1
|
Li M, Tang Q, Wan H, Zhu G, Yin D, Lei L, Li S. Functional inorganic nanoparticles in cancer: Biomarker detection, imaging, and therapy. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer poses a major global public health challenge. Developing more effective early diagnosis methods and efficient treatment techniques is crucial to enhance early detection sensitivity and treatment outcomes. Nanomaterials offer sensitive, accurate, rapid, and straightforward approaches for cancer detection, diagnosis, and treatment. Inorganic nanoparticles are widely used in medicine because of their high stability, large specific surface area, unique surface properties, and unique quantum size effects. Functional inorganic nanoparticles involve modifying inorganic nanoparticles to enhance their physical properties, enrichment capabilities, and drug-loading efficiency and to minimize toxicity. This Review provides an overview of various types of inorganic nanoparticles and their functionalization characteristics. We then discuss the progress of functional inorganic nanoparticles in cancer biomarker detection and imaging. Furthermore, we discuss the application of functional inorganic nanoparticles in radiotherapy, chemotherapy, gene therapy, immunotherapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and combination therapy, highlighting their characteristics and advantages. Finally, the toxicity and potential challenges of functional inorganic nanoparticles are analyzed. The purpose of this Review is to explore the application of functional inorganic nanoparticles in diagnosing and treating cancers, while also presenting a new avenue for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Hua Wan
- Department of Otorhinolaryngology Head and Neck Surgery 2 , 331 Hospital of Zhuzhou, Zhuzhou 412002, Hunan,
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 3 , Hangzhou 310015, Zhejiang,
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University 1 , Changsha 410011, Hunan,
| |
Collapse
|
2
|
Abdalrazaq EA, Mohammed HK, Voronkova DK, Joshi SK, Saleh EAM, Kareem AH, Kumar A, Alawadi A, Alslaami A, Fathollahi R. Palladium anchored to BisPyP@bilayer-SiO 2@NMP organic-inorganic hybrid as an efficient and recoverable novel nanocatalyst in suzuki and stille C-C coupling reactions. Sci Rep 2024; 14:8945. [PMID: 38637701 PMCID: PMC11026489 DOI: 10.1038/s41598-024-59666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
The palladium anchored to BisPyP@bilayer-SiO2@NMP organic-inorganic hybrid was employed as an effective and recyclable organometallic catalyst in Suzuki and Stille C-C coupling reactions. The structure of this magnetic nanocatalyst was determined using various techniques such as SEM, TEM, FT-IR, EDS, ICP-OES, VSM, N2 adsorption-desorption isotherms, XRD, and TGA. In both of the mentioned coupling paths, the yields of the products were very favorable and ranged from 90 to 98%. Also, they had significant features compared to previous reports, such as very short reaction time (5-15 and 7-20 min respectively in the Suzuki and Stille reactions), easy work-up, broad substrate scope, ease of separation of the catalyst using a magnet, suitable reproducibility of the catalyst in 6 runs, heterogeneous nature of the catalyst and not washing it during consecutive runs with confirmation of hot filtration and ICP-OES methods.
Collapse
Affiliation(s)
- Eid Ahmed Abdalrazaq
- Department of Chemistry, Faculty of Science, Al Hussein Bin Talal University, Ma'an, Jordan
| | - Hala Kh Mohammed
- Medical Laboratory Techniques Department, Almaarif University College, Ramadi, Iraq
| | - Daria K Voronkova
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Mubarak Al-Abdullah, Kuwait
- Bauman Moscow State Technical University Moscow, Moscow, Russia
| | - Sanjeev Kumar Joshi
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, Russia, 620002
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alslaami
- College of Medical Technique, The Islamic University, Najaf, Iraq
| | - Rohollah Fathollahi
- Takin Shimi Sepanta Industries Co, Sirvan Industrial Zone, PO 6958140120, Ilam, Iran.
| |
Collapse
|
3
|
El-Boubbou K, Lemine OM, Jaque D. Synthesis of novel hybrid mesoporous gold iron oxide nanoconstructs for enhanced catalytic reduction and remediation of toxic organic pollutants. RSC Adv 2022; 12:35989-36001. [PMID: 36545116 PMCID: PMC9753618 DOI: 10.1039/d2ra05990h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
The development of highly efficient, rapid, and recyclable nanocatalysts for effective elimination of toxic environmental contaminants remains a high priority in various industrial applications. Herein, we report the preparation of hybrid mesoporous gold-iron oxide nanoparticles (Au-IO NPs) via the nanocasting "inverse hard-templated replication" approach. Dispersed Au NPs were anchored on amine-functionalized iron oxide incorporated APMS (IO@APMS-amine), followed by etching of the silica template to afford hybrid mesoporous Au-IO NPs. The obtained nanoconstructs were fully characterized using electron microscopy, N2 physisorption, and various spectroscopic techniques. Owing to their magnetic properties, high surface areas, large pore volumes, and mesoporous nature (S BET = 124 m2 g-1, V pore = 0.33 cm3 g-1, and d pore = 4.5 nm), the resulting Au-IO mesostructures were employed for catalytic reduction of nitroarenes (i.e. nitrophenol and nitroaniline), two of the most common toxic organic pollutants. It was found that these Au-IO NPs act as highly efficient nanocatalysts showing exceptional stabilities (>3 months), enhanced catalytic efficiencies in very short times (∼100% conversions within only 25-60 s), and excellent recyclabilities (up to 8 cycles). The kinetic pseudo-first-order apparent reaction rate constants (k app) were calculated to be equal to 8.8 × 10-3 and 23.5 × 10-3 s-1 for 2-nitrophenol and 2-nitroaniline reduction, respectively. To our knowledge, this is considered one of the best and fastest Au-based nanocatalysts reported for the catalytic reduction of nitroarenes, promoted mainly by the synergistic cooperation of their high surface area, large pore volume, mesoporous nature, and enhanced Au-NP dispersions. The unique mesoporous hybrid Au-IO nanoconstructs synthesized here make them novel, stable, and approachable nanocatalyst platform for various catalytic industrial processes.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC)King Abdulaziz Medical City, National Guard Health AffairsRiyadh 11426Saudi Arabia,Nanomaterials for Bioimaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM)Madrid 28049Spain,Department of Chemistry, College of Science, University of BahrainSakhir 32038Kingdom of Bahrain
| | - O. M. Lemine
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)Riyadh 11623Saudi Arabia
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM)Madrid 28049Spain
| |
Collapse
|
4
|
He Y, Wang P, Chen X, Li Y, Wei J, Cai G, Aoyagi K, Wang W. Facile preparation of Fe 3O 4@Pt nanoparticles as peroxidase mimics for sensitive glucose detection by a paper-based colorimetric assay. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220484. [PMID: 36177202 PMCID: PMC9515637 DOI: 10.1098/rsos.220484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
A simple strategy to rapidly detect glucose was developed by utilizing core (Fe3O4)-shell (Pt) magnetic nanoparticles (Fe3O4@Pt NPs) as a nanoenzyme and a paper-based colorimetric sensor. In the presence of H2O2, Fe3O4@Pt NPs catalyze the redox reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and generate a colour change from colourless to blue. On this basis, a colorimetric glucose sensing method assisted by glucose oxidase (GOx) was developed. Under the optimal conditions, the detection limits of the proposed assay for H2O2 and glucose were 0.36 µM and 1.27 µM, respectively. Furthermore, the fabricated colorimetric method was successfully applied to analyze glucose concentrations by using a paper device as a measuring platform without a spectrometer. In addition, this method exhibited satisfactory recovery for glucose detection in human serum samples and urine samples, which satisfied the requirements for normal detection of real samples. This study provides a good candidate for health monitoring of glucose and also expands the applications of nanoenzymes and paper-based colorimetric assays in point-of-care testing.
Collapse
Affiliation(s)
- Ye He
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Panlin Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaojing Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yahuang Li
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jiajun Wei
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Guoxi Cai
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kiyoshi Aoyagi
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
5
|
Li C, Su Y, Cheng M, Liu J, Hou S. Gold and Cobalt Nanoparticles Dispersed on N‐Doped Carbon Matrix as a Catalyst for 4‐Nitrophenol Reduction. ChemistrySelect 2022. [DOI: 10.1002/slct.202103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Caifeng Li
- School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- National Engineering Research Center for Colloidal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Yan Su
- School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- National Engineering Research Center for Colloidal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Mengmeng Cheng
- School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- National Engineering Research Center for Colloidal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Jinglei Liu
- School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- National Engineering Research Center for Colloidal Materials Shandong University Jinan Shandong 250100 P. R. China
| | - Shifeng Hou
- School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- National Engineering Research Center for Colloidal Materials Shandong University Jinan Shandong 250100 P. R. China
| |
Collapse
|
6
|
Li Q, Ji L, Jiang B, Li X, Lv Z, Xie J, Chen S, Xu K, Yang Y, Zhao S. Pillararene-functionalized rhodium nanoparticles for efficient catalytic reduction and photothermal sterilization. Chem Commun (Camb) 2022; 58:13079-13082. [DOI: 10.1039/d2cc05642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pillar[5]arene-functionalized rhodium nanoparticles are prepared for catalytic reduction of toxic nitrophenols and azo dyes and efficient photothermal sterilization.
Collapse
Affiliation(s)
- Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Li Ji
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Beibei Jiang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiangguang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhaoji Lv
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jinpo Xie
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Siping Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Kailin Xu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yingwei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Targuma S, Njobeh PB, Ndungu PG. Current Applications of Magnetic Nanomaterials for Extraction of Mycotoxins, Pesticides, and Pharmaceuticals in Food Commodities. Molecules 2021; 26:4284. [PMID: 34299560 PMCID: PMC8303358 DOI: 10.3390/molecules26144284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.
Collapse
Affiliation(s)
- Sarem Targuma
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick G. Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
8
|
Sharifzadeh Z, Berijani K, Morsali A. High performance of ultrasonic-assisted synthesis of two spherical polymers for enantioselective catalysis. ULTRASONICS SONOCHEMISTRY 2021; 73:105499. [PMID: 33667905 PMCID: PMC7937831 DOI: 10.1016/j.ultsonch.2021.105499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/02/2021] [Accepted: 02/16/2021] [Indexed: 05/11/2023]
Abstract
Chiral polymers have aroused great attention in among chiral supramolecular materials based on their features. Herein, for the first time, the synthesis of chiral polymeric composites (CMNPs/1,4-Zbtb & 1,3-Zbtb) have been reported with entrapment through three strategies: ultrasonic irradiation, solvothermal, and mechanical stirring. According to the obtained results, it is found that ultrasound-assisted synthesis can be considered as an inexpensive and efficient method than the others, from the point ofviewof energy and time consuming. In this strategy, encapsulation of chiral magnetic nanoparticles (CMNPs) by using tetrazole-based polymers (Zbtbs) happens, in-situly. These chiral sphere-like inorganic-organic polymers can be considered as core and shell composites with catalytic activity due to their acidic (semi unsaturated Zn: open metal sites) and basic (abundant basic nitrogens) centers. In these structures, the unprecedented chirality induction can happen from the core to shell by non-covalent interaction, easily. They could catalyze symmetric oxidation and asymmetric henry condensation to give chiral β-nitroalkanol. Circular dichroism and chiral gas chromatography were used to characterize the produced enantiomers. These chiral polymeric materials can be considered as unique acid-base bifunctional catalysts with efficient properties such as high stability, enantiomeric excess, enantioselectivity to the main product, and protecting from CMNPs leaching.
Collapse
Affiliation(s)
- Zahra Sharifzadeh
- Department of Chemistry, Faculty of Sciences, TarbiatModares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran
| | - Kayhaneh Berijani
- Department of Chemistry, Faculty of Sciences, TarbiatModares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, TarbiatModares University, P.O. Box 14117-13116, Tehran, Islamic Republic of Iran.
| |
Collapse
|
9
|
Sun P, Zhang W, Zou B, Zhou L, Ye Z, Zhao Q. Preparation of EDTA-modified magnetic attapulgite chitosan gel bead adsorbent for the removal of Cu(II), Pb(II), and Ni(II). Int J Biol Macromol 2021; 182:1138-1149. [PMID: 33895175 DOI: 10.1016/j.ijbiomac.2021.04.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
Attapulgite (ATP) has a unique porous layered chain structure and is an excellent environment-friendly decolorizer. However, its high viscosity makes it difficult to separate. First, it was combined with magnetic Fe3O4 nanoparticles to obtain Fe3O4-ATP that is easy to recycle and reuse. Then, Fe3O4-ATP nanoparticles were embedded in chitosan (CS) gel beads, and glutaraldehyde was used for cross-linking and curing. Lastly, ethylenediaminetetraacetic acid (EDTA) was successfully connected to Fe3O4-ATP/CS gel beads through amidation reaction, which further increased the capability of the adsorbent to adsorb heavy metal ions. The prepared magnetic composite adsorbent is a sphere with a rough surface and porous structure. The maximum adsorption capacity of the prepared Fe3O4-ATP/EDTA/CS adsorbent for Pb(II), Cu(II), and Ni(II) is 368.32, 267.94, and 220.31 mg g-1, respectively. After 5 times of repeated use, Fe3O4-ATP/EDTA/CS still showed good adsorption capacity for Cu(II), Pb(II), and Ni(II). Fe3O4-ATP/EDTA/CS has a large adsorption capacity for heavy metal ions, a wide pH applicability, good reuse, and rapid magnetic separation. In addition, Cu(II) loaded Fe3O4-ATP/EDTA/CS also showed good catalytic degradation performance for bisphenol A. This study prepared a new type of adsorbent with good adsorption performance and provided a promising method for the treatment of wastewater.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Binze Zou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
10
|
One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water. Molecules 2021; 26:molecules26061785. [PMID: 33810077 PMCID: PMC8004736 DOI: 10.3390/molecules26061785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a kind of biodegradable natural polysaccharide, and it is a very promising adsorber material for removing metal ions from aqueous solutions. In this study, chitosan-based magnetic adsorbent CMC@Fe3O4 was synthesized by a one-step method using carboxymethyl chitosan (CMC) and ferric salts under relatively mild conditions. The Fe3O4 microspheres were formed and the core-shell structure of CMC@Fe3O4 was synthesized in the meantime, which was well characterized via SEM/TEM, XRD, VSM, FT-IR, thermo gravimetric analysis (TGA), XPS, size distribution, and zeta potential. The effects of initial arsenic concentration, pH, temperature, contact time, and ionic strength on adsorption quantity of inorganic arsenic was studied through batch adsorption experiments. The magnetic adsorbent CMC@Fe3O4 displayed satisfactory adsorption performance for arsenic in water samples, up to 20.1 mg/g. The optimal conditions of the adsorption process were pH 3.0, 30-50 °C, and a reaction time of 15 min. The adsorption process can be well described by pseudo-second-order kinetic model, suggesting that chemisorption was main rate-controlling step. The Langmuir adsorption model provided much higher correlation coefficient than that of Freundlich adsorption model, indicating that the adsorption behavior is monolayer adsorption on the surface of the magnetic adsorbents. The above results have demonstrated that chitosan-based magnetic adsorbent CMC@Fe3O4 is suitable for the removal of inorganic arsenic in water.
Collapse
|
11
|
Xiao J, Lu Q, Cong H, Shen Y, Yu B. Microporous poly(glycidyl methacrylate- co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polym Chem 2021. [DOI: 10.1039/d1py00834j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a new kind of functional material, micron-sized porous polymer microspheres are a hot research topic in the field of polymer materials.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingbiao Lu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
12
|
Cao J, Wang P, Shen J, Sun Q. Core-shell Fe 3O 4@zeolite NaA as an Adsorbent for Cu 2. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5047. [PMID: 33182706 PMCID: PMC7665120 DOI: 10.3390/ma13215047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Here, using Fe3O4@SiO2 as a precursor, a novel core-shell structure magnetic Cu2+ adsorbent (Fe3O4@zeolite NaA) was successfully prepared. Several methods, namely X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), Transmission electron microscope (TEM), Brunauer Emmett Teller (BET) and vibrating sample magnetometry (VSM) were used to characterize the adsorbent. A batch experiment was conducted to study the Cu2+ adsorption capacity of Fe3O4@zeolite NaA at different pH values, contact time, initial Cu2+ concentration and adsorbent does. It is found that the saturated adsorption capacity of Fe3O4@zeolite NaA on Cu2+ is 86.54 mg/g. The adsorption isotherm analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is more consistent with the Langmuir model, suggesting that it is a monolayer adsorption. Adsorption kinetics study found that the adsorption process of Fe3O4@zeolite NaA to Cu2+ follows the pseudo-second kinetics model, which means that the combination of Fe3O4@zeolite NaA and Cu2+ is the chemical chelating reaction. Thermodynamic analysis shows that the adsorption process of Fe3O4@zeolite NaA to Cu2+ is endothermic, with increasing entropy and spontaneous in nature. The above results show that Fe3O4@zeolite NaA is a promising Cu2+ adsorbent.
Collapse
Affiliation(s)
- Jun Cao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.C.); (J.S.)
| | - Peng Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology 1037 Luoyu Road, Wuhan 430074, China;
| | - Jie Shen
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.C.); (J.S.)
| | - Qi Sun
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.C.); (J.S.)
| |
Collapse
|
13
|
Hao B, Song T, Ye M, Liu X, Qiu J, Huang X, Lu G, Qian W. Gold/SH-functionalized nanographene oxide/polyamidamine/poly(ethylene glycol) nanocomposites for enhanced non-enzymatic hydrogen peroxide detection. Biomater Sci 2020; 8:6037-6044. [PMID: 32996946 DOI: 10.1039/d0bm01286f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrogen peroxide (H2O2) is an important mediator in biological medicine, disease diagnosis and environmental analyses and therefore it is essential to develop a detection approach for H2O2 in physical environments. Herein, we designed and prepared a series of AuNP-containing nanocomposites (AuNPs@NGO-PEG, AuNPs@G1-PAMAM-NGO-PEG and AuNPs@G3-PAMAM-NGO-PEG) for enhanced non-enzymatic H2O2 detection. We firstly demonstrated functionalized nanographene oxide (NGO) based materials, which combined advantages of biocompatible poly(ethylene glycol) (PEG), hyperbranched polyamidamine (PAMAM) dendrimer and thiol active site, as compatible platforms. Gold nanoparticles (AuNPs) were then aptly in situ grown on these functionalized NGO based materials via the reduction of HAuCl4 under mild conditions, i.e. AuNPs@NGO-PEG, AuNPs@G1-PAMAM-NGO-PEG and AuNPs@G3-PAMAM-NGO-PEG nanocomposites, which possess stable and uniform AuNPs standing on the functionalized NGO sheets. For H2O2 detection, these nanocomposites were cast on a glassy carbon electrode (GCE) conveniently, i.e. GCE/AuNPs@NGO-PEG, GCE/AuNPs@G1-PAMAM-NGO-PEG and GCE/AuNPs@G3-PAMAM-NGO-PEG. It is evident that these GCEs could be applied as efficient non-enzymatic H2O2 detectors resulting from the corresponding cyclic voltammetric curves and typical ready-state amperometric curves. GCE/AuNPs@G1-PAMAM-NGO-PEG exhibited the fastest electron transfer rate among these modified GCEs. We envisage that these GCEs could provide efficient sensors for H2O2 detection and a new strategy for sensor design.
Collapse
Affiliation(s)
- Bingjie Hao
- Department of Stomatology, Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai 200032, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Du G, Liao B, Liu R, An Z, Zhang J. Low density magnetic silicate-nickel alloy composite hollow structures: seed induced direct assembly fabrication and catalytic properties. RSC Adv 2020; 10:35287-35294. [PMID: 35515694 PMCID: PMC9056869 DOI: 10.1039/d0ra00893a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
An efficient seed induced direct assembly route is designed for the controlled synthesis of hollow microsphere supported catalysts (HMSCs) with nickel alloy as the active material. The inherent magnetic response of nickel alloy endows HMSCs magnetic separability, and the hollow interior of the support opens a new avenue for self-floating separation. It is found that the introduction of P and Co contributes largely to the improvement of the catalytic performance of the products, which may attributed to synergistic effects and electron transfer. Moreover, the loading amounts of alloy nanoparticles can be easily tailored through properly monitoring the reaction conditions. With the optimized loading of 2.68 wt%, the kN of HMSC–NiCoP-2.68 wt% reaches 14.0 s−1 g−1 for the catalytic reduction of p-nitrophenol (4-NP), which is higher than commercial 5 wt% Pd/C of 11.6 s−1 g−1 under the same conditions. This work provides additional insights into preparation and property control of an easily separable supported non-noble metal catalyst, which holds potential to be extended to the preparation and property control of other metal nanocatalysts on various supports. Synthesized HMSC–NiCoP-2.68 wt% catalyst exhibits excellent catalytic reduction activity of 4-NP, which can be separated by self-floating and external magnetic field.![]()
Collapse
Affiliation(s)
- Gaiping Du
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China +86 10 82543690 +86 10 82543690.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Liao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China +86 10 82543690 +86 10 82543690
| | - Ran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China +86 10 82543690 +86 10 82543690.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhenguo An
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China +86 10 82543690 +86 10 82543690
| | - Jingjie Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China +86 10 82543690 +86 10 82543690
| |
Collapse
|
15
|
Investigation of Catalytic Potential and Radical Scavenging Efficacy of Terminalia bellerica Roxb Bark Mediated Ecofriendly Silver Nanoparticles. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01865-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Ali N, Bilal M, Khan A, Ali F, Yang Y, Khan M, Adil SF, Iqbal HM. Dynamics of oil-water interface demulsification using multifunctional magnetic hybrid and assembly materials. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113434] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Amirmahani N, Rashidi M, Mahmoodi NO. Synthetic application of gold complexes on magnetic supports. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Amirmahani
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
- Environmental Health Engineering Research CenterKerman University of Medical Sciences Kerman Iran
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of ScienceShahid Bahonar University of Kerman Kerman Iran
| | - Nosrat O. Mahmoodi
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
| |
Collapse
|
18
|
Zeng K, Sun EJ, Liu ZW, Guo J, Yuan C, Yang Y, Xie H. Synthesis of magnetic nanoparticles with an IDA or TED modified surface for purification and immobilization of poly-histidine tagged proteins. RSC Adv 2020; 10:11524-11534. [PMID: 35495316 PMCID: PMC9050487 DOI: 10.1039/c9ra10473a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles (MNPs) chelating with metal ions can specifically interact with poly-histidine peptides and facilitate immobilization and purification of proteins with poly-histidine tags. Fabrication of MNPs is generally complicated and time consuming. In this paper, we report the preparation of Ni(ii) ion chelated MNPs (Ni-MNPs) in two stages for protein immobilization and purification. In the first stage, organic ligands including pentadentate tris (carboxymethyl) ethylenediamine (TED) and tridentate iminodiacetic acid (IDA) and inorganic Fe3O4–SiO2 MNPs were synthesized separately. In the next stage, ligands were grafted to the surface of MNPs and MNPs with a TED or IDA modified surface were acquired, followed by chelating with Ni(ii) ions. The Ni(ii) ion chelated forms of MNPs (Ni-MNPs) were characterized including morphology, surface charge, structure, size distribution and magnetic response. Taking a his-tagged glycoside hydrolase DspB (Dispersin B) as the protein representative, specific interactions were confirmed between DspB and Ni-MNPs. Purification of his-tagged DspB was achieved with Ni-MNPs that exhibited better performance in terms of purity and activity of DspB than commercial Ni-NTA. Ni-MNPs as enzyme carriers for DspB also exhibited good compatibility and reasonable reusability as well as improved performance in various conditions. This article reports a novel approach for synthesizing magnetic nanoparticles with a modified surface for purification and immobilization of histidine-tagged proteins.![]()
Collapse
Affiliation(s)
- Kai Zeng
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - En-Jie Sun
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Ze-Wen Liu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Junhui Guo
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Chengqing Yuan
- School of Energy and Power Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Ying Yang
- Institute for Science and Technology in Medicine, Keele University Staffordshire ST4 7QB UK
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
19
|
Hao B, Lu G, Zhang S, Li Y, Ding A, Huang X. Gold nanoparticles standing on PEG/PAMAM/thiol-functionalized nanographene oxide as aqueous catalysts. Polym Chem 2020. [DOI: 10.1039/d0py00471e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gold nanoparticles were aptly in situ grown on PEG/PAMAM/thiol-functionalized nanographene oxide platforms for aqueous catalysis.
Collapse
Affiliation(s)
- Bingjie Hao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Sen Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Aishun Ding
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
20
|
Zhang S, Xu Y, Zhao D, Chen W, Li H, Hou C. Preparation of Magnetic CuFe 2O 4@Ag@ZIF-8 Nanocomposites with Highly Catalytic Activity Based on Cellulose Nanocrystals. Molecules 2019; 25:E124. [PMID: 31905655 PMCID: PMC6982921 DOI: 10.3390/molecules25010124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
A facile approach was successfully developed for synthesis of cellulose nanocrystals (CNC)-supported magnetic CuFe2O4@Ag@ZIF-8 nanospheres which consist of a paramagnetic CuFe2O4@Ag core and porous ZIF-8 shell. The CuFe2O4 nanoparticles (NPs) were first prepared in the presence of CNC and dispersant. Ag NPs were then deposited on the CuFe2O4/CNC composites via an in situ reduction directed by dopamine polymerization (PDA). The CuFe2O4/CNC@Ag@ZIF-8 nanocomposite was characterized by TEM, FTIR, XRD, N2 adsorption-desorption isotherms, VSM, and XPS. Catalytic studies showed that the CuFe2O4/CNC@Ag@ZIF-8 catalyst had much higher catalytic activity than CuFe2O4@Ag catalyst with the rate constant of 0.64 min-1. Because of the integration of ZIF-8 with CuFe2O4/CNC@Ag that combines the advantaged of each component, the nanocomposites were demonstrated to have an enhanced catalytic activity in heterogeneous catalysis. Therefore, these results demonstrate a new method for the fabrication of CNC-supported magnetic core-shell catalysts, which display great potential for application in biocatalysis and environmental chemistry.
Collapse
Affiliation(s)
- Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi’an 710021, China; (Y.X.); (D.Z.); (W.C.); (H.L.); (C.H.)
| | - Yongshe Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi’an 710021, China; (Y.X.); (D.Z.); (W.C.); (H.L.); (C.H.)
- Tianjin China Banknote Paper Co., Ltd., Tianjin 300385, China
| | - Dongyan Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi’an 710021, China; (Y.X.); (D.Z.); (W.C.); (H.L.); (C.H.)
| | - Wenqiang Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi’an 710021, China; (Y.X.); (D.Z.); (W.C.); (H.L.); (C.H.)
| | - Hao Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi’an 710021, China; (Y.X.); (D.Z.); (W.C.); (H.L.); (C.H.)
| | - Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi’an 710021, China; (Y.X.); (D.Z.); (W.C.); (H.L.); (C.H.)
| |
Collapse
|
21
|
Larrea A, Eguizabal A, Sebastián V. Gas-Directed Production of Noble Metal-Magnetic Heteronanostructures in Continuous Fashion: Application in Catalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43520-43532. [PMID: 31664814 DOI: 10.1021/acsami.9b15982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex nanomaterials produced by scale-up batch processes lack suitable control of shape, size distribution, chemical composition, and quality, because heat and mass transfer are seriously affected as the reactor volume increases. Here we use a novel continuous synthesis procedure, the active gas-liquid segmented flow, to produce noble metal-magnetic heteronanostructures with enormous interest in the fields of catalysis, biomedicine, environmental sensors, food monitoring, and chemical analysis. The microreactor technology proposed scales down the reaction volume to gain advantage of the large surface area to volume ratio with respect to conventional batch-type reactors, improving heat and mass transport and, consequently, promoting a uniform heating and mixing. The gas phase was introduced in the chemical reactor as gas slugs of nanoliter scale with a dual role: (1) passive mixing and (2) chemical directing agent to tune the crystallization of nanostructures in a continuous fashion. The shape, size, and magnetic properties of the resulting heteronanostructures, as well as the density, size, and composition of noble metal nanoparticles were tuned to show the versatility of the proposed approach in a timeline of 4 min. We demonstrated that the produced nanostructures provide excellent catalytic properties in the catalyzed hydrogenation of nitrophenols to aminophenols. Electron microscopy, UV-vis spectroscopy, and cyclic voltammetry studies showed the remarkable catalytic performance of the produced heteronanostructures.
Collapse
Affiliation(s)
- Ane Larrea
- Institute of Nanoscience of Aragon and Department of Chemical Engineering , University of Zaragoza , E-50018 Zaragoza , Spain
| | - Adela Eguizabal
- Institute of Nanoscience of Aragon and Department of Chemical Engineering , University of Zaragoza , E-50018 Zaragoza , Spain
| | - Víctor Sebastián
- Institute of Nanoscience of Aragon and Department of Chemical Engineering , University of Zaragoza , E-50018 Zaragoza , Spain
- Networking Research Center in Bioengineering, Biomaterials and Nanomedicine , E-50018 Zaragoza , Spain
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza , Pedro Cerbuna 12 , 50009 Zaragoza , Spain
| |
Collapse
|
22
|
Price CAH, Pastor-Pérez L, Ivanova S, Reina TR, Liu J. The Success Story of Gold-Based Catalysts for Gas- and Liquid-Phase Reactions: A Brief Perspective and Beyond. Front Chem 2019; 7:691. [PMID: 31709225 PMCID: PMC6822280 DOI: 10.3389/fchem.2019.00691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
Gold has long held the fascination of mankind. For millennia it has found use in art, cosmetic metallurgy and architecture; this element is seen as the ultimate statement of prosperity and beauty. This myriad of uses is made possible by the characteristic inertness of bulk gold; allowing it to appear long lasting and above the tarnishing experienced by other metals, in part providing its status as the most noble metal.
Collapse
Affiliation(s)
- Cameron A H Price
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Laura Pastor-Pérez
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Svetlana Ivanova
- Departamento de Química Inorgánica, Universidad de Sevilla, Instituto de Ciencias de Materiales de Sevilla Centro Mixto (US-CSIC), Seville, Spain
| | - Tomas R Reina
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom
| | - Jian Liu
- Department of Chemical and Process Engineering Department, University of Surrey, Guildford, United Kingdom.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
23
|
Bagherzadeh M, Bahjati M, Mortazavi-Manesh A. Synthesis, characterization and catalytic activity of supported vanadium Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation of alkenes and oxidation of sulfides. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Paul A, Bhuyan B, Dhar SS. Study of core–shell α-Fe2O3@Au nanohybrid and their high catalytic performances in aerial oxidation of benzyl alcohols. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1641491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Arijita Paul
- Department of Chemistry, Karimganj College, Karimganj, Assam, India
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, India
| | - Bishal Bhuyan
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, India
| | - Siddhartha Sankar Dhar
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, India
| |
Collapse
|
25
|
Facile synthesis of carbon dots-coated CuFe2O4 nanocomposites as a reusable catalyst for highly efficient reduction of organic pollutants. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Bhaduri K, Das BD, Kumar R, Mondal S, Chatterjee S, Shah S, Bravo-Suárez JJ, Chowdhury B. Recyclable Au/SiO 2-Shell/Fe 3O 4-Core Catalyst for the Reduction of Nitro Aromatic Compounds in Aqueous Solution. ACS OMEGA 2019; 4:4071-4081. [PMID: 31459616 PMCID: PMC6649094 DOI: 10.1021/acsomega.8b03655] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 05/19/2023]
Abstract
Highly stable gold nanoparticles immobilized on the surface of amine-functionalized nanocomposite microspheres possessing a magnetite (Fe3O4) nanoparticle core and a silica (SiO2) shell (Au/SiO2-shell/Fe3O4-core) were prepared. These gold nanocomposite catalysts were tested for 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA) reduction in aqueous solution in the temperature range 293-323 K and in the presence of aqueous NaBH4 reducing agent. The magnetically recyclable gold catalyst showed high stability (∼3 months), efficient recyclability (up to 10 cycles), and high activity (∼100% conversion within 225 s, ∼700 ppm 4-NP or 2-NA). The pseudo-first-order apparent reaction rate constants (k) of 4-NP and 2-NA reduction were 7.5 × 10-3 and 4.1 × 10-3 s-1, respectively, and with an apparent catalytic activity of 4.48 × 10-8 kmol/(m3 s).
Collapse
Affiliation(s)
- Kushanava Bhaduri
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Bidya Dhar Das
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Rawesh Kumar
- Department
of Chemistry, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Sujan Mondal
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Sauvik Chatterjee
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Sneha Shah
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
| | - Juan J. Bravo-Suárez
- Chemical
and Petroleum Engineering Department, Center for Environmentally Beneficial
Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
- E-mail: (J.J.B.-S.)
| | - Biswajit Chowdhury
- Department
of Applied Chemistry, Indian Institute of
Technology (ISM), Dhanbad, Dhanbad 826004, Jharkhand, India
- E-mail: . Phone +91-326-223-5663, (+91)-326-2296563 (B.C.)
| |
Collapse
|
27
|
Qin L, Zeng G, Lai C, Huang D, Zhang C, Cheng M, Yi H, Liu X, Zhou C, Xiong W, Huang F, Cao W. Synthetic strategies and application of gold-based nanocatalysts for nitroaromatics reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:93-116. [PMID: 30359806 DOI: 10.1016/j.scitotenv.2018.10.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
With the increasing requirement of efficient organic transformations on the basic concept of Green Sustainable Chemistry, the development of highly efficient catalytic reaction system is greatly desired. In this case, gold (Au)-based nanocatalysts are promising candidates for catalytic reaction, especially for the reduction of nitroaromatics. They have attracted wide attention and well developed in the application of nitroaromatics reduction because of the unique properties compared with that of other conventional metal-based catalysts. With this respect, this review proposes recent trends in the application of Au nanocatalysts for efficient reduction process of nitroaromatics. Some typical approaches are compared and discussed to guide the synthesis of highly efficient Au nanocatalysts. The mechanism on the use of H2 and NaBH4 solution as the source of hydrogen is compared, and that proposed under light irradiation is discussed. The high and unique catalytic activity of some carriers, such as oxides and carbons-based materials, based on different sizes, structures, and shapes of supported Au nanocatalysts for nitroaromatics reduction are described. The catalytic performance of Au combining with other metal nanoparticles by alloy or doping, like multi-metal nanoparticles system, is further discussed. Finally, a short discussion is introduced to compare the catalysis with other metallic nanocatalysts.
Collapse
Affiliation(s)
- Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Fanglong Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, PR China
| |
Collapse
|
28
|
Ma M, Yang Y, Liu Y, Li W, Chen G, Ma Y, Lyu P, Li S, Wang Y, Wu G. Preparation of magnetic Fe
3
O
4
/P (GMA‐DVB)‐PEI/Pd highly efficient catalyst with core‐shell structure. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mingliang Ma
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yuying Yang
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yanyan Liu
- Centre For Engineering Test & AppraiseQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Wenting Li
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Guopeng Chen
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yong Ma
- School of Material Science and EngineeringShandong University of Science and Technology Qingdao 266590 People's Republic of China
| | - Ping Lyu
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Shunhe Li
- School of Civil EngineeringQingdao University of Technology Qingdao 266033 People's Republic of China
| | - Yubao Wang
- School of Chemistry and Materials ScienceLudong University Yantai 264025 People's Republic of China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio‐fibers and Eco‐textiles, College of Materials Science and EngineeringQingdao University Qingdao 266071 People's Republic of China
| |
Collapse
|
29
|
Voltammetric simultaneous determination of catechol and hydroquinone using a glassy carbon electrode modified with a ternary hybrid material composed of reduced graphene oxide, magnetite nanoparticles and gold nanoparticles. Mikrochim Acta 2019; 186:177. [DOI: 10.1007/s00604-019-3273-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/20/2019] [Indexed: 01/17/2023]
|
30
|
Zhao Q, Wu Q, Ma P, Xu L, Zhang F, Li D, Liu X, Xu S, Sun Y, Song D, Wang X. Selective and sensitive fluorescence detection method for pig IgG based on competitive immunosensing strategy and magnetic bioseparation. Talanta 2018; 195:103-108. [PMID: 30625519 DOI: 10.1016/j.talanta.2018.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
A novel fluorescence detection method based on competitive immunoassay and magnetic bioseparation technique was developed and applied to the determination of pig immunoglobulin G (IgG) in serum samples. Core-shell structured Fe3O4@SiO2 nanoparticles were synthesized by chemical coprecipitation, followed by functionalization with amino groups and immobilization of pig IgG antibodies. The synthesized Fe3O4@SiO2-antibody nanoparticles were employed as the probe for the competitive immune recognition of the target antigens in samples and the antigens labeled with fluorescein isothiocyanate (FITC). After the magnetic separation of probes binding with these two types of antigens, fluorescence of the free FITC-labeled antigens was measured for the quantification of the target antigens, since the ratio of the FITC-labeled antigens in supernatant before and after the competitive immune recognition depends on the amount of the target antigens in sample, due to the competitive nature of the binding of the antibody for these two types of antigens. Under the optimal conditions, a linear relationship was obtained between the change of fluorescence intensity and the concentration of pig IgG in a range from 0.75 to 23.50 µg L-1, with a detection limit (LOD) of 0.031 µg L-1. With the facile-prepared probes, this fluorescence competitive method can provide a rapid, specific and highly sensitive immunoassay protocol for the determination of target proteins in complex matrix samples.
Collapse
Affiliation(s)
- Qingnan Zhao
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Qiong Wu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Longbin Xu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Fangmei Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Dan Li
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Xin Liu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Shaomei Xu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Ying Sun
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Daqian Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| |
Collapse
|
31
|
Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI). J Colloid Interface Sci 2018; 526:1-8. [DOI: 10.1016/j.jcis.2018.04.094] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 11/23/2022]
|
32
|
Xu D, Wang F, Yu G, Zhao H, Yang J, Yuan M, Zhang X, Dong Z. Aminal-based Hypercrosslinked Polymer Modified with Small Palladium Nanoparticles for Efficiently Catalytic Reduction of Nitroarenes. ChemCatChem 2018. [DOI: 10.1002/cctc.201800987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dan Xu
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of Education; Lanzhou University; Lanzhou P.R. China
| | - Fushan Wang
- Lanzhou Petrochemical Company; PetroChina; Lanzhou 730060 P.R. China
| | - Guiqin Yu
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of Education; Lanzhou University; Lanzhou P.R. China
| | - Hong Zhao
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of Education; Lanzhou University; Lanzhou P.R. China
| | - Jing Yang
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of Education; Lanzhou University; Lanzhou P.R. China
| | - Man Yuan
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of Education; Lanzhou University; Lanzhou P.R. China
| | - Xiaoyun Zhang
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of Education; Lanzhou University; Lanzhou P.R. China
| | - Zhengping Dong
- College of Chemistry and Chemical Engineering Gansu Provincial Engineering Laboratory for Chemical Catalysis Laboratory of Special Function Materials and Structure Design of the Ministry of Education; Lanzhou University; Lanzhou P.R. China
| |
Collapse
|
33
|
Zhang Z, Ma Y, Bu X, Wu Q, Hang Z, Dong Z, Wu X. Facile one-step synthesis of TiO 2/Ag/SnO 2 ternary heterostructures with enhanced visible light photocatalytic activity. Sci Rep 2018; 8:10532. [PMID: 30002407 PMCID: PMC6043551 DOI: 10.1038/s41598-018-28832-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
Novel TiO2/Ag/SnO2 composites were successfully prepared by a facile one-step reduction approach using stannous chloride as both SnO2 precursor and reducing agent. The Ag nanoparticles with sizes of 2.04-3.94 nm were located on TiO2 matrix and immobilized by the surrounded SnO2. The resulted TiO2/Ag/SnO2 nanocomposites were used as photocatalyst for photodegradation of methylene blue under visible light. The experimental results demonstrated that the visible light photocatalytic activity of the TiO2/Ag/SnO2 was significantly enhanced in comparison with the individual TiO2 or the binary composite (TiO2/Ag or TiO2/SnO2) and the degradation rate was up to about 9.5 times that of commercial TiO2. The photocatalytic activity of the TiO2/Ag/SnO2 composites could be well controlled by simply tuning the dosages of Ag precursor and the optimized activity of the composites was obtained when the dosage of Ag precursor was 2%. Moreover, the TiO2/Ag/SnO2 photocatalyst exhibited high stability for degradation of methylene blue even after four successive cycles.
Collapse
Affiliation(s)
- Zewu Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China.
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China.
| | - Yuhang Ma
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China
| | - Xiaohai Bu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China
| | - Qiong Wu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China
| | - Zusheng Hang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China
| | - Zhao Dong
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China.
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China.
| | - Xiaohan Wu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China
| |
Collapse
|
34
|
Sohni S, Khan SA, Akhtar K, Khan SB, Asiri AM, Hashim R, Omar AM. Room temperature preparation of lignocellulosic biomass supported heterostructure (Cu+Co@OPF) as highly efficient multifunctional nanocatalyst using wetness co-impregnation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Wu Q, Liang M, Zhang S, Liu X, Wang F. Development of functional black phosphorus nanosheets with remarkable catalytic and antibacterial performance. NANOSCALE 2018; 10:10428-10435. [PMID: 29796485 DOI: 10.1039/c8nr01715h] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Highly dispersed 2D-nanostructured ultrathin black phosphorus nanosheets (BPNs)-integrated Au nanoparticles (AuNPs) hybrids were constructed in situ through a facile and environmentally friendly strategy. No additional reductants, surfactants, or polymer templates were introduced during this green and convenient synthesis process. The resulting AuNPs/BPNs nanohybrids were characterized by UV-vis, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The content of BPNs plays an essential role in modulating the morphologies and chemical states of AuNPs/BPNs hybrids, which have been investigated systematically and are discussed in detail. As high-density ultrasmall AuNPs are properly stabilized and accommodated without passivation by the surrounding ultrathin BPNs, the resulting AuNPs/BPNs hybrids exhibit excellent catalytic/antibacterial properties and long-term stabilities, benefiting from a possible synergistic enhancement effect between AuNPs and BPNs constructs. This simple, mild and environmentally benign strategy could be generalized to the preparation of other metal- or metal oxide-doped complexes and holds great promise for potential catalytic, bioanalytical and biomedical applications.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | | | | | | | | |
Collapse
|
36
|
Yuan S, Gao Y, Bao J, Zhang Y, Chen W, Fang J, Zhou Y, Wang Y, Zhu W. Preparation of disk-like Pt/CeO2
-p-TiO2
catalyst derived from MIL-125(Ti) for excellent catalytic performance. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shenhao Yuan
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yan Gao
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Jiehua Bao
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Wenxia Chen
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Jiasheng Fang
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Yanyun Wang
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| | - Wenyu Zhu
- School of Chemistry and Chemical Engineering; Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 China
| |
Collapse
|
37
|
l-serine-functionalized montmorillonite decorated with Au nanoparticles: A new highly efficient catalyst for the reduction of 4-nitrophenol. J Catal 2018. [DOI: 10.1016/j.jcat.2018.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Zeng Y, Liu W, Wang Z, Singamaneni S, Wang R. Multifunctional Surface Modification of Nanodiamonds Based on Dopamine Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4036-4042. [PMID: 29528233 DOI: 10.1021/acs.langmuir.8b00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface functionalization of nanodiamonds (NDs), which is of great interest in advanced material and therapeutic applications, requires the immobilization of functional species, such as nucleic acids, bioprobes, drugs, and metal nanoparticles, onto NDs' surfaces to form stable nanoconjugates. However, it is still challenging to modify the surface of NDs due to the complexity of their surface chemistry and the low density of each functional group on the surfaces of NDs. In this work, we demonstrate a general applicable surface functionalization approach for the preparation of ND-based core-shell nanoconjugates using dopamine polymerization. By taking advantage of the universal adhesion and versatile reactivity of polydopamine, we have effectively conjugated DNA and silver nanoparticles onto NDs. Moreover, the catalytic activity of ND-supported silver nanoparticle was characterized by the reduction of 4-nitrophenol, and the addressability of NDs was tested through DNA hybridization that formed satellite ND-gold nanorod conjugation. This simple and robust method we have presented may significantly improve the capability for attaching various functionalities onto NDs and open up new platforms for applications of NDs.
Collapse
Affiliation(s)
| | | | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering , Washington University in St. Louis , St Louis , Missouri 63130 , United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering , Washington University in St. Louis , St Louis , Missouri 63130 , United States
| | | |
Collapse
|
39
|
Huang H, Zhao Z, Hu W, Liu C, Wang X, Zhao Z, Ye W. Microwave-assisted hydrothermal synthesis of Mn 3 O 4 /reduced graphene oxide composites for efficiently catalytic reduction of 4-nitrophenol in wastewater. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Zhang J, Tan W, Tao Y, Deng L, Qin Y, Kong Y. A novel electrochemical chiral interface based on sandwich-structured molecularly imprinted SiO2/AuNPs/SiO2 for enantioselective recognition of cysteine isomers. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Gu C, Wu D, Wen M, Wu Q. A freestanding SiO2 ultrathin membrane with NiCu nanoparticles embedded on its double surfaces for catalyzing nitro-amination. Dalton Trans 2018; 47:7083-7089. [DOI: 10.1039/c8dt00859k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 2D ultrathin-structured NiCu–SiO2 nanocomposite formed by assembling NiCu nanoparticles on the double surfaces of a freestanding SiO2 membrane achieves excellent catalytic performance for nitro-amination reactions.
Collapse
Affiliation(s)
- Chen Gu
- School of Chemical Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai 200092
| | - Dandan Wu
- School of Chemical Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai 200092
| | - Ming Wen
- School of Chemical Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai 200092
| | - Qingsheng Wu
- School of Chemical Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai 200092
| |
Collapse
|
42
|
Li Y, Shang W, Liang X, Zeng C, Liu M, Wang S, Li H, Tian J. The diagnosis of hepatic fibrosis by magnetic resonance and near-infrared imaging using dual-modality nanoparticles. RSC Adv 2018; 8:6699-6708. [PMID: 35540380 PMCID: PMC9078292 DOI: 10.1039/c7ra10847h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis (HF), as the only reversible process of chronic liver disease, remains a big diagnostic challenge. Development of noninvasive and effective methods to assess quantitatively early-stage HF is of great clinical importance. Compared with conventional diagnostic methods, near-infrared fluorescence imaging (NIR) and magnetic resonance imaging (MRI) could offer highly sensitive and spatial resolution signals for HF detection. However, precise detection using contrast agents is not possible. Superparamagnetic iron oxide (SPIO) nanoparticles have low toxicity, high sensitivity and excellent biocompatibility. Integration of Fe3O4 nanoparticles and indocyanine green (ICG), coupled with targeting ligand of integrin αvβ3, arginine–glycine–aspartic acid (RGD) expressed on hepatic stellate cells (HSCs), were used to detect HF. Both in vivo and in vitro results showed that the SPIO@SiO2–ICG–RGD had high stability and low cytotoxicity. The biodistribution of SPIO@SiO2–ICG–RGD was significantly different between mice with HF and healthy controls. SPIO@SiO2–ICG–RGD was characterized and the results of imaging in vitro and in vivo demonstrated the expression of integrin αvβ3 on activated HSCs. These data suggest that our SPIO@SiO2–ICG–RGD probe could be used for the diagnosis of early-stage HF. This new nanoprobe with a dual-modality imaging approach holds great potential for the diagnosis and classification of HF. Schematic diagram for the synthesis of SPIO@SiO2–ICG–RGD.![]()
Collapse
Affiliation(s)
- Yunfang Li
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xiaoyuan Liang
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chaoting Zeng
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Mingming Liu
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Sudan Wang
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Hongjun Li
- Department of Radiology
- Beijing YouAn Hospital
- Capital Medical University
- Beijing
- China
| | - Jie Tian
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
43
|
Liu C, Hu Q, Chen Q, Wang J, Zhang L, Ni Y. Novel Au Nanoparticles-Strewn MnOOH Nanorod Composites: Simple Fabrication and Application in the Catalytic Reduction of Aromatic Nitro Compounds. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1320-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Wang S, He P, He M, Dong F, Liu H, Lei H, Zhang X, He S. Enhanced Electrocatalytic Activity of Dual Template Based Pt/Cu-zeolite A/Graphene for Methanol Electrooxidation. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuai Wang
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang Sichuan 621010 China
| | - Ping He
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang Sichuan 621010 China
- Mianyang Kingtiger New Energy Technology Co. Ltd.; Mianyang Sichuan 621010 China
| | - Mingqian He
- Sichuan Changhong New Energy Technology Co. Ltd.; Mianyang Sichuan 621010 China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education; Southwest University of Science and Technology; Mianyang Sichuan 621010 China
| | - Huanhuan Liu
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang Sichuan 621010 China
| | - Hong Lei
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang Sichuan 621010 China
| | - Xiaojuan Zhang
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang Sichuan 621010 China
| | - Shaoying He
- School of Materials Science and Engineering; Southwest University of Science and Technology; Mianyang Sichuan 621010 China
| |
Collapse
|
45
|
Wang L, Sun L, Yu Z, Hou Y, Peng Z, Yang F, Chen Y, Huang J. Synergetic decomposition performance and mechanism of perfluorooctanoic acid in dielectric barrier discharge plasma system with Fe3O4@SiO2-BiOBr magnetic photocatalyst. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Liang Y, Chen Z, Yao W, Wang P, Yu S, Wang X. Decorating of Ag and CuO on Cu Nanoparticles for Enhanced High Catalytic Activity to the Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7606-7614. [PMID: 28723097 DOI: 10.1021/acs.langmuir.7b01540] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal/semiconductor composites are promising catalysts with superior catalytic activity. In this work, a Cu/CuO-Ag composite with structure that consisted of Ag and CuO nanoparticles (NPs) decorated on the surface of Cu were fabricated via a facile in situ method. With characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma atomic emission spectrometry (ICP-AES), the structure and components of the Cu/CuO-Ag composite were well-defined. The Cu/CuO-Ag composite exhibited superior catalytic activities for the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 with just a trace amount of Ag NPs (1.28 wt %). The reduction reaction is completed in 75 s with an apparent rate constant kapp of 4.60 × 10-2 s-1. The Cu/CuO-Ag composite also showed excellent durable catalytic stability, as no significant activity loss was detected in the consecutive five reaction runs. With the aid of the Sabatier principle and volcano plot, the opportune chemical adsorption energy of the reagent 4-NP on the Cu/CuO-Ag composite was inferred to be the key to its high reaction rate. The CuO NPs as a semiconductor with narrow band gap also could help the Cu/CuO-Ag composite to capture the electrons/hydride ions and increase opportunities for 4-NP to be reduced. Furthermore, the Cu/CuO-Ag composite exhibited outstanding activity on the oxidative degradation of methylene blue (MB). This work enriched the bimetal/semiconductor catalyst system and supplied new insight into the catalysis mechanism.
Collapse
Affiliation(s)
- Yu Liang
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, PR China
| | - Zhe Chen
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, PR China
| | - Wen Yao
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, PR China
| | - Pengyi Wang
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, PR China
| | - Shujun Yu
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, PR China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University , Beijing 102206, PR China
| |
Collapse
|
47
|
Rosa-Pardo I, Roig-Pons M, Heredia AA, Usagre JV, Ribera A, Galian RE, Pérez-Prieto J. Fe 3O 4@Au@mSiO 2 as an enhancing nanoplatform for Rose Bengal photodynamic activity. NANOSCALE 2017; 9:10388-10396. [PMID: 28702636 DOI: 10.1039/c7nr00449d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel nanoplatform composed of three types of materials with different functionalities, specifically core-shell Fe3O4@Au nanoparticles encapsulated near the outer surface of mesoporous silica (mSiO2) nanoparticles, has been successfully synthesised and used to enhance the efficiency of a photosensitiser, namely Rose Bengal, in singlet oxygen generation. Fe3O4 is responsible for the unusual location of the Fe3O4@Au nanoparticle, while the plasmonic shell acts as an optical antenna. In addition, the mesoporous silica matrix firmly encapsulates Rose Bengal by chemical bonding inside the pores, thus guaranteeing its photostability, and in turn making the nanosystem biocompatible. Moreover, the silica surface of the nanoplatform ensures further functionalisation on demand.
Collapse
Affiliation(s)
- I Rosa-Pardo
- ICMOL, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - M Roig-Pons
- ICMOL, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - A A Heredia
- ICMOL, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - J V Usagre
- ICMOL, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - A Ribera
- ICMOL, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - R E Galian
- ICMOL, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - J Pérez-Prieto
- ICMOL, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
48
|
Zhang Z, Zhang J, Liu G, Xue M, Wang Z, Bu X, Wu Q, Zhao X. Selective deposition of Au-Pt alloy nanoparticles on ellipsoidal zirconium titanium oxides for reduction of 4-nitrophenol. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0156-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Zhang C, Zhou Y, Zhang Y, Zhao S, Fang J, Sheng X, Zhang T, Zhang H. Double-Shelled TiO2
Hollow Spheres Assembled with TiO2
Nanosheets. Chemistry 2017; 23:4336-4343. [DOI: 10.1002/chem.201602654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Zhang
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| | - Shuo Zhao
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| | - Jiasheng Fang
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| | - Xiaoli Sheng
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| | - Hongxing Zhang
- School of Chemistry and Chemical Engineering; Southeast University; Jiangsu Optoelectronic Functional Materials and Engineering Laboratory; Nanjing 211189 P. R. China
| |
Collapse
|
50
|
Conversion of Xylose into Furfural Catalyzed by Bifunctional Acidic Ionic Liquid Immobilized on the Surface of Magnetic γ-Al2O3. Catal Letters 2017. [DOI: 10.1007/s10562-017-1982-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|