniversitat de Barcelona Av. Joan XXIII s/n 08028 Barcelona Spain
| | - Josep Bonjoch
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUBUniversitat de Barcelona Av. Joan XXIII s/n 08028 Barcelona Spain
| |
Collapse
|
33
|
Hugelshofer CL, Palani V, Sarpong R. Calyciphylline B-type Alkaloids: Evolution of a Synthetic Strategy to (−)-Daphlongamine H. J Org Chem 2019; 84:14069-14091. [DOI: 10.1021/acs.joc.9b02223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cedric L. Hugelshofer
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Vignesh Palani
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
34
|
Xu Y, Sun Q, Tan T, Yang M, Yuan P, Wu S, Lu X, Hong X, Ye L. Organocatalytic Enantioselective Conia‐Ene‐Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Tong‐De Tan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Ming‐Yang Yang
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Shao‐Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xin Hong
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid SurfacesKey Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
35
|
Xu Y, Sun Q, Tan TD, Yang MY, Yuan P, Wu SQ, Lu X, Hong X, Ye LW. Organocatalytic Enantioselective Conia-Ene-Type Carbocyclization of Ynamide Cyclohexanones: Regiodivergent Synthesis of Morphans and Normorphans. Angew Chem Int Ed Engl 2019; 58:16252-16259. [PMID: 31444882 DOI: 10.1002/anie.201908495] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Described herein is an organocatalytic enantioselective desymmetrizing cycloisomerization of arylsulfonyl-protected ynamide cyclohexanones, representing the first metal-free asymmetric Conia-ene-type carbocyclization. This method allows the highly efficient and atom-economical construction of a range of valuable morphans with wide substrate scope and excellent enantioselectivity (up to 97 % ee). In addition, such a cycloisomerization of alkylsulfonyl-protected ynamide cyclohexanones can lead to the divergent synthesis of normorphans as the main products with high enantioselectivity (up to 90 % ee). Moreover, theoretical calculations are employed to elucidate the origins of regioselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Yin Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qing Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong-De Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ming-Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shao-Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Theoretical and Computational Chemistry of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
36
|
Odagi M, Nagasawa K. Recent Advances in Natural Products Synthesis Using Bifunctional Organocatalysts Bearing a Hydrogen‐Bonding Donor Moiety. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Minami Odagi
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho Koganei city 184-8588 Tokyo Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho Koganei city 184-8588 Tokyo Japan
| |
Collapse
|
37
|
Hayakawa I, Nagatani R, Ikeda M, Yoo DE, Saito K, Kigoshi H, Sakakura A. Toward the Synthesis of Yuzurimine-Type Alkaloids: Stereoselective Construction of the Heterocyclic Portions of Deoxyyuzurimine and Macrodaphnine. Org Lett 2019; 21:6337-6341. [PMID: 31361502 DOI: 10.1021/acs.orglett.9b02232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterocyclic portions of yuzurimine-type alkaloids, such as deoxyyuzurimine and macrodaphnine, were synthesized by using a stereoselective hydroboration-oxidation reaction to install the C20 methyl group, the intramolecular Mitsunobu reaction to construct the E-ring portion, and the intramolecular SN2 reaction to construct the F-ring portion as key steps.
Collapse
Affiliation(s)
- Ichiro Hayakawa
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Ryosuke Nagatani
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Masaki Ikeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Dong-Eun Yoo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Keita Saito
- Department of Chemistry, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba 305-8571 , Japan
| | - Hideo Kigoshi
- Department of Chemistry, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba 305-8571 , Japan
| | - Akira Sakakura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
38
|
Guo LD, Hu J, Zhang Y, Tu W, Zhang Y, Pu F, Xu J. Enantioselective Total Synthesis of (-)-Caldaphnidine O via a Radical Cyclization Cascade. J Am Chem Soc 2019; 141:13043-13048. [PMID: 31381311 DOI: 10.1021/jacs.9b07558] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthetically challenging, diverse chemical skeletons and promising biological profiles of the Daphniphyllum alkaloids have generated intense interest from the synthetic chemistry community. Herein, the first and enantioselective total synthesis of (-)-caldaphnidine O, a complex bukittinggine-type Daphniphyllum alkaloid, is described. The key transformations in this concise approach included an intramolecular aza-Michael addition, a ring expansion reaction sequence, a Sm(II)/Fe(III)-mediated Kagan-Molander coupling, and the rapid formation of the entire hexacyclic ring skeleton of the target molecule via a radical cyclization cascade reaction, which was inspired by an unexpected radical detosylation observed in our recent dapholdhamine B synthesis.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Wentong Tu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Yue Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Fan Pu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , China
| |
Collapse
|
39
|
Sun H, Wu G, Xie X. Synthetic studies towards daphniyunnine B: Construction of AC bicyclic skeleton with two vicinal all carbon quaternary stereocenters. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Guo LD, Hou J, Tu W, Zhang Y, Zhang Y, Chen L, Xu J. Total Synthesis of Dapholdhamine B and Dapholdhamine B Lactone. J Am Chem Soc 2019; 141:11713-11720. [DOI: 10.1021/jacs.9b05641] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jieping Hou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Wentong Tu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yue Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Louxi Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
41
|
Chen Y, Hu J, Guo LD, Tian P, Xu T, Xu J. Synthesis of the Core Structure of Daphnimacropodines. Org Lett 2019; 21:4309-4312. [PMID: 31141376 DOI: 10.1021/acs.orglett.9b01486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Daphniphyllum alkaloids daphnimacropodines A-C possess a highly congested ring system and share a common tetracyclic ring skeleton. To access the challenging chemical structure of daphnimacropodines, a divergent synthetic approach toward their total synthesis is described. A stereoselective synthesis of the core structure of daphnimacropodines has been achieved from a simple diketone building block. Our approach features an intramolecular carbamate aza-Michael addition and a hydropyrrole synthesis via a Au-catalyzed alkyne hydration followed by an aldol condensation, whereas all the other attempts failed.
Collapse
Affiliation(s)
- Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau 999078 , China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China.,School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150006 , China
| | - Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Peilin Tian
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Tianyue Xu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
42
|
Chen Y, Hu J, Guo L, Zhong W, Ning C, Xu J. A Concise Total Synthesis of (−)‐Himalensine A. Angew Chem Int Ed Engl 2019; 58:7390-7394. [DOI: 10.1002/anie.201902908] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yuye Chen
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin Heilongjiang China
| | - Lian‐Dong Guo
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Weihe Zhong
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- SUSTech Academy for Advanced Interdisciplinary Studies Shenzhen Guangdong China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| |
Collapse
|
43
|
Hugelshofer CL, Palani V, Sarpong R. Calyciphylline B-Type Alkaloids: Total Syntheses of (-)-Daphlongamine H and (-)-Isodaphlongamine H. J Am Chem Soc 2019; 141:8431-8435. [PMID: 31074980 DOI: 10.1021/jacs.9b03576] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first total synthesis of the complex hexacylic Daphniphyllum alkaloid (-)-daphlongamine H has been accomplished. Key to the success of the strategy are a complexity-building Mannich reaction, efficient cyclizations, and a highly diastereoselective hydrogenation to assemble multigram quantities of the tricyclic core bearing four contiguous stereocenters. Following construction of the hydro-indene substructure by means of a Pauson-Khand reaction, endgame redox manipulations delivered the natural product. Importantly, the synthetic studies have also given access to (-)-isodaphlongamine H and led to a revision of the reported structure of deoxyisocalyciphylline B.
Collapse
Affiliation(s)
- Cedric L Hugelshofer
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Vignesh Palani
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Richmond Sarpong
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
44
|
Zhong J, Chen K, Qiu Y, He H, Gao S. A Unified Strategy To Construct the Tetracyclic Ring of Calyciphylline A Alkaloids: Total Synthesis of Himalensine A. Org Lett 2019; 21:3741-3745. [DOI: 10.1021/acs.orglett.9b01184] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiaxin Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Kuanwei Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yuanyou Qiu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
45
|
Chen Y, Hu J, Guo L, Zhong W, Ning C, Xu J. A Concise Total Synthesis of (−)‐Himalensine A. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuye Chen
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau China
| | - Jingping Hu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin Heilongjiang China
| | - Lian‐Dong Guo
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Weihe Zhong
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
- SUSTech Academy for Advanced Interdisciplinary Studies Shenzhen Guangdong China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen Guangdong China
| |
Collapse
|
46
|
Deng M, Yao Y, Li X, Li N, Zhang X, Liang G. Rapid Construction of the ABCE Tetracyclic Tertiary Amine Skeleton in Daphenylline Enabled by an Amine–Borane Complexation Strategy. Org Lett 2019; 21:3290-3294. [DOI: 10.1021/acs.orglett.9b01021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meng Deng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanmin Yao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaohu Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nan Li
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangxin Liang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Xu B, Wang B, Xun W, Qiu FG. Total Synthesis of (−)‐Daphenylline. Angew Chem Int Ed Engl 2019; 58:5754-5757. [DOI: 10.1002/anie.201902268] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Bo Xu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bingyang Wang
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Xun
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fayang G. Qiu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
| |
Collapse
|
48
|
Affiliation(s)
- Bo Xu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bingyang Wang
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Xun
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fayang G. Qiu
- State Key Laboratory of Respiratory DiseaseGuangzhou Institutes of Biomedicine and HealthChinese Academy of Sciences 190 Kaiyuan Avenue Guangzhou 510530 China
| |
Collapse
|
49
|
Chen Y, He Y, Zhang S, Miao T, Fan Q. Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium‐Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angew Chem Int Ed Engl 2019; 58:3809-3813. [DOI: 10.1002/anie.201812647] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Ya Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shanshan Zhang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tingting Miao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
50
|
Chen Y, He Y, Zhang S, Miao T, Fan Q. Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium‐Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ya Chen
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shanshan Zhang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Tingting Miao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionInstitute of ChemistryChinese Academy of Sciences (ICCAS)University of Chinese Academy of Sciences Beijing 100190 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|