1
|
Sugime H, D'Arsié L, Esconjauregui S, Zhong G, Wu X, Hildebrandt E, Sezen H, Amati M, Gregoratti L, Weatherup RS, Robertson J. Low temperature growth of fully covered single-layer graphene using a CoCu catalyst. NANOSCALE 2017; 9:14467-14475. [PMID: 28926077 DOI: 10.1039/c7nr02553j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A bimetallic CoCu alloy thin-film catalyst is developed that enables the growth of uniform, high-quality graphene at 750 °C in 3 min by chemical vapour deposition. The growth outcome is found to vary significantly as the Cu concentration is varied, with ∼1 at% Cu added to Co yielding complete coverage single-layer graphene growth for the conditions used. The suppression of multilayer formation is attributable to Cu decoration of high reactivity sites on the Co surface which otherwise serve as preferential nucleation sites for multilayer graphene. X-ray photoemission spectroscopy shows that Co and Cu form an alloy at high temperatures, which has a drastically lower carbon solubility, as determined by using the calculated Co-Cu-C ternary phase diagram. Raman spectroscopy confirms the high quality (ID/IG < 0.05) and spatial uniformity of the single-layer graphene. The rational design of a bimetallic catalyst highlights the potential of catalyst alloying for producing two-dimensional materials with tailored properties.
Collapse
Affiliation(s)
- Hisashi Sugime
- Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050, Japan. and Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Lorenzo D'Arsié
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | | | - Guofang Zhong
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Xingyi Wu
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Eugen Hildebrandt
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Hikmet Sezen
- Elettra-Sincrotrone Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149, Trieste, Italy
| | - Matteo Amati
- Elettra-Sincrotrone Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149, Trieste, Italy
| | - Luca Gregoratti
- Elettra-Sincrotrone Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149, Trieste, Italy
| | - Robert S Weatherup
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - John Robertson
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| |
Collapse
|
2
|
In- Situ RHEED Study on Graphene Growth During Chemical Vapor Deposition. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2016. [DOI: 10.1380/ejssnt.2016.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Son IH, Song HJ, Kwon S, Bachmatiuk A, Lee SJ, Benayad A, Park JH, Choi JY, Chang H, Rümmeli MH. CO2 enhanced chemical vapor deposition growth of few-layer graphene over NiO(x). ACS NANO 2014; 8:9224-32. [PMID: 25171048 DOI: 10.1021/nn504342e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The use of mild oxidants in chemical vapor deposition (CVD) reactions has proven enormously useful. This was also true for the CVD growth of carbon nanotubes. As yet though, the use of mild oxidants in the CVD of graphene has remained unexplored. Here we explore the use of CO2 as a mild oxidant during the growth of graphene over Ni with CH4 as the feedstock. Both our experimental and theoretical findings provide in-depth insight into the growth mechanisms and point to the mild oxidants playing multiple roles. Mild oxidants lead to the formation of a suboxide in the Ni, which suppresses the bulk diffusion of C species suggesting a surface growth mechanism. Moreover, the formation of a suboxide leads to enhanced catalytic activity at the substrate surface, which allows reduced synthesis temperatures, even as low as 700 °C. Even at these low temperatures, the quality of the graphene is exceedingly high as indicated by a negligible D mode in the Raman spectra. These findings suggest the use of mild oxidants in the CVD fabrication as a whole could have a positive impact.
Collapse
Affiliation(s)
- In Hyuk Son
- Samsung Advanced Institute of Technology, Samsung Electronics Company, LTD , 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shibuta Y, Arifin R, Shimamura K, Oguri T, Shimojo F, Yamaguchi S. Low reactivity of methane on copper surface during graphene synthesis via CVD process: Ab initio molecular dynamics simulation. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Frank O, Kavan L, Kalbac M. Carbon isotope labelling in graphene research. NANOSCALE 2014; 6:6363-6370. [PMID: 24817019 DOI: 10.1039/c4nr01257g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The large scale production of graphene for any potential application relies on catalytic chemical vapour deposition (CVD). Despite much effort put into the graphene CVD research, there are still many challenges to be solved, not only concerning the growth itself, but also the subsequent treatment, i.e. transfer from the catalyst to a desired substrate. The need for fast progress naturally necessitates easy-to-use, versatile and efficient characterization methods. This perspective reviews the recent advances and potential of probably the most prospective one--Raman spectroscopy in connection with carbon isotope labelling of the CVD grown graphene layers. We discuss its use for the explanation and optimization of the growth process, followed by examples of employing isotope engineering in the studies of fundamental properties of graphene, not only by Raman spectroscopy.
Collapse
Affiliation(s)
- O Frank
- J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i., Dolejskova 2155/3, CZ-18223 Prague 8, Czech Republic.
| | | | | |
Collapse
|