1
|
Afoullouss S, Young RM, Jennings LK, Doyle J, Croke K, Livorsi D, Adams JH, Johnson MP, Thomas OP, Allcock AL. Xeniaphyllane and Xeniolide Diterpenes from the Deep-Sea Soft Coral Paragorgia arborea. ACS OMEGA 2024; 9:41914-41922. [PMID: 39398151 PMCID: PMC11465450 DOI: 10.1021/acsomega.4c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
As exploration of ocean depths >1000 m is only possible by expensive remotely operated underwater vehicles, deep-sea invertebrates represent a largely untapped source of marine metabolites for potential applications in medicine. Our current study aims to investigate these deep-sea invertebrates in Ireland to discover new biological and chemical diversity. Here, we investigate the bubble gum coral, Paragorgia arborea, collected at 1500 m depth from Whittard canyon in the Northeastern Atlantic. This species was selected following chemical profiling and biological screening. The isolation and structure elucidation of the main metabolites yielded three new diterpenes, namely, miolenol (1) and epoxymiolenol (2) characterized by the rare bicyclo[7.2.0]undec-4-ene skeleton, and the xeniolide epoxycoraxeniolide A (3), together with five known diterpenes. The structures of the new compounds were identified through extensive NMR analysis with their absolute configurations assigned by comparison between experimental and TDDFT-calculated ECD. The eight compounds were screened for cytotoxicity and antimalarial activity, and none displayed noteworthy bioactivity.
Collapse
Affiliation(s)
- Sam Afoullouss
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
- School
of Natural Sciences, Ryan Institute, University
of Galway, University Road, H91 TK33 Galway, Ireland
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Ryan M. Young
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
- School
of Natural Sciences, Ryan Institute, University
of Galway, University Road, H91 TK33 Galway, Ireland
| | - Laurence K. Jennings
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Jason Doyle
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Karen Croke
- School
of Natural Sciences, Ryan Institute, University
of Galway, University Road, H91 TK33 Galway, Ireland
| | - Debora Livorsi
- Center
for Global Health & Inter-disciplinary Research, College of Public
Health, University of South Florida, 3720 Spectrum Boulevard, STE 404, Tampa, Florida 33612, United States
| | - John H. Adams
- Center
for Global Health & Inter-disciplinary Research, College of Public
Health, University of South Florida, 3720 Spectrum Boulevard, STE 404, Tampa, Florida 33612, United States
| | - Mark P. Johnson
- School
of Natural Sciences, Ryan Institute, University
of Galway, University Road, H91 TK33 Galway, Ireland
| | - Olivier P. Thomas
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - A. Louise Allcock
- School
of Natural Sciences, Ryan Institute, University
of Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
2
|
Olsen SSH, Afoullouss S, Young RM, Johnson M, Allcock AL, Teng MN, Tran KC, Baker BJ. Anthoteibinenes A-E from the Irish Deep-Sea Coral Anthothela grandiflora: An Amination Puzzle. Org Lett 2024. [PMID: 39225686 DOI: 10.1021/acs.orglett.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chemical investigation of extracts from the Irish deep-sea soft coral Anthothela grandiflora revealed cadinene-like sesquiterpenes, anthoteibinenes A-E, bearing unusual dimethylamine substitution. Structure elucidation was accomplished using 1D/2D NMR spectroscopy and high-resolution mass spectrometry, while NOESY NMR experiments, gauge invariant atomic orbital (GIAO) NMR calculations coupled with DP4+ probabilities measures, and ECD comparisons were incorporated to propose their relative and absolute configurations. Anthoteibinene B (2) exhibited 49% inhibition of respiratory syncytial virus (RSV) at 3.1 μM with no cytotoxicity.
Collapse
Affiliation(s)
- Stine S H Olsen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Sam Afoullouss
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Ryan M Young
- School of Natural Sciences and Ryan Institute, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Mark Johnson
- School of Natural Sciences and Ryan Institute, University of Galway, University Road, Galway H91 TK33, Ireland
| | - A Louise Allcock
- School of Natural Sciences and Ryan Institute, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Michael N Teng
- Department of Internal Medicine, University of South Florida, 13330 USF Laurel Drive, Tampa, Florida 33612, United States
| | - Kim C Tran
- Department of Internal Medicine, University of South Florida, 13330 USF Laurel Drive, Tampa, Florida 33612, United States
| | - Bill J Baker
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
3
|
Li X, Cui Y, Wu W, Zhang Z, Fang J, Yu X, Cao J. Characterization and Biosynthetic Regulation of Isoflavone Genistein in Deep-Sea Actinomycetes Microbacterium sp. B1075. Mar Drugs 2024; 22:276. [PMID: 38921587 PMCID: PMC11205022 DOI: 10.3390/md22060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Deep-sea environments, as relatively unexplored extremes within the Earth's biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.
Collapse
Affiliation(s)
- Xin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Yukun Cui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Weichao Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China;
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Xi Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| |
Collapse
|
4
|
Chen W, Pang X, Song Y, Hu Y, Wang X, Wang L, Wang J. Antitumor aspochalasin and antiviral benzofuran derivatives from a marine-derived fungus Aspergillus sp. SCSIO41032. Nat Prod Res 2024:1-8. [PMID: 38853392 DOI: 10.1080/14786419.2024.2364930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Chemical investigation of the EtOAc extract of a deep-sea derived fungus Aspergillus sp. SCSIO41032 resulted in the isolation of ten known compounds, including eight aspochalasins. Their structures were elucidated by using extensive NMR spectroscopic, mass spectrometric and single crystal X-ray diffraction analysis. The detailed crystallographic data for structures 1, 2, and 4, along with the relative configurations of aspochalasin E (3) determined by its acetonide derivative were reported for the first time. The results of antitumor and antiviral activities showed that 3 displayed moderate antitumor activities against 22Rv1, PC-3, A549, and HCT-15 cell lines with IC50 values ranged from 5.9 ± 0.8 to 19.0 ± 7.7 μM, and 9 exhibited moderate antiviral activities against HSV-1/2 with EC50 values of 9.5 ± 0.5 and 5.4 ± 0.6 μM, respectively. Plate clone formation assays results indicated that 3 inhibited the 22Rv1, PC-3 cells growth in a dose-dependent manner.
Collapse
Affiliation(s)
- Weihao Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P. R. China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
- Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Shenzhen, P. R. China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, P. R. China
| | - Yingying Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
| | - Xueni Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, P. R. China
| | - Lishu Wang
- Jilin Provincial Academy of Chinese Medicine Sciences, Changchun, P. R. China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, P. R. China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, P. R. China
| |
Collapse
|
5
|
Zhu CS, Li XM, Yang SQ, Liu YW, Wang BG, Li X. New Hydroxyphenylacetic Acids and α-Pyrone Derivative from the Deep-Sea Cold Seep Sediment-Derived Fungus Penicillium corylophilum CS-682. Chem Biodivers 2024; 21:e202400584. [PMID: 38544421 DOI: 10.1002/cbdv.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/18/2024]
Abstract
Two pairs of new enantiomeric hydroxyphenylacetic acid derivatives, (±)-corylophenols A and B ((±)-1 and (±)-2), a new α-pyrone analogue, corylopyrone A (3), and six andrastin-type meroterpenoids (4-9) were isolated and identified from the deep-sea cold-seep sediment-derived fungus Penicillium corylophilum CS-682. Their structures and stereo configurations were determined by detailed spectroscopic analysis of NMR and MS data, chiral HPLC analysis, J-based configuration analysis, and quantum chemical calculations of ECD, specific rotation, and NMR (with DP4+ probability analysis). Compound 3 showed inhibitory activity against some strains of pathogenic bacteria.
Collapse
Affiliation(s)
- Chi-Sheng Zhu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Yi-Wei Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China Tel
- University of Chinese Academy of Sciences, Yuquan Road 19 A, Beijing, 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Li G, Dong K, Wang J, Xiao S, Lou H, Peng X. Anti-inflammatory monomeric sorbicillinoids from the marine-fish-derived fungus Trichoderma sp. G13. Fitoterapia 2024; 175:105963. [PMID: 38631598 DOI: 10.1016/j.fitote.2024.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Four new monomeric sorbicillinoids, trichillinoids A - D (1-4), along with two known dimeric sorbicillinoids (5 and 6), and five known monomeric sorbicillinoids (7-11), were obtained from the marine-fish-derived fungus Trichoderma sp. G13. They were structurally characterized on the basis of comprehensive spectroscopic investigations (NMR, HRESIMS, and ECD). Compounds 1-4 displayed moderate anti-inflammatory activities, according to inhibiting the production of NO in RAW264.7 cells activated with IC50 values ranging from 14 to 20 μM.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, People's Republic of China; Drug Supply Department, Qingdao West Coast New Area Central Hospital, Shandong 266555, People's Republic of China
| | - Yi Zhang
- Education and Science Office, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Kemin Dong
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jialing Wang
- Drug Supply Department, Qingdao West Coast New Area Central Hospital, Shandong 266555, People's Republic of China
| | - Shengjia Xiao
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Hongxiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, People's Republic of China; Key Laboratory of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, People's Republic of China.
| |
Collapse
|
7
|
Xie CL, Wu TZ, Wang Y, Capon RJ, Xu R, Yang XW. Genome Mining of a Deep-Sea-Derived Penicillium allii-sativi Revealed Polyketide-Terpenoid Hybrids with Antiosteoporosis Activity. Org Lett 2024; 26:3889-3895. [PMID: 38668739 DOI: 10.1021/acs.orglett.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Two novel meroterpenoids, alliisativins A and B (1, 2) were discovered through a genome-based exploration of the biosynthetic gene clusters of the deep-sea-derived fungus Penicillium allii-sativi MCCC entry 3A00580. Extensive spectroscopic analysis, quantum calculations, chemical derivatization, and biogenetic considerations were utilized to establish their structures. Alliisativins A and B (1, 2) possess a unique carbon skeleton featuring a drimane sesquiterpene with a highly oxidized polyketide. Noteworthily, alliisativin A (1) showed dual activity in promoting osteogenesis and inhibiting osteoclast, indicating an antiosteoporosis potential.
Collapse
Affiliation(s)
- Chun-Lan Xie
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Tai-Zong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Xian-Wen Yang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
8
|
Zhang F, Yang L, Xie QY, Guo JC, Ma QY, Dai LT, Zhou LM, Dai HF, Kong FD, Luo DQ, Zhao YX. Diverse indole-diterpenoids with protein tyrosine phosphatase 1B inhibitory activities from the marine coral-derived fungus Aspergillus sp. ZF-104. PHYTOCHEMISTRY 2023; 216:113888. [PMID: 37839588 DOI: 10.1016/j.phytochem.2023.113888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Eight previously undescribed indole-diterpenoids named penerpenes O-V (1-8), together with seven known analogues (9-14), were isolated from the marine soft coral-derived fungus Aspergillus sp. ZF-104. Their structures including the absolute configurations of these compounds were assigned on the basis of spectroscopic data and ECD analysis along with quantum ECD and NMR calculations. Compounds 4 and 5 bear rare indolin-2-one units in their structures and 6 bears a reconstructed novel skeleton in which the indole ring and the terpenoid substructure are cleaved before they are reconnected through the nitrogen atom. Compounds 1, 2, 7, and 10 showed protein tyrosine phosphatase 1B (PTP1B) inhibitory activities comparable to that of the positive control NaVO3.
Collapse
Affiliation(s)
- Fei Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Li Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Yi Xie
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jiao-Cen Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Yun Ma
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Lu-Ting Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Li-Man Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Af-fairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Hao-Fu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Fan-Dong Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Af-fairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Du-Qiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, China.
| | - You-Xing Zhao
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
9
|
Redick MA, Cummings ME, Neuhaus GF, Ardor Bellucci LM, Thurber AR, McPhail KL. Integration of Untargeted Metabolomics and Microbial Community Analyses to Characterize Distinct Deep-Sea Methane Seeps. FRONTIERS IN MARINE SCIENCE 2023; 10:1197338. [PMID: 39268414 PMCID: PMC11392061 DOI: 10.3389/fmars.2023.1197338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Deep-sea methane seeps host highly diverse microbial communities whose biological diversity is distinct from other marine habitats. Coupled with microbial community analysis, untargeted metabolomics of environmental samples using high resolution tandem mass spectrometry provides unprecedented access to the unique specialized metabolisms of these chemosynthetic microorganisms. In addition, the diverse microbial natural products are of broad interest due to their potential applications for human and environmental health and well-being. In this exploratory study, sediment cores were collected from two methane seeps (-1000 m water depth) with very different gross geomorphologies, as well as a non-seep control site. Cores were subjected to parallel metabolomic and microbial community analyses to assess the feasibility of representative metabolite detection and identify congruent patterns between metabolites and microbes. Metabolomes generated using high resolution liquid chromatography tandem mass spectrometry were annotated with predicted structure classifications of the majority of mass features using SIRIUS and CANOPUS. The microbiome was characterized by analysis of 16S rRNA genes and analyzed both at the whole community level, as well as the small subgroup of Actinobacteria, which are known to produce societally useful compounds. Overall, the younger Dagorlad seep possessed a greater abundance of metabolites while there was more variation in abundance, number, and distribution of metabolites between samples at the older Emyn Muil seep. Lipid and lipid-like molecules displayed the greatest variation between sites and accounted for a larger proportion of metabolites found at the older seep. Overall, significant differences in composition of the microbial community mirrored the patterns of metabolite diversity within the samples; both varied greatly as a function of distance from methane seep, indicating a deterministic role of seepage. Interdisciplinary research to understand microbial and metabolic diversity is essential for understanding the processes and role of ubiquitous methane seeps in global systems and here we increase understanding of these systems by visualizing some of the chemical diversity that seeps add to marine systems.
Collapse
Affiliation(s)
- Margaret A Redick
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Milo E Cummings
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - George F Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Lila M Ardor Bellucci
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Andrew R Thurber
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
10
|
Nugraha AS, Firli LN, Rani DM, Hidayatiningsih A, Lestari ND, Wongso H, Tarman K, Rahaweman AC, Manurung J, Ariantari NP, Papu A, Putra MY, Pratama ANW, Wessjohann LA, Keller PA. Indonesian marine and its medicinal contribution. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:38. [PMID: 37843645 PMCID: PMC10579215 DOI: 10.1007/s13659-023-00403-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The archipelagic country of Indonesia is populated by the densest marine biodiversity in the world which has created strong global interest and is valued by both Indigenous and European settlements for different purposes. Nearly 1000 chemicals have been extracted and identified. In this review, a systematic data curation was employed to collate bioprospecting related manuscripts providing a comprehensive directory based on publications from 1988 to 2022. Findings with significant pharmacological activities are further discussed through a scoping data collection. This review discusses macroorganisms (Sponges, Ascidian, Gorgonians, Algae, Mangrove) and microorganism (Bacteria and Fungi) and highlights significant discoveries, including a potent microtubule stabilizer laulimalide from Hyattella sp., a prospective doxorubicin complement papuamine alkaloid from Neopetrosia cf exigua, potent antiplasmodial manzamine A from Acanthostrongylophora ingens, the highly potent anti trypanosomal manadoperoxide B from Plakortis cfr. Simplex, mRNA translation disrupter hippuristanol from Briareum sp, and the anti-HIV-1 (+)-8-hydroxymanzamine A isolated from Acanthostrongylophora sp. Further, some potent antibacterial extracts were also found from a limited biomass of bacteria cultures. Although there are currently no examples of commercial drugs from the Indonesian marine environment, this review shows the molecular diversity present and with the known understudied biodiversity, reveals great promise for future studies and outcomes.
Collapse
Affiliation(s)
- Ari Satia Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia.
- Leibniz Institute Für Pflanzenbiochemie, Weinberg 3, 06120, Halle (Saale), Germany.
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Lilla Nur Firli
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
| | - Dinar Mutia Rani
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
| | - Ayunda Hidayatiningsih
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
| | - Nadya Dini Lestari
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
| | - Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, J1. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Kustiariyah Tarman
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences; and Division of Marine Biotechnology, Centre for Coastal and Marine Resources Studies (CCMRS), IPB University, Bogor, 16680, Indonesia
| | | | - Jeprianto Manurung
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Ni Putu Ariantari
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Udayana University, Badung, Bali, 80361, Indonesia
| | - Adelfia Papu
- Biology Department, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Masteria Yunovilsa Putra
- Vaccine and Drug Research Center, National Research and Innovation Agency, Cibinong, Jawa Barat, 16911, Indonesia
| | | | - Ludger A Wessjohann
- Leibniz Institute Für Pflanzenbiochemie, Weinberg 3, 06120, Halle (Saale), Germany
| | - Paul A Keller
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
11
|
Zhang Y, Xie CL, Wang Y, He XW, Xie MM, Li Y, Zhang K, Zou ZB, Yang LH, Xu R, Yang XW. Penidihydrocitrinins A-C: New Polyketides from the Deep-Sea-Derived Penicillium citrinum W17 and Their Anti-Inflammatory and Anti-Osteoporotic Bioactivities. Mar Drugs 2023; 21:538. [PMID: 37888473 PMCID: PMC10608093 DOI: 10.3390/md21100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Three new polyketides (penidihydrocitrinins A-C, 1-3) and fourteen known compounds (4-17) were isolated from the deep-sea-derived Penicillium citrinum W17. Their structures were elucidated by comprehensive analyses of 1D and 2D NMR, HRESIMS, and ECD calculations. Compounds 1-17 were evaluated for their anti-inflammatory and anti-osteoporotic bioactivities. All isolates exhibited significant inhibitory effects on LPS-stimulated nitric oxide production in murine brain microglial BV-2 cells in a dose-response manner. Notably, compound 14 displayed the strongest effect with the IC50 value of 4.7 µM. Additionally, compounds 6, 7, and 8 significantly enhanced osteoblast mineralization, which was comparable to that of the positive control, purmorphamine. Furthermore, these three compounds also suppressed osteoclastogenesis in a dose-dependent manner under the concentrations of 2.5 μM, 5.0 μM, and 10 μM.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Xi-Wen He
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - You Li
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Kai Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Long-He Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ren Xu
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| |
Collapse
|
12
|
Pongen YL, Thirumurugan D, Ramasubburayan R, Prakash S. Harnessing actinobacteria potential for cancer prevention and treatment. Microb Pathog 2023; 183:106324. [PMID: 37633504 DOI: 10.1016/j.micpath.2023.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Actinobacteria are gram-positive bacteria with high G:C ratio in their genetic makeup. They have been noted and studied for their capacity to produce bioactive substances with a range of uses in human health, and they also exhibit a unique property of adapting to extreme environments quite well. Actinobacteria may play an essential role in cancer prevention and treatment due to their synthesis of anticancer compounds, as indicated by recent studies. The aim of this review is to give a summary of what is currently known about the connection between actinobacteria and different types of cancer. This paper delineates the diverse array of actinobacterial bioactive compounds possessing anticancer properties, elucidates their mechanisms of action and explores potential applications in cancer treatment. Furthermore, this review highlights how the microbiome influences the onset and progression of cancer, as well as the discussing the potential benefits that actinobacteria may bring in terms of controlling the microbiome and contributing to the regulation of the tumour microenvironment to cure or prevent cancer.
Collapse
Affiliation(s)
- Yimtar L Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, Tamil Nadu, India
| | - Santhiyagu Prakash
- Marine Biotechnology Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, (OMR Campus), Tamilnadu Dr. J. Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai - 603 103, Tamil Nadu, India.
| |
Collapse
|
13
|
Ying Z, Li XM, Wang BG, Li HL, Meng LH. Rubensteroid A, a new steroid with antibacterial activity from Penicillium rubens AS-130. J Antibiot (Tokyo) 2023; 76:563-566. [PMID: 37258804 DOI: 10.1038/s41429-023-00634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
A new steroid with strong antibacterial activity, rubensteroid A (1), along with its decarboxylic analogue, solitumergosterol A (2), were isolated and identified from the Magellan Seamount-derived fungus Penicillium rubens AS-130. The structure and absolute configuration of compound 1 were established by detailed interpretation of NMR spectroscopic analysis, mass spectrometry data, and TDDFT-ECD calculations. Compound 1 had a rare 6/6/6/6/5 pentacyclic system, which might be the [4 + 2] Diels-Alder adduct of 14,15-didehydroergosterol (14-DHE) cycloaddition with maleic acid or maleimide, followed by decarboxylation. Rubensteroid A (1) exhibited potent antibacterial activity against Escherichia coli and Vibrio parahaemolyticus, both with MIC value of 0.5 μg/mL.
Collapse
Affiliation(s)
- Zhen Ying
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China.
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
| |
Collapse
|
14
|
Xie J, Li F, Cai Y, Zhang J, Zhang Y, Zhai Z, Su Z, Chen X, Lei M, Liu R, Li W, Kang D, Chen X, Hong A. SAIF plays anti-angiogenesis via blocking VEGF-VEGFR2-ERK signal in tumor treatment. Heliyon 2023; 9:e18240. [PMID: 37539189 PMCID: PMC10395482 DOI: 10.1016/j.heliyon.2023.e18240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Shark cartilage was created as a cancer-fighting diet because it was believed to have an element that may suppress tumor growth. Due to overfishing, sharks have become endangered recently, making it impossible to harvest natural components from shark cartilage for therapeutic development research. Previously, we identified a peptide SAIF from shark cartilage with an-tiangiogenic and anti-tumor effects, successfully expressed it in Escherichia coli by using genetic engineering techniques. However, we did not elucidate the specific target of SAIF and its antiangiogenic molecular mechanism, which hindered its further drug development. Therefore, in this work, the exact mechanism of action was studied using various techniques, including cellular and in vivo animal models, computer-aided simulation, molecular target capture, and transcriptome sequencing analysis. With VEGF-VEGFR2 interaction and preventing the activation of VEGFR2/ERK signaling pathways, SAIF was discovered to decrease angiogenesis and hence significantly limit tumor development. The findings further demonstrated SAIF's strong safety and pharmaceutically potential. The evidence showed that SAIF, which is expressed by, is a potent and safe angiogenesis inhibitor and might be developed as a candidate peptide drug for the treatment of solid tumors such as hepatocellular carcinoma and other conditions linked with angiogenic overgrowth.
Collapse
Affiliation(s)
- Junye Xie
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Fu Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Yuling Cai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Jinting Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Zhaodong Zhai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Zijian Su
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Xue Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Minghua Lei
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Rongzhan Liu
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Weicai Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Dianlong Kang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center; National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China
| |
Collapse
|
15
|
Hao YJ, Zou ZB, Xie MM, Zhang Y, Xu L, Yu HY, Ma HB, Yang XW. Ferroptosis Inhibitory Compounds from the Deep-Sea-Derived Fungus Penicillium sp. MCCC 3A00126. Mar Drugs 2023; 21:md21040234. [PMID: 37103373 PMCID: PMC10144380 DOI: 10.3390/md21040234] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Two new xanthones (1 and 2) were isolated from the deep-sea-derived fungus Penicillium sp. MCCC 3A00126 along with 34 known compounds (3-36). The structures of the new compounds were established by spectroscopic data. The absolute configuration of 1 was validated by comparison of experimental and calculated ECD spectra. All isolated compounds were evaluated for cytotoxicity and ferroptosis inhibitory activities. Compounds 14 and 15 exerted potent cytotoxicity against CCRF-CEM cells, with IC50 values of 5.5 and 3.5 μM, respectively, whereas 26, 28, 33, and 34 significantly inhibited RSL3-induced ferroptosis, with EC50 values of 11.6, 7.2, 11.8, and 2.2 μM, respectively.
Collapse
Affiliation(s)
- You-Jia Hao
- College of Marine Sciences, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 201306, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hao-Yu Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hua-Bin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
16
|
Kushwaha P, Kumar V, Saha B. Current development of β-carboline derived potential antimalarial scaffolds. Eur J Med Chem 2023; 252:115247. [PMID: 36931118 DOI: 10.1016/j.ejmech.2023.115247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
β-Carboline alkaloids are an eminent class of nitrogen-based natural alkaloids and therapeutic molecules which exert various pharmacological activities through diverse mechanisms. A lot of attention has recently been directed towards this moiety in order to develop effective antimalarial drugs. "Malaria", an acute febrile illness caused by diverse Plasmodium parasites, is a continuing and escalating problem that devastates economically less developed countries by significantly increased morbidity and mortality rates. The mounting parasite resistance towards the antimalarial drugs and augmenting the 'habitat of the insect vector' are creating a catastrophe, indicating an urgent need for new efficacious therapeutics to combat this tropical disease. This article comprehensively encapsulates the clinical and preclinical antimalarial scaffolds comprising β-carboline moiety in their structure. Herein, various classes of natural and semi-synthetic analogues of β-carbolines reported in the last decade (2011-2021) have been extensively studied and illustrated. This review will help the readers to develop an insight into the β-carboline based antimalarials and molecular mechanisms lying behind their mode of action, which is anticipated to be beneficial for the future development of new β-carboline based therapeutics.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, Uttar Pradesh, India
| | - Vipin Kumar
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, Uttar Pradesh, India.
| |
Collapse
|
17
|
Bioactivity and Metabolome Mining of Deep-Sea Sediment-Derived Microorganisms Reveal New Hybrid PKS-NRPS Macrolactone from Aspergillus versicolor PS108-62. Mar Drugs 2023; 21:md21020095. [PMID: 36827136 PMCID: PMC9961484 DOI: 10.3390/md21020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.
Collapse
|
18
|
Welsch J, Smalley TB, Matlack JK, Avalon NE, Binning JM, Johnson MP, Allcock AL, Baker BJ. Tuaimenals B-H, Merosesquiterpenes from the Irish Deep-Sea Soft Coral Duva florida with Bioactivity against Cervical Cancer Cell Lines. JOURNAL OF NATURAL PRODUCTS 2023; 86:182-190. [PMID: 36580354 PMCID: PMC9887596 DOI: 10.1021/acs.jnatprod.2c00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 06/17/2023]
Abstract
Previous chemical investigation of the Irish deep-sea soft coral Duva florida led to the identification of tuaimenal A (10), a new merosesquiterpene containing a highly substituted chromene core and modest cytotoxicity against cervical cancer. Further MS/MS and NMR-guided investigation of this octocoral has resulted in the isolation and characterization of seven additional tuaimenal analogs, B-H (1-7), as well as two known A-ring aromatized steroids (8, 9), and additional tuaimenal A (10). Tuaimenals B, F, and G (1, 5, 6), bearing an oxygen at the C5 position, as well as monocyclic tuaimenal H (7), show increased cervical cancer inhibition profiles in comparison to that of 10. Tuaimenal G further displayed potent, selective cytotoxicity with an EC50 value of 0.04 μM against the C33A cell line compared to the CaSki cell line (EC50 20 μM). These data reveal the anticancer properties of tuaimenal analogs and suggest unique antiproliferation mechanisms across these secondary metabolites.
Collapse
Affiliation(s)
- Joshua
T. Welsch
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620, United States
| | - Tracess B. Smalley
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - Jenet K. Matlack
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - Nicole E. Avalon
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620, United States
| | - Jennifer M. Binning
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - Mark P. Johnson
- School
of Natural Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - A. Louise Allcock
- School
of Natural Sciences and Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Bill J. Baker
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620, United States
| |
Collapse
|
19
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
20
|
The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. DIVERSITY 2022. [DOI: 10.3390/d15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioprospecting of novel antibiotics has been the conventional norm of research fostered by researchers worldwide to combat drug resistance. With the exhaustion of incessant leads, the search for new chemical entities moves into uncharted territories such as the deep sea. The deep sea is a furthermost ecosystem with much untapped biodiversity thriving under extreme conditions. Accordingly, it also encompasses a vast pool of ancient natural products. Actinobacteria are frequently regarded as the bacteria of research interest due to their inherent antibiotic-producing capabilities. These interesting groups of bacteria occupy diverse ecological habitats including a multitude of different deep-sea habitats. In this review, we provide a recent update on the novel species and compounds of actinomycetes from the deep-sea environments within a period of 2016–2022. Within this period, a total of 24 new species of actinomycetes were discovered and characterized as well as 101 new compounds of various biological activities. The microbial communities of various deep-sea ecosystems are the emerging frontiers of bioprospecting.
Collapse
|
21
|
Complete genome sequence of piezotolerant Stutzerimonas kunmingensis 7850S isolated from the sediment of the Mariana Trench. Mar Genomics 2022; 66:100996. [DOI: 10.1016/j.margen.2022.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
22
|
Marimuthu J, Rangamaran VR, Subramanian SHS, Balachandran KRS, Thenmozhi Kulasekaran N, Vasudevan D, Lee JK, Ramalingam K, Gopal D. Deep-sea sediment metagenome from Bay of Bengal reveals distinct microbial diversity and functional significance. Genomics 2022; 114:110524. [PMID: 36423774 DOI: 10.1016/j.ygeno.2022.110524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Bay of Bengal (BoB) has immense significance with respect to ecological diversity and natural resources. Studies on microbial profiling and their functional significance at sediment level of BoB remain poorly represented. Herein, we describe the microbial diversity and metabolic potentials of BOB deep-sea sediment samples by subjecting the metagenomes to Nanopore sequencing. Taxonomic diversity ascertained at various levels revealed that bacteria belonging to phylum Proteobacteria predominantly represented in sediment samples NIOT_S7 and NIOT_S9. A comparative study with 16S datasets from similar ecological sites revealed depth as a crucial factor in determining taxonomic diversity. KEGG annotation indicated that bacterial communities possess sequence reads corresponding to carbon dioxide fixation, sulfur, nitrogen metabolism, but at varying levels. Additionally, gene sequences related to bioremediation of dyes, plastics, hydrocarbon, antibiotic resistance, secondary metabolite synthesis and metal resistance from both the samples as studied indicate BoB to represent a highly diverse environmental niche for further exploration.
Collapse
Affiliation(s)
- Jeya Marimuthu
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India.
| | | | | | | | | | - Dinakaran Vasudevan
- KMCH Research Foundation, Coimbatore Medical Center and Hospital, Coimbatore 641014, India
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 143 701, Republic of Korea
| | - Kirubagaran Ramalingam
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - Dharani Gopal
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India.
| |
Collapse
|
23
|
Otsuka K, Miyahara M, Takaki S, Wakabayashi R, Miyako K, Irie R, Takamizawa S, Sakai R, Oikawa M. Synthetic Studies on the Initially Proposed Structure of Protoaculeine B: Discovery of Neuronally Active Heterotricyclic Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kazunori Otsuka
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Masayoshi Miyahara
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Sara Takaki
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryoya Wakabayashi
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Kei Miyako
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Raku Irie
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Satoshi Takamizawa
- Yokohama City University College of Science: Yokohama Shiritsu Daigaku Rigakubu Graduate School of Nanobioscience JAPAN
| | - Ryuichi Sakai
- Hokkaido University Faculty of Fisheries Sciences Graduate School of Fisheries Sciences School of Fisheries Sciences: Hokkaido Daigaku Daigakuin Suisan Kagaku Kenkyuin Daigakuin Suisan Kagakuin Suisan Gakubu Faculty of Fisheries Sciences JAPAN
| | - Masato Oikawa
- Yokohama City University Graduate School of Nanobioscience Seto 22-2Kanazawa-ku 236-0027 Yokohama JAPAN
| |
Collapse
|
24
|
Kelly MR, Whitworth P, Jamieson A, Burgess JG. Bacterial colonisation of plastic in the Rockall Trough, North-East Atlantic: An improved understanding of the deep-sea plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119314. [PMID: 35447252 DOI: 10.1016/j.envpol.2022.119314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 05/12/2023]
Abstract
Plastic pollution has now been found within multiple ecosystems across the globe. Characterisation of microbial assemblages associated with marine plastic, or the so-called 'plastisphere', has focused predominantly on plastic in the epipelagic zone. Whether this community includes taxa that are consistently enriched on plastic compared to surrounding non plastic surfaces is unresolved, as are the ecological implications. The deep sea is likely a final sink for most of the plastic entering the ocean, yet there is limited information on microbial colonisation of plastic at depth. The aim of this study was to investigate deep-sea microbial communities associated with polystyrene (PS) and polyurethane (PU) with Bath stone used as a control. The substrates (n = 15) were deployed in the Rockall Trough (Atlantic), and recovered 420 days later from a depth of 1796 m. To characterise the bacterial communities, 16S rRNA genes were sequenced using the Illumina MiSeq platform. A dominant core microbiome (taxa shared across all substrates) comprised 8% of total ASVs (amplicon sequence variant) and accounted for 92% of the total community reads. This suggests that many commonly reported members of the plastisphere are simply opportunistic which freely colonise any hard surface. Transiently associated species consisted of approximately 7% of the total community. Thirty genera were enriched on plastic (P < 0.05), representing 1% of the total community. The discovery of novel deep-sea enriched taxa included Aurantivirga, Algivirga, IheB3-7, Spirosoma, HTCC5015, Ekhidna and Calorithrix on PS and Candidatus Obscuribacter, Haloferula, Marine Methylotrophic Group 3, Aliivibrio, Tibeticola and Dethiosulfatarculus on PU. This small fraction of the microbiome include taxa with unique metabolic abilities and show how bacterial communities can be shaped by plastic pollution at depth. This study outlines a novel approach in categorising the plastisphere to elucidate the ecological implications of enriched taxa that show an affinity for colonising plastic.
Collapse
Affiliation(s)
- Max R Kelly
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Paul Whitworth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Alan Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom; Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Oceans Institute, IOMRC Building, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
25
|
Zou ZB, Chen LH, Hu MY, Xu L, Hao YJ, Yan QX, Wang CF, Xie CL, Yang XW. Cladosporioles A and B, Two New Indole Derivatives from the Deep-Sea-Derived Fungus Cladosporium cladosporioides 170056. Chem Biodivers 2022; 19:e202200538. [PMID: 35773242 DOI: 10.1002/cbdv.202200538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022]
Abstract
Two new (cladosporioles A and B, 1 and 2) and fourteen known (3-16) compounds were isolated from the deep-sea-derived fungus Cladosporium cladosporioides 170056. The relative structures of the new compounds were elucidated mainly by detailed analysis of their NMR and HR-ESI-MS spectroscopic data. Their absolute configurations were determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. All isolates were tested for antimicrobial activity against Vibrio parahaemolyticus. Compound 15 exhibited weak effect with the MIC value of 156.25 μg/mL.
Collapse
Affiliation(s)
- Zheng-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Liang-Hua Chen
- Key Laboratory of Fujian Province for Physiology and Biochemistry of Subtropical Plant, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Man-Yi Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Qing-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Chao-Feng Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
26
|
Ding W, Li Y, Tian X, Chen M, Xiao Z, Chen R, Yin H, Zhang S. Investigation on Metabolites in Structural Diversity from The Deep-Sea Sediment-Derived Bacterium Agrococcus sp. SCSIO 52902 and Their Biosynthesis. Mar Drugs 2022; 20:md20070431. [PMID: 35877724 PMCID: PMC9323897 DOI: 10.3390/md20070431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Deep-sea sediment-derived bacterium may make full use of self-genes to produce more bioactive metabolites to adapt to extreme environment, resulting in the discovery of novel metabolites with unique structures and metabolic mechanisms. In the paper, we systematically investigated the metabolites in structurally diversity and their biosynthesis from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 based on OSMAC strategy, Molecular Networking tool, in combination with bioinformatic analysis. As a result, three new compounds and one new natural product, including 3R-OH-1,6-diene-cyclohexylacetic acid (1), linear tetradepsipeptide (2), N1,N5-di-p-(EE)-coumaroyl-N10-acetylspermidine (3) and furan fatty acid (4), together with nineteen known compounds (5–23) were isolated from the ethyl acetate extract of SCSIO 52902. Their structures were elucidated by comprehensive spectroscopic analysis, single-crystal X-ray diffraction, Marfey’s method and chiral-phase HPLC analysis. Bioinformatic analysis revealed that compounds 1, 3, 9 and 13–22 were closely related to the shikimate pathway, and compound 5 was putatively produced by the OSB pathway instead of the PKS pathway. In addition, the result of cytotoxicity assay showed that compound 5 exhibited weak cytotoxic activity against the HL-60 cell line.
Collapse
Affiliation(s)
- Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Min Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Rouwen Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (W.D.); (Y.L.); (X.T.); (M.C.); (Z.X.); (R.C.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (H.Y.); (S.Z.); Tel.: +86-15919668007 or +86-20-89023103 (H.Y.)
| |
Collapse
|
27
|
Hu XY, Li XM, Yang SQ, Wang BG, Meng LH. New Cytochalasin Derivatives from Deep-Sea Cold Seep-Derived Endozoic Fungus Curvularia verruculosa CS-129. Chem Biodivers 2022; 19:e202200550. [PMID: 35727302 DOI: 10.1002/cbdv.202200550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Two new antimicrobial cytochalasin derivatives, 6 β , 7 β -epoxydeoxaphomin C ( 1 ) and 12-hydroxydeoxaphomin C ( 2 ), a new natural occurring product 24-nor-cytochalasin B ( 3 ), together with two related known analogues ( 4 - 5 ) were isolated and identified from an endozoic fungus Curvularia verruculosa CS-129, isolated from the deep-sea squat lobster Shinkaia crosnieri which was collected in cold seep region of south China sea. The structures of new compounds were elucidated on the basis of detailed spectroscopic analysis and ECD calculation. The spectroscopic data of 24-nor-cytochalasin B ( 3 ) were reported for the first time. All compounds were tested for their antibacterial activities against human and aquatic pathogenic bacteria.
Collapse
Affiliation(s)
- Xue-Yi Hu
- Institute of Oceanology Chinese Academy of Sciences, CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Nanhai Road 7, 266071, Qingdao, CHINA
| | - Xiao-Ming Li
- Institute of Oceanology Chinese Academy of Sciences, CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Nanhai Road 7, 266071, Qingdao, CHINA
| | - Sui-Qun Yang
- Institute of Oceanology Chinese Academy of Sciences, CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Nanhai Road 7, 266071, Qingdao, CHINA
| | - Bin-Gui Wang
- Institute of Oceanology of the Chinese Academy of Sciences, Key Laboratory of Experimental Marine Biology, Nanhai Road 7, 266071, Qingdao, CHINA
| | - Ling-Hong Meng
- Institute of Oceanology Chinese Academy of Sciences, CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Nanhai Road 7, 266071, Qingdao, CHINA
| |
Collapse
|
28
|
Uncommon Polyketides from Penicillium steckii AS-324, a Marine Endozoic Fungus Isolated from Deep-Sea Coral in the Magellan Seamount. Int J Mol Sci 2022; 23:ijms23116332. [PMID: 35683011 PMCID: PMC9181172 DOI: 10.3390/ijms23116332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
Four unusual steckwaic acids E–H (1–4), possessing a rarely described acrylic acid unit at C-4 (1–3) or a double bond between C-12 and C-13 (4) are reported for the first time, along with four new analogues (5–8) and two known congeners (9 and 10). They were purified from the organic extract of Penicillium steckii AS-324, an endozoic fungus obtained from a deep-sea coral Acanthogorgiidae sp., which was collected from the Magellan Seamount at a depth of 1458 m. Their structures were determined by the interpretation of NMR and mass spectroscopic data. The relative and absolute configurations were determined by NOESY correlations, X-ray crystallographic analysis, and ECD calculations. All compounds were tested for their antimicrobial activities against human- and aquatic-pathogenic bacteria and plant-related pathogenic fungi.
Collapse
|
29
|
Avalon N, Nafie J, De Marco Verissimo C, Warrensford LC, Dietrick SG, Pittman AR, Young RM, Kearns FL, Smalley T, Binning JM, Dalton JP, Johnson MP, Woodcock HL, Allcock AL, Baker BJ. Tuaimenal A, a Meroterpene from the Irish Deep-Sea Soft Coral Duva florida, Displays Inhibition of the SARS-CoV-2 3CLpro Enzyme. JOURNAL OF NATURAL PRODUCTS 2022; 85:1315-1323. [PMID: 35549259 PMCID: PMC9127705 DOI: 10.1021/acs.jnatprod.2c00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 06/15/2023]
Abstract
Cold water benthic environments are a prolific source of structurally diverse molecules with a range of bioactivities against human disease. Specimens of a previously chemically unexplored soft coral, Duva florida, were collected during a deep-sea cruise that sampled marine invertebrates along the Irish continental margin in 2018. Tuaimenal A (1), a cyclized merosesquiterpenoid representing a new carbon scaffold with a highly substituted chromene core, was discovered through exploration of the soft coral secondary metabolome via NMR-guided fractionation. The absolute configuration was determined through vibrational circular dichroism. Functional biochemical assays and in silico docking experiments found tuaimenal A selectively inhibits the viral main protease (3CLpro) of SARS-CoV-2.
Collapse
Affiliation(s)
- Nicole
E. Avalon
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jordan Nafie
- BioTools,
Inc., Jupiter, Florida 33458, United
States
| | - Carolina De Marco Verissimo
- Molecular
Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute,
School of Natural Science, National University
of Ireland Galway, H91 TK33 Galway, Republic of
Ireland
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sarah G. Dietrick
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ryan M. Young
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Tracess Smalley
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - Jennifer M. Binning
- Department
of Molecular Oncology, H. Lee Moffitt Cancer
Center and Research Institute, Tampa, Florida 33612, United States
| | - John P. Dalton
- Molecular
Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute,
School of Natural Science, National University
of Ireland Galway, H91 TK33 Galway, Republic of
Ireland
| | - Mark P. Johnson
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - A. Louise Allcock
- School
of Natural Sciences and Ryan Institute, National University of Ireland Galway, H91 TK33 Galway, Republic of Ireland
| | - Bill J. Baker
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
30
|
Steven R, Humaira Z, Natanael Y, Dwivany FM, Trinugroho JP, Dwijayanti A, Kristianti T, Tallei TE, Emran TB, Jeon H, Alhumaydhi FA, Radjasa OK, Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Mar Drugs 2022; 20:352. [PMID: 35736155 PMCID: PMC9229179 DOI: 10.3390/md20060352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microbes in marine ecosystems are known to produce secondary metabolites. One of which are carotenoids, which have numerous industrial applications, hence their demand will continue to grow. This review highlights the recent research on natural carotenoids produced by marine microorganisms. We discuss the most recent screening approaches for discovering carotenoids, using in vitro methods such as culture-dependent and culture-independent screening, as well as in silico methods, using secondary metabolite Biosynthetic Gene Clusters (smBGCs), which involves the use of various rule-based and machine-learning-based bioinformatics tools. Following that, various carotenoids are addressed, along with their biological activities and metabolic processes involved in carotenoids biosynthesis. Finally, we cover the application of carotenoids in health and pharmaceutical industries, current carotenoids production system, and potential use of synthetic biology in carotenoids production.
Collapse
Affiliation(s)
- Ray Steven
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Zalfa Humaira
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Yosua Natanael
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Fenny M. Dwivany
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Joko P. Trinugroho
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK;
| | - Ari Dwijayanti
- CNRS@CREATE Ltd., 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore;
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Heewon Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ocky Karna Radjasa
- Oceanography Research Center, The Earth Sciences and Maritime Research Organization, National Research and Innovation Agency, North Jakarta 14430, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| |
Collapse
|
31
|
Sun C, Liu X, Sun N, Zhang X, Shah M, Zhang G, Che Q, Zhu T, Li J, Li D. Cytotoxic Nitrobenzoyl Sesquiterpenoids from an Antarctica Sponge-Derived Aspergillus insulicola. JOURNAL OF NATURAL PRODUCTS 2022; 85:987-996. [PMID: 35380848 DOI: 10.1021/acs.jnatprod.1c01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplastic diseases of the pancreas with fatal proliferation and metastasis and no medicine available for treatment. From an Antarctica sponge-derived fungus, Aspergillus insulicola HDN151418, four new nitrobenzoyl sesquiterpenoids, namely, insulicolides D-G (1-4), were isolated. Compounds 3 and 4 exhibited selective inhibition against human PDAC cell lines. Further studies indicated that compound 4 could significantly suppress cell proliferation to induce apoptosis and blocked migration and invasion of PDAC cells. Compound 4 could also avoid resistance and improved the therapeutic effect of the chemotherapy drug gemcitabine. A preliminary mechanism study showed that compound 4 can significantly inhibit the expression of EGFR and XIAP in PDAC cells. Altogether, 4 is a potential lead compound for anti-PDAC drug research.
Collapse
Affiliation(s)
- Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaoyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Ning Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mudassir Shah
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
32
|
Nitrogen-Containing Secondary Metabolites from a Deep-Sea Fungus Aspergillus unguis and Their Anti-Inflammatory Activity. Mar Drugs 2022; 20:md20030217. [PMID: 35323515 PMCID: PMC8948696 DOI: 10.3390/md20030217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/26/2022] Open
Abstract
Aspergillus is well-known as the second-largest contributor of fungal natural products. Based on NMR guided isolation, three nitrogen-containing secondary metabolites, including two new compounds, variotin B (1) and coniosulfide E (2), together with a known compound, unguisin A (3), were isolated from the ethyl acetate (EtOAc) extract of the deep-sea fungus Aspergillus unguis IV17-109. The planar structures of 1 and 2 were elucidated by an extensive analysis of their spectroscopic data (HRESIMS, 1D and 2D NMR). The absolute configuration of 2 was determined by comparison of its optical rotation value with those of the synthesized analogs. Compound 2 is a rare, naturally occurring substance with an unusual cysteinol moiety. Furthermore, 1 showed moderate anti-inflammatory activity with an IC50 value of 20.0 µM. These results revealed that Aspergillus unguis could produce structurally diverse nitrogenous secondary metabolites, which can be used for further studies to find anti-inflammatory leads.
Collapse
|
33
|
Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp. Mar Drugs 2022; 20:md20030196. [PMID: 35323495 PMCID: PMC8949045 DOI: 10.3390/md20030196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 02/01/2023] Open
Abstract
Five new alkaloids have been isolated from the lipophilic extract of the Antarctic tunicate Synoicum sp. Deep-sea specimens of Synoicum sp. were collected during a 2011 cruise of the R/V Nathanial B. Palmer to the southern Scotia Arc, Antarctica. Crude extracts from the invertebrates obtained during the cruise were screened in a zebrafish-based phenotypic assay. The Synoicum sp. extract induced embryonic dysmorphology characterized by axis truncation, leading to the isolation of aminopyrimidine substituted indolone (1–4) and indole (5–12) alkaloids. While the primary bioactivity tracked with previously reported meridianins A–G (5–11), further investigation resulted in the isolation and characterization of australindolones A–D (1–4) and the previously unreported meridianin H (12).
Collapse
|
34
|
Li CP, Song YP, Wang BG, Ji NY. Sulfurated and iodinated metabolites from the cold-seep fungus Cladosporium cladosporioides 8-1. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Streptoglycerides E-H, Unsaturated Polyketides from the Marine-Derived Bacterium Streptomyces specialis and Their Anti-Inflammatory Activity. Mar Drugs 2022; 20:md20010044. [PMID: 35049899 PMCID: PMC8781396 DOI: 10.3390/md20010044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/02/2023] Open
Abstract
Four new streptoglycerides E-H (1-4), with a rare 6/5/5/-membered ring system, were isolated from a marine-derived actinomycete Streptomyces specialis. The structures of 1-4 were elucidated by detailed analysis of HRESIMS, 1D and 2D NMR data and ECD spectra as well as comparison of their spectroscopic data with those reported in literature. Compounds 1-4 showed significant anti-inflammatory activity by inhibiting lipopolysaccharide (LPS)-induced nitric oxide (NO) production in Raw 264.7 cells with IC50 values ranging from 3.5 to 10.9 µM. Especially, 2 suppressed mRNA expression levels of iNOS and IL-6 without cytotoxicity.
Collapse
|
36
|
Hu XY, Wang CY, Li XM, Yang SQ, Li X, Wang BG, Si SY, Meng LH. Cytochalasin Derivatives from the Endozoic Curvularia verruculosa CS-129, a Fungus Isolated from the Deep-Sea Squat Lobster Shinkaia crosnieri Living in the Cold Seep Environment. JOURNAL OF NATURAL PRODUCTS 2021; 84:3122-3130. [PMID: 34846891 DOI: 10.1021/acs.jnatprod.1c00907] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new cytochalasin dimer, verruculoid A (1), three new cytochalasin derivatives, including 12-nor-cytochalasin F (2), 22-methoxycytochalasin B6 (3), and 19-hydroxycytochalasin B (4), and 20-deoxycytochalasin B (5), a synthetic product obtained as a natural product for the first time, together with four known analogues (6-9), were isolated and identified from the culture extract of Curvularia verruculosa CS-129, an endozoic fungus obtained from the inner fresh tissue of the deep-sea squat lobster Shinkaia crosnieri, which was collected from the cold seep area of the South China Sea. Structurally, verruculoid A (1) represents the first cytochalasin homodimer containing a thioether bridge, while 12-nor-cytochalasin F (2) is the first 12-nor-cytochalasin derivative. Their structures were elucidated by detailed interpretation of the NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis and ECD calculations confirmed their structures and absolute configurations. Compound 1 displayed activity against the human pathogenic bacterium Escherichia coli (MIC = 2 μg/mL), while compounds 4, 8, and 9 showed cytotoxicity against three tumor cell lines (HCT-116, HepG-2, and MCF-7) with IC50 values from 5.2 to 12 μM. The structure-activity relationship was briefly discussed.
Collapse
Affiliation(s)
- Xue-Yi Hu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- College of Marine Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Chen-Yin Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, and National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No 1, Beijing 100050, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- College of Marine Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Shu-Yi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, and National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No 1, Beijing 100050, People's Republic of China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| |
Collapse
|
37
|
Saide A, Lauritano C, Ianora A. A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines 2021; 9:biomedicines9111556. [PMID: 34829785 PMCID: PMC8614969 DOI: 10.3390/biomedicines9111556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The deep-sea environment is a unique, challenging extreme habitat where species have had to adapt to the absence of light, low levels of oxygen, high pressure and little food. In order to survive such harsh conditions, these organisms have evolved different biochemical and physiological features that often have no other equivalent in terrestrial habitats. Recent analyses have highlighted how the deep sea is one of the most diverse and species-rich habitats on the planet but less explored compared to more accessible sites. Because of their adaptation to this extreme environment, deep-sea species have the potential to produce novel secondary metabolites with potent biological activities. Recent advances in sampling and novel techniques in microorganism culturing and chemical isolation have promoted the discovery of bioactive agents from deep-sea organisms. However, reports of natural products derived from deep-sea species are still scarce, probably because of the difficulty in accessing deep-sea samples, sampling costs and the difficulty in culturing deep-sea organisms. In this review, we give an overview of the potential treasure represented by metabolites produced by deep marine species and their bioactivities for the treatment and prevention of various human pathologies.
Collapse
|
38
|
Agrawal S, Nandeibam J, Sarangthem I. Ultrastructural changes in methicillin-resistant Staphylococcus aureus (MRSA) induced by metabolites of thermophilous fungi Acrophialophora levis. PLoS One 2021; 16:e0258607. [PMID: 34648570 PMCID: PMC8516270 DOI: 10.1371/journal.pone.0258607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus and Methicillin-resistant S. aureus (MRSA) remains one of the major concerns of healthcare associated and community-onset infections worldwide. The number of cases of treatment failure for infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, Acrophialophora levis, a thermophilous fungus species, showed antibacterial activity, namely against S. aureus and clinical MRSA strains. The ethyl acetate extract of culture filtrate was found to display significant activity against S. aureus and MRSA with a minimum inhibitory concentration (MIC) of 1 μg/mL and 4 μg/mL, respectively. Scanning electron micrographs demonstrated drastic changes in the cellular architecture of metabolite treated cells of S. aureus and an MRSA clinical isolate. Cell wall disruption, membrane lysis and probable leakage of cytoplasmic are hallmarks of the antibacterial effect of fungal metabolites against MRSA. The ethyl acetate extract also showed strong antioxidant activity using two different complementary free radicals scavenging methods, DPPH and ABTS with efficiency of 55% and 47% at 1 mg/mL, respectively. The total phenolic and flavonoid content was found to be 50 mg/GAE and 20 mg/CAE, respectively. More than ten metabolites from different classes were identified: phenolic acids, phenylpropanoids, sesquiterpenes, tannins, lignans and flavonoids. In conclusion, the significant antibacterial activity renders this fungal strain as a bioresource for natural compounds an interesting alternative against resistant bacteria.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research (ICMR), Delhi, India
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
- * E-mail: (SA); (IS)
| | - Jusna Nandeibam
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Indira Sarangthem
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
- * E-mail: (SA); (IS)
| |
Collapse
|
39
|
Li CQ, Ma QY, Gao XZ, Wang X, Zhang BL. Research Progress in Anti-Inflammatory Bioactive Substances Derived from Marine Microorganisms, Sponges, Algae, and Corals. Mar Drugs 2021; 19:572. [PMID: 34677471 PMCID: PMC8538560 DOI: 10.3390/md19100572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's defense reaction in response to stimulations and is the basis of various physiological and pathological processes. However, chronic inflammation is undesirable and closely related to the occurrence and development of diseases. The ocean gives birth to unique and diverse bioactive substances, which have gained special attention and been a focus for anti-inflammatory drug development. So far, numerous promising bioactive substances have been obtained from various marine organisms such as marine bacteria and fungi, sponges, algae, and coral. This review covers 71 bioactive substances described during 2015-2020, including the structures (65 of which), species sources, evaluation models and anti-inflammatory activities of these substances. This review aims to provide some reference for the research progress of marine-organism-derived anti-inflammatory metabolites and give more research impetus for their conversion to novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Chao-Qun Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Qin-Yuan Ma
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Xiu-Zhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China;
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Bei-Li Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| |
Collapse
|
40
|
Yang J, Song Y, Tang MC, Li M, Deng J, Wong NK, Ju J. Genome-Directed Discovery of Tetrahydroisoquinolines from Deep-Sea Derived Streptomyces niveus SCSIO 3406. J Org Chem 2021; 86:11107-11116. [PMID: 33770435 DOI: 10.1021/acs.joc.1c00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A genome-directed discovery strategy to identify new tetrahydroisoquinolines (THIQs) was applied to deep-sea derived Streptomyces niveus SCSIO 3406; 11 THIQs were found representing three THIQ classes. Known aclidinomycins A (1) and B (2) were isolated along with nine new compounds, aclidinomycins C-K (3-11). The structures were elucidated using extensive spectroscopic analyses and single-crystal X-ray diffraction methods. The core skeleton of compounds 6-9 contains a fused tetrahydropyran (THP) as an integral part of a distinct type of 6/6/6/6/5/5 polycyclic motif. This is the first report of such a system. Beyond their discovery, we also report here a proposed biosynthetic route to these interesting natural products as well as a preliminary survey of their antimicrobial activities.
Collapse
Affiliation(s)
- Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Man-Cheng Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingzhe Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Junwei Deng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
41
|
Wu J, Zhang H, He LM, Xue YQ, Jia J, Wang SB, Zhu KK, Hong K, Cai YS. A New Fusicoccane-Type Norditerpene and a New Indone from the Marine-Derived Fungus Aspergillus aculeatinus WHUF0198. Chem Biodivers 2021; 18:e2100562. [PMID: 34382347 DOI: 10.1002/cbdv.202100562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022]
Abstract
A new norditerpene named aculeaterpene A (1) and a new indone named aculeaindone A (2), along with eight known compounds 3-10 were isolated from the culture extract of Aspergillus aculeatinus WHUF0198. The structural characterization of compounds 1 and 2 were performed by spectroscopic analysis, including 1D and 2D NMR and HR-ESI-MS experiments, whereas the absolute configurations were determined by comparing their experimental or calculated ECD spectra. Compound 1 was the first report of fusicoccane-based norditerpene, in which the C-20 was degraded and tured into a hydroxy group.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Hong Zhang
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan, 430022, P. R. China
| | - Li-Ming He
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Ya-Qing Xue
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Jia Jia
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Center, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Kong-Kai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Kui Hong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - You-Sheng Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
42
|
Penicacids E-G, three new mycophenolic acid derivatives from the marine-derived fungus Penicillium parvum HDN17-478. Chin J Nat Med 2021; 18:850-854. [PMID: 33308607 DOI: 10.1016/s1875-5364(20)60027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 01/26/2023]
Abstract
Three new mycophenolic acid derivatives, penicacids E-G (1-3), together with three known analogues, mycophenolic acid (4), 4'-hydroxy-mycophenolic acid (5) and mycophenolic methyl ester (6), were isolated from a marine-derived fungus Penicillium parvum HDN17-478 from a South China Sea marine sediment sample. The structures of compounds 1-3 were elucidated by HRMS, NMR, and Mosher's method. Among them, compounds 1 and 2 were the first examples of mycophenolic acid analogs with a double bond at C-3'/C-4' position. The cytotoxicity of 1-6 was evaluated against the HCT-116, BEL-7402, MGC-803, SH-SY5Y, HO-8910 and HL-60 cell lines, and compounds 4 and 6 showed potent cytotoxicity with IC50 values ranging from 1.69 to 12.98 μmol·L-1.
Collapse
|
43
|
Keeler E, Burgaud G, Teske A, Beaudoin D, Mehiri M, Dayras M, Cassand J, Edgcomb V. Deep-sea hydrothermal vent sediments reveal diverse fungi with antibacterial activities. FEMS Microbiol Ecol 2021; 97:6318858. [PMID: 34245561 DOI: 10.1093/femsec/fiab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known about the diversity of fungi in deep-sea, hydrothermal sediments. Less thoroughly explored environments are likely untapped reservoirs of unique biodiversity with the potential to augment our current arsenal of microbial compounds with biomedical and/or industrial applications. In this study, we applied traditional culture-based methods to examine a subset of the morphological and phylogenetic diversity of filamentous fungi and yeasts present in 11 hydrothermally influenced sediment samples collected from eight sites on the seafloor of Guaymas Basin, Mexico. A total of 12 unique isolates affiliating with Ascomycota and Basidiomycota were obtained and taxonomically identified on the basis of morphological features and analyses of marker genes including actin, β-tubulin, small subunit ribosomal DNA (18S rRNA), internal transcribed spacer (ITS) and large subunit ribosomal DNA (26S rRNA) D1/D2 domain sequences (depending on taxon). A total of 11 isolates possess congeners previously detected in, or recovered from, deep-sea environments. A total of seven isolates exhibited antibacterial activity against human bacterial pathogens Staphylococcus aureus ATCC-35556 and/or Escherichia coli ATCC-25922. This first investigation suggests that hydrothermal environments may serve as promising reservoirs of much greater fungal diversity, some of which may produce biomedically useful metabolites.
Collapse
Affiliation(s)
- Emma Keeler
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Gaëtan Burgaud
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, ESIAB, Université de Brest, EA 3882, Technopôle Brest-Iroise, Plouzané, France
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Murray Hall 3117B, Chapel Hill, NC 27599, USA
| | - David Beaudoin
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| | - Mohamed Mehiri
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Marie Dayras
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Jacquelin Cassand
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Marine Natural Products Team, 06108 Nice, France
| | - Virginia Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 220 McLean, Mail Stop 08, Woods Hole, MA 02543, USA
| |
Collapse
|
44
|
Sun J, Wang J, Wang X, Hu X, Cao H, Bai J, Li D, Hua H. Design and synthesis of β-carboline derivatives with nitrogen mustard moieties against breast cancer. Bioorg Med Chem 2021; 45:116341. [PMID: 34365102 DOI: 10.1016/j.bmc.2021.116341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
To discover the promising antitumor agents, a series of β-carboline derivatives with nitrogen mustard moieties were designed and synthesized. Most target derivatives showed antiproliferative activity against MCF-7 and MDA-MB-231 cells. Among them, (1-methyl-9H-pyrido[3,4-b]indol-3-yl)methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-formamidopropanoate possessed the most potent antiproliferative activity with IC50 values of 1.79 μM and 4.96 μM, respectively, which were significantly higher than that of the parent compounds, and the efficacy was comparable to that of the positive control doxorubicin. More importantly, it showed weak cytotoxicity against human normal breast cell line MCF-10A (IC50 > 20 μM), exhibiting certain selectivity. Subsequently, further mechanism exploration indicated that it induced G2/M phase cell cycle arrest and apoptosis in MDA-MB-231 cells. The DCFH-DA fluorescent probe assay and comet assay showed that this compound could cause intracellular ROS accumulation and DNA damage. In addition, it exerted potent inhibitory effect on the migration, invasion and adhesion of MDA-MB-231 cells in vitro. In short, (1-methyl-9H-pyrido[3,4-b]indol-3-yl)methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-formamidopropanoate was considered as a promising compound for anti-breast cancer.
Collapse
Affiliation(s)
- Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiesen Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xinyan Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
45
|
Marchese P, Young R, O’Connell E, Afoullouss S, Baker BJ, Allcock AL, Barry F, Murphy JM. Deep-Sea Coral Garden Invertebrates and Their Associated Fungi Are Genetic Resources for Chronic Disease Drug Discovery. Mar Drugs 2021; 19:md19070390. [PMID: 34356815 PMCID: PMC8303266 DOI: 10.3390/md19070390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023] Open
Abstract
Chronic diseases characterized by bone and cartilage loss are associated with a reduced ability of progenitor cells to regenerate new tissues in an inflammatory environment. A promising strategy to treat such diseases is based on tissue repair mediated by human mesenchymal stem cells (hMSCs), but therapeutic outcomes are hindered by the absence of small molecules to efficiently modulate cell behaviour. Here, we applied a high-throughput drug screening technology to bioprospect a large library of extracts from Irish deep-sea organisms to induce hMSC differentiation toward musculoskeletal lineages and reduce inflammation of activated macrophages. The library included extracts from deep-sea corals, sponges and filamentous fungi representing a novel source of compounds for the targeted bioactivity. A validated hit rate of 3.4% was recorded from the invertebrate library, with cold water sea pens (octocoral order Pennatulacea), such as Kophobelemnon sp. and Anthoptilum sp., showing the most promising results in influencing stem cell differentiation toward osteogenic and chondrogenic lineages. Extracts obtained from deep-sea fungi showed no effects on stem cell differentiation, but a 6.8% hit rate in reducing the inflammation of activated macrophages. Our results demonstrate the potential of deep-sea organisms to synthetize pro-differentiation and immunomodulatory compounds that may represent potential drug development candidates to treat chronic musculoskeletal diseases.
Collapse
Affiliation(s)
- Pietro Marchese
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, H91W2TY Galway, Ireland;
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
- Correspondence: (P.M.); (J.M.M.)
| | - Ryan Young
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland; (R.Y.); (S.A.); (A.L.A.)
| | - Enda O’Connell
- Genomics and Screening Core, National University of Ireland Galway, H91W2TY Galway, Ireland;
| | - Sam Afoullouss
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland; (R.Y.); (S.A.); (A.L.A.)
| | - Bill J. Baker
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - A. Louise Allcock
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, University Road, H91TK33 Galway, Ireland; (R.Y.); (S.A.); (A.L.A.)
| | - Frank Barry
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, H91W2TY Galway, Ireland;
| | - J. Mary Murphy
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, H91W2TY Galway, Ireland;
- Correspondence: (P.M.); (J.M.M.)
| |
Collapse
|
46
|
Amiri Moghaddam J, Jautzus T, Alanjary M, Beemelmanns C. Recent highlights of biosynthetic studies on marine natural products. Org Biomol Chem 2021; 19:123-140. [PMID: 33216100 DOI: 10.1039/d0ob01677b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marine bacteria are excellent yet often underexplored sources of structurally unique bioactive natural products. In this review we cover the diversity of marine bacterial biomolecules and highlight recent studies on structurally novel natural products. We include different compound classes and discuss the latest progress related to their biosynthetic pathway analysis and engineering: examples range from fatty acids over terpenes to PKS, NRPS and hybrid PKS-NRPS biomolecules.
Collapse
Affiliation(s)
- Jamshid Amiri Moghaddam
- Junior Research Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
47
|
Kanki D, Imai K, Ise Y, Okada S, Matsunaga S. Oshimalides A and B, Sesterterpenes of the Manoalide Class from a Luffariella sp. Deep-Sea Marine Sponge: Application of Asymmetric Dihydroxylation in Structure Elucidation. JOURNAL OF NATURAL PRODUCTS 2021; 84:1676-1680. [PMID: 33966383 DOI: 10.1021/acs.jnatprod.1c00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oshimalides A (1) and B (2) were isolated from a Luffariella sp. marine sponge. The absolute configurations of the stereogenic centers in the cyclohexenone ring were determined by the modified Mosher's analysis of the reduction product. The absolute configuration of the stereogenic center in the dihydropyran ring was assigned by analysis of the 1H NMR data of the vicinal diols which were prepared by AD-mix reagents stereoselectively.
Collapse
Affiliation(s)
- Daichi Kanki
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Imai
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Ise
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3442 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
48
|
Sugawara K, Watarai H, Ise Y, Yokose H, Morii Y, Yamawaki N, Okada S, Matsunaga S. Structure Elucidation of Calyxoside B, a Bipolar Sphingolipid from a Marine Sponge Cladocroce sp. through the Use of Beckmann Rearrangement. Mar Drugs 2021; 19:287. [PMID: 34063932 PMCID: PMC8224005 DOI: 10.3390/md19060287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Marine sponges are an excellent source of biologically active secondary metabolites. We focus on deep-sea sponges for our discovery study. A marine sponge Cladocroce sp. exhibited cytotoxic activity in the bioactivity screening. From this sponge a previously unreported cytotoxic glycosphingolipid, calyxoside B, was isolated and the structure of this compound was elucidated by analyses of MS and NMR spectra and chemical derivatization. We converted the ketone in the middle of a long aliphatic chain into an oxime to which was applied Beckmann rearrangement to afford two positional isomers of amides. The products were subjected to acidic hydrolysis followed by LC-MS analysis, permitting us to assign unequivocally the position of the ketone. Calyxoside B shows cytotoxicity against HeLa cells with an IC50 value of 31 µM and also weakly stimulated the production of cytokines in mice.
Collapse
Affiliation(s)
- Kenji Sugawara
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.S.); (S.O.)
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Kanazawa University, Ishikawa 920-8640, Japan;
| | - Yuji Ise
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan;
| | - Hisayoshi Yokose
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan;
| | - Yasuhiro Morii
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan; (Y.M.); (N.Y.)
| | - Nobuhiro Yamawaki
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan; (Y.M.); (N.Y.)
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.S.); (S.O.)
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.S.); (S.O.)
| |
Collapse
|
49
|
Marchese P, Garzoli L, Young R, Allcock L, Barry F, Tuohy M, Murphy M. Fungi populate deep-sea coral gardens as well as marine sediments in the Irish Atlantic Ocean. Environ Microbiol 2021; 23:4168-4184. [PMID: 33939869 DOI: 10.1111/1462-2920.15560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/06/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Fungi populate deep Oceans in extreme habitats characterized by high hydrostatic pressure, low temperature and absence of sunlight. Marine fungi are potential major contributors to biogeochemical events, critical for marine communities and food web equilibrium under climate change conditions and a valuable source of novel extremozymes and small molecules. Despite their ecophysiological and biotechnological relevance, fungal deep-sea biodiversity has not yet been thoroughly characterized. In this study, we describe the culturable mycobiota associated with the deepest margin of the European Western Continental Shelf: sediments sampled at the Porcupine Bank and deep-water corals and sponges sampled in the Whittard Canyon. Eighty-seven strains were isolated, belonging to 43 taxa and mainly Ascomycota. Ten species and four genera were detected for the first time in the marine environment and a possible new species of Arachnomyces was isolated from sediments. The genera Cladosporium and Penicillium were the most frequent and detected on both substrates, followed by Candida and Emericellopsis. Our results showed two different fungal communities: sediment-associated taxa which were predominantly saprotrophic and animal-associated taxa which were predominantly symbiotic. This survey supports selective fungal biodiversity in the deep North Atlantic, encouraging further mycological studies on cold water coral gardens, often overexploited marine habitats.
Collapse
Affiliation(s)
- Pietro Marchese
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Laura Garzoli
- MEG-Molecular Ecology Group, Water Research Institute, National Research Council of Italy (CNR-IRSA), Verbania, 28922, Italy
| | - Ryan Young
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Louise Allcock
- Martin Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Frank Barry
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Maria Tuohy
- Molecular Glycobiotechnology, School of Natural Sciences, National University of Ireland Galway, Galway, H91TK33, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, H91TK33, Ireland
| |
Collapse
|
50
|
Wang L, Umezawa K. Cellular Signal Transductions and Their Inhibitors Derived from Deep-Sea Organisms. Mar Drugs 2021; 19:md19040205. [PMID: 33916424 PMCID: PMC8065634 DOI: 10.3390/md19040205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Not only physiological phenomena but also pathological phenomena can now be explained by the change of signal transduction in the cells of specific tissues. Commonly used cellular signal transductions are limited. They consist of the protein-tyrosine kinase dependent or independent Ras-ERK pathway, and the PI3K-Akt, JAK-STAT, SMAD, and NF-κB-activation pathways. In addition, biodegradation systems, such as the ubiquitin-proteasome pathway and autophagy, are also important for physiological and pathological conditions. If we can control signaling for each by a low-molecular-weight agent, it would be possible to treat diseases in new ways. At present, such cell signaling inhibitors are mainly looked for in plants, soil microorganisms, and the chemical library. The screening of bioactive metabolites from deep-sea organisms should be valuable because of the high incidence of finding novel compounds. Although it is still an emerging field, there are many successful examples, with new cell signaling inhibitors. In this review, we would like to explain the current view of the cell signaling systems important in diseases, and show the inhibitors found from deep-sea organisms, with their structures and biological activities. These inhibitors are possible candidates for anti-inflammatory agents, modulators of metabolic syndromes, antimicrobial agents, and anticancer agents.
Collapse
Affiliation(s)
- Liyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Kazuo Umezawa
- Molecular Target Medicine, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Correspondence: ; Tel.: +81-561-611-959
| |
Collapse
|