1
|
Muthalif MPA, Choe Y. Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells. J Colloid Interface Sci 2021; 595:15-24. [PMID: 33813220 DOI: 10.1016/j.jcis.2021.03.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022]
Abstract
High charge transfer resistance and low electrocatalytic activity of counter electrodes (CEs) are mainly responsible for the poor photovoltaic performance of quantum-dot-sensitized solar cells (QDSSCs). Herein, a novel strategy has been successfully introduced for the first time to improve the electrocatalytic activity and charge transfer properties of a copper sulfide (CuS) CE by modifying it with the addition of hydrohalic acids (HHA). Through the suitable surface modification of HHA-incorporated CuS CE, the charge transfer from the external circuit to the CE surface was effectively facilitated. The electrochemical analyses suggest that charge transfer resistance is sufficiently reduced at the CE/electrolyte interface by using the HHA-treated CuS CEs. This improvement is mainly attributed to the high electrocatalytic activity of the modified CEs for the reduction of the polysulfide redox couple electrolyte in QDSSCs. The device constructed with TiO2/CdS/CdSe/ZnS photoanodes and the hydrogen-fluoride-treated CuS (HFCuS) CE exhibits a power conversion efficiency of 4.25%, which is considerably higher than that of the device with the bare CuS CE (3.11%). These findings can facilitate the fabrication of highly efficient CEs for next-generation solar cells.
Collapse
Affiliation(s)
- Mohammed Panthakkal Abdul Muthalif
- Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-gu, Jangjeong-Dong, Busan 46241, South Korea
| | - Youngson Choe
- Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-gu, Jangjeong-Dong, Busan 46241, South Korea.
| |
Collapse
|
2
|
Givalou L, Tsichlis D, Zhang F, Karagianni CS, Terrones M, Kordatos K, Falaras P. Transition metal – Graphene oxide nanohybrid materials as counter electrodes for high efficiency quantum dot solar cells. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Lin Y, Song H, Rao H, Du Z, Pan Z, Zhong X. MOF-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells. J Phys Chem Lett 2019; 10:4974-4979. [PMID: 31411029 DOI: 10.1021/acs.jpclett.9b02082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon supported on titanium mesh electrodes has been recognized as the best performing counter electrodes (CEs) in quantum dot sensitized solar cells (QDSCs). Herein, layered double hydroxides (LDHs) are applied as a scaffold template for the growth of cobalt-zeolite-imidazole framework (ZIF-67) crystals, and micrometer-sized Co,N codoped porous carbon materials (Co,N-C) are obtained through a carbonization process. The as-prepared Co,N-C exhibits favorable features for electrocatalytic reduction of polysulfide, including a high surface area of 491.36 m2/g, highly effective active sites, and a hierarchical micro/mesoporous structure. Due to the large particle size, the obtained Co,N-C can couple with a Ti mesh substrate for the fabrication of high-performance Co,N-C/Ti CEs for QDSCs. As a result, the corresponding QDSCs exhibit an average efficiency of 13.55% (Jsc = 25.93 mA/cm2, Voc = 0.778 V, FF = 0.672), which is a 10.5% enhancement compared to the previous best result from the N-doped mesoporous carbon counterpart.
Collapse
Affiliation(s)
- Yu Lin
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, Guangdong, China
| | - Han Song
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, Guangdong, China
| | - Huashang Rao
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, Guangdong, China
| | - Zhonglin Du
- College of Materials Science and Engineering, the National Base of International Science and Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, Shandong, China
| | - Zhenxiao Pan
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, Guangdong, China
| | - Xinhua Zhong
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, Guangdong, China
| |
Collapse
|
4
|
Cuprous Sulfide@Carbon nanostructures based counter electrodes with cadmium sulfide/titania photoanode for liquid junction solar cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X. Quantum dot-sensitized solar cells. Chem Soc Rev 2018; 47:7659-7702. [DOI: 10.1039/c8cs00431e] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive overview of the development of quantum dot-sensitized solar cells (QDSCs) is presented.
Collapse
Affiliation(s)
- Zhenxiao Pan
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Huashang Rao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Juan Bisquert
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Xinhua Zhong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
6
|
Wang H, Wu D, Cao K, Wang F, Gao Z, Xu F, Jiang K. Co(SxSe1-x)2 Nanorods Arrays with Rhombus Cross-section Exhibiting High Catalytic Activity for Quantum dot Sensitized Solar Cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Muralee Gopi CVV, Ravi S, Rao SS, Eswar Reddy A, Kim HJ. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci Rep 2017; 7:46519. [PMID: 28422182 PMCID: PMC5395955 DOI: 10.1038/srep46519] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 12/22/2022] Open
Abstract
Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg-1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.
Collapse
Affiliation(s)
- Chandu V. V. Muralee Gopi
- School of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, South Korea
| | - Seenu Ravi
- Department of Chemical Engineering, Inha University, Incheon, 22212, South Korea
| | - S. Srinivasa Rao
- School of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, South Korea
| | - Araveeti Eswar Reddy
- School of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, South Korea
| | - Hee-Je Kim
- School of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, South Korea
| |
Collapse
|
8
|
Jiao S, Du J, Du Z, Long D, Jiang W, Pan Z, Li Y, Zhong X. Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12. J Phys Chem Lett 2017; 8:559-564. [PMID: 28075601 DOI: 10.1021/acs.jpclett.6b02864] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The exploration of catalyst materials for counter electrodes (CEs) in quantum dot sensitized solar cells (QDSCs) that have both high electrocatalytic activity and low charge transfer resistance is always significant yet challenging. In this work, we report the incorporation of nitrogen heteroatoms into carbon lattices leading to nitrogen-doped mesoporous carbon (N-MC) materials with superior catalytic activity when used as CEs in Zn-Cu-In-Se QDSCs. A series of N-MC materials with different nitrogen contents were synthesized by a colloidal silica nanocasting method. Electrochemical measurements revealed that the N-MC with a nitrogen content of 8.58 wt % exhibited the strongest activity in catalyzing the reduction of a polysulfide redox couple (Sn2-/S2-), and therefore, the corresponding QDSC device showed the best photovoltaic performance with an average power conversion efficiency (PCE) of 12.23% and a certified PCE of 12.07% under one full sun illumination, which is a new PCE record for quantum dot based solar cells.
Collapse
Affiliation(s)
- Shuang Jiao
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Jun Du
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Zhonglin Du
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Donghui Long
- School of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Wuyou Jiang
- School of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Zhenxiao Pan
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Yan Li
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Xinhua Zhong
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, China
- College of Materials and Energy, South China Agricultural University , 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
9
|
Kumar PN, Kolay A, Kumar SK, Patra P, Aphale A, Srivastava AK, Deepa M. Counter Electrode Impact on Quantum Dot Solar Cell Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27688-27700. [PMID: 27700023 DOI: 10.1021/acsami.6b08921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The counter electrode (CE), despite being as relevant as the photoanode in a quantum dot solar cell (QDSC), has hardly received the scientific attention it deserves. In this study, nine CEs (single-walled carbon nanotubes (SWCNTs), tungsten oxide (WO3), poly(3,4-ethylenedioxythiophene) (PEDOT), copper sulfide (Cu2S), candle soot, functionalized multiwalled carbon nanotubes (F-MWCNTs), reduced tungsten oxide (WO3-x), carbon fabric (C-Fabric), and C-Fabric/WO3-x) were prepared by using low-cost components and facile procedures. QDSCs were fabricated with a TiO2/CdS film which served as a common photoanode for all CEs. The power conversion efficiencies (PCEs) were 2.02, 2.1, 2.79, 2.88, 2.95, 3.78, 3.66, 3.96, and 4.6%, respectively, and the incident photon to current conversion efficiency response was also found to complement the PCE response. Among all CEs employed here, C-Fabric/WO3-x outperforms all the other CEs, for the synergy between C-Fabric and WO3-x comes to the fore during cell operation. The low sheet resistance of C-Fabric and its high surface area due to the meshlike morphology enables high WO3-x loading during electrodeposition, and the good electrocatalytic activity of WO3-x, the very low overpotential, and its high electrical conductivity that facilitate electron transfer to the electrolyte are responsible for the superior PCE. WO3-based electrodes have not been used until date in QDSCs; the ease of fabrication of WO3 films and their good chemical stability and scalability also favor their application to QDSCs. Futuristic possibilities for other novel composite CEs are also discussed. We anticipate this study to be useful for a well-rounded development of high-performance QDSCs.
Collapse
Affiliation(s)
- P Naresh Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| | - Ankita Kolay
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| | - S Krishna Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| | | | | | | | - Melepurath Deepa
- Department of Chemistry, Indian Institute of Technology Hyderabad , Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
10
|
Du Z, Pan Z, Fabregat-Santiago F, Zhao K, Long D, Zhang H, Zhao Y, Zhong X, Yu JS, Bisquert J. Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. J Phys Chem Lett 2016; 7:3103-3111. [PMID: 27455143 DOI: 10.1021/acs.jpclett.6b01356] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mean power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs) is mainly limited by the low photovoltage and fill factor (FF), which are derived from the high redox potential of polysulfide electrolyte and the poor catalytic activity of the counter electrode (CE), respectively. Herein, we report that this problem is overcome by adopting Ti mesh supported mesoporous carbon (MC/Ti) CE. The confined area in Ti mesh substrate not only offers robust carbon film with submillimeter thickness to ensure high catalytic capacity, but also provides an efficient three-dimension electrical tunnel with better conductivity than state-of-art Cu2S/FTO CE. More importantly, the MC/Ti CE can down shift the redox potential of polysulfide electrolyte to promote high photovoltage. In all, MC/Ti CEs boost PCE of CdSe0.65Te0.35 QDSCs to a certified record of 11.16% (Jsc = 20.68 mA/cm(2), Voc = 0.798 V, FF = 0.677), an improvement of 24% related to previous record. This work thus paves a way for further improvement of performance of QDSCs.
Collapse
Affiliation(s)
- Zhonglin Du
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology , 200237 Shanghai, China
| | - Zhenxiao Pan
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology , 200237 Shanghai, China
| | | | - Ke Zhao
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology , 200237 Shanghai, China
| | - Donghui Long
- School of Chemical Engineering, East China University of Science and Technology , 200237 Shanghai, China
| | - Hua Zhang
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology , 200237 Shanghai, China
| | - Yixin Zhao
- School of Environmental Engineering, Shanghai Jiaotong University , 200240 Shanghai, China
| | - Xinhua Zhong
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology , 200237 Shanghai, China
| | - Jong-Sung Yu
- Department of Energy Systems Engineering, DGIST , 42988 Daegu, Republic of Korea
| | - Juan Bisquert
- Institute of Advanced Materials (INAM), Universitat Jaume I , 12006 Castelló, Spain
- Department of Chemistry, King Abdulaziz University , Jeddah, Saudi Arabia
| |
Collapse
|
11
|
A new probe into thin copper sulfide counter electrode with thickness below 100 nm for quantum dot-sensitized solar cells. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Milan R, Hassan M, Selopal GS, Borgese L, Natile MM, Depero LE, Sberveglieri G, Concina I. A Player Often Neglected: Electrochemical Comprehensive Analysis of Counter Electrodes for Quantum Dot Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7766-7776. [PMID: 26955853 DOI: 10.1021/acsami.5b11508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The role played by the counter electrode (CE) in quantum dot sensitized solar cells (QDSSCs) is crucial: it is indeed responsible for catalyzing the regeneration of the redox electrolyte after its action to take back the oxidized light harvesters to the ground state, thus keeping the device active and stable. The activity of CE is moreover directly related to the fill factor and short circuit current through the resistance of the interface electrode-electrolyte that affects the series resistance of the cell. Despite that, too few efforts have been devoted to a comprehensive analysis of this important device component. In this work we combine an extensive electrochemical characterization of the most common materials exploited as CEs in QDSSCs (namely, Pt, Au, Cu2S obtained by brass treatment, and Cu2S deposited on conducting glass via spray) with a detailed characterization of their surface composition and morphology, aimed at systematically defining the relationship between their nature and electrocatalytic activity.
Collapse
Affiliation(s)
- Riccardo Milan
- Department of Information Engineering, University of Brescia , Via Valotti 9, 25131 Brescia, Italy
- SENSOR Laboratory, CNR-INO , Via Branze 45, 25123 Brescia, Italy
| | - Mehwish Hassan
- Chemistry for Technologies Laboratory Dipartimento di Ingegneria Meccanica e Industriale, INSTM and University of Brescia , Via Branze 38, 25123 Brescia, Italy
| | - Gurpreet Singh Selopal
- Department of Information Engineering, University of Brescia , Via Valotti 9, 25131 Brescia, Italy
- SENSOR Laboratory, CNR-INO , Via Branze 45, 25123 Brescia, Italy
| | - Laura Borgese
- Chemistry for Technologies Laboratory Dipartimento di Ingegneria Meccanica e Industriale, INSTM and University of Brescia , Via Branze 38, 25123 Brescia, Italy
| | - Marta Maria Natile
- Istituto per l'Energetica e le Interfasi, Dipartimento di Scienze Chimiche, CNR and Università di Padova , Via Marzolo 1, 35131 Padova, Italy
| | - Laura E Depero
- Chemistry for Technologies Laboratory Dipartimento di Ingegneria Meccanica e Industriale, INSTM and University of Brescia , Via Branze 38, 25123 Brescia, Italy
| | - Giorgio Sberveglieri
- Department of Information Engineering, University of Brescia , Via Valotti 9, 25131 Brescia, Italy
- SENSOR Laboratory, CNR-INO , Via Branze 45, 25123 Brescia, Italy
| | - Isabella Concina
- Department of Information Engineering, University of Brescia , Via Valotti 9, 25131 Brescia, Italy
- SENSOR Laboratory, CNR-INO , Via Branze 45, 25123 Brescia, Italy
- Luleå University of Technology , 971 98 Luleå, Sweden
| |
Collapse
|
13
|
Chen SL, Tao J, Tao HJ, Shen YZ, Xu AC, Cao FX, Jiang JJ, Wang T, Pan L. Rounded Cu2ZnSnS4 nanosheet networks as a cost-effective counter electrode for high-efficiency dye-sensitized solar cells. Dalton Trans 2016; 45:4513-7. [PMID: 26898462 DOI: 10.1039/c5dt04690d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Semi-transparent rounded Cu2ZnSnS4 (CZTS) nanosheet networks were in situ grown on a FTO glass substrate, via an effective solution method, without any post-treatments. An improved power conversion efficiency of 6.24% was obtained by applying CZTS nanosheet networks as a counter electrode for dye-sensitized solar cells. When assisted by a mirror reflection, the PCE increased to 7.12%.
Collapse
Affiliation(s)
- Shan-Long Chen
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P R China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang W, Zeng X, Wang H, Fang R, Xu Y, Zhang Y, Chen W. High-yield synthesis of “oriented attachment” TiO2 nanorods as superior building blocks of photoanodes in quantum dot sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra04209k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, a high-yield hydrothermal synthesis of “oriented attachment” TiO2 nanorods (TiO2-NRs) and their application as a superior photoanode material in a quantum-dot (QD) sensitized solar cell have been reported.
Collapse
Affiliation(s)
- Wenjun Zhang
- Michael Grätzel Centre for Mesoscopic Solar Cells
- Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Xianwei Zeng
- Michael Grätzel Centre for Mesoscopic Solar Cells
- Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Huan Wang
- Michael Grätzel Centre for Mesoscopic Solar Cells
- Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Rui Fang
- Michael Grätzel Centre for Mesoscopic Solar Cells
- Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yao Xu
- Michael Grätzel Centre for Mesoscopic Solar Cells
- Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yanjun Zhang
- Michael Grätzel Centre for Mesoscopic Solar Cells
- Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Wei Chen
- Michael Grätzel Centre for Mesoscopic Solar Cells
- Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
15
|
Wang S, Tian J. Recent advances in counter electrodes of quantum dot-sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra19226b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recent progress in the development of counter electrodes (CEs) is reviewed, and the key issues for the materials, structures and performance evaluation of CEs are also addressed.
Collapse
Affiliation(s)
- Shixun Wang
- Institute of Advanced Materials Technology
- University of Science and Technology Beijing
- Beijing
- China
| | - Jianjun Tian
- Institute of Advanced Materials Technology
- University of Science and Technology Beijing
- Beijing
- China
| |
Collapse
|
16
|
|
17
|
Kim CS, Choi SH, Bang JH. New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22078-87. [PMID: 25423356 DOI: 10.1021/am505473d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite recent significant strides in understanding various processes in quantum dot-sensitized solar cells (QDSSCs), little is known about the intrinsic electrocatalytic properties of copper sulfides that are the most commonly employed electrocatalysts for the counter electrode of QDSSCs. Given that the physical properties of copper sulfides are governed by their stoichiometry, the electrocatalytic activity of copper sulfides toward polysulfide reduction may also be dictated by their compositions. Using a new, simple approach to prepare robust copper sulfide films based on chemical bath deposition (CBD), we were able to delicately control the compositions of copper sulfides, which allowed us to perform a systematic investigation to gain new insight into copper sulfide-based electrocatalysts. The electrocatalytic activity is indeed dependent on the compositions of copper sulfides: Cu-deficient films (CuS and Cu1.12S) are superior to Cu-rich films (Cu1.75S and Cu1.8S) in their electrocatalytic activity. In addition, the stability of the Cu-deficient electrocatalysts is substantially better than that of the Cu-rich counterparts.
Collapse
Affiliation(s)
- Chung Soo Kim
- Department of Bionanotechnology and §Department of Chemistry and Applied Chemistry, Hanyang University , Ansan, Kyeonggi-do 426-791, Republic of Korea
| | | | | |
Collapse
|
18
|
Yun S, Hagfeldt A, Ma T. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6210-37. [PMID: 25080873 DOI: 10.1002/adma.201402056] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Indexed: 05/24/2023]
Abstract
Dye-sensitized solar cells (DSSCs) have attracted widespread attention in recent years as potential cost-effective alternatives to silicon-based and thin-film solar cells. Within typical DSSCs, the counter electrode (CE) is vital to collect electrons from the external circuit and catalyze the I3- reduction in the electrolyte. Careful design of the CEs can improve the catalytic activity and chemical stability associated with the liquid redox electrolyte used in most cells. In this Progress Report, advances made by our groups in the development of CEs for DSSCs are reviewed, highlighting important contributions that promise low-cost, efficient, and robust DSSC systems. Specifically, we focus on the design of novel Pt-free CE catalytic materials, including design ideas, fabrication approaches, characterization techniques, first-principle density functional theory (DFT) calculations, ab-initio Car-Parrinello molecular dynamics (CPMD) simulations, and stability evaluations, that serve as practical alternatives to conventional noble metal Pt electrodes. We stress the merits and demerits of well-designed Pt-free CEs, such as carbon materials, conductive polymers, transition metal compounds (TMCs) and their corresponding hybrids. Also, the prospects and challenges of alternative Pt catalysts for their applications in new-type DSSCs and other catalytic fields are discussed.
Collapse
Affiliation(s)
- Sining Yun
- School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi, 710055, P.R. China
| | | | | |
Collapse
|
19
|
Xu J, Chen Z, Zapien JA, Lee CS, Zhang W. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5337-67. [PMID: 24817111 DOI: 10.1002/adma.201400403] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/07/2014] [Indexed: 05/26/2023]
Abstract
Semiconductor-sensitized solar cells (SSCs) are emerging as promising devices for achieving efficient and low-cost solar-energy conversion. The recent progress in the development of ZnO-nanostructure-based SSCs is reviewed here, and the key issues for their efficiency improvement, such as enhancing light harvesting and increasing carrier generation, separation, and collection, are highlighted from aspects of surface-engineering techniques. The impact of other factors such as electrolyte and counter electrodes on the photovoltaic performance is also addressed. The current challenges and perspectives for the further advance of ZnO-based SSCs are discussed.
Collapse
Affiliation(s)
- Jun Xu
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P. R. China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P. R. China; School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, 230009, P. R. China
| | | | | | | | | |
Collapse
|
20
|
Ganapathy V, Kong EH, Park YC, Jang HM, Rhee SW. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells. NANOSCALE 2014; 6:3296-3301. [PMID: 24509529 DOI: 10.1039/c3nr05705d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).
Collapse
Affiliation(s)
- Veerappan Ganapathy
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | | | |
Collapse
|
21
|
Choi HM, Ji IA, Bang JH. Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu(1.8)Se and PbSe. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2335-2343. [PMID: 24490774 DOI: 10.1021/am404355m] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The development of a Pt-free, highly active electrocatalyst for a counter electrode (CE) is vital to the construction of highly efficient quantum dot-sensitized solar cells (QDSSCs). As an alternative to Pt, the use of various metal sulfides, such as Cu2S, CoS, and PbS, has been successfully demonstrated; however, the studies on the utilization of non-sulfide materials have been scarcely reported. In this regard, we examined eight different types of binary metal selenides as new candidate materials, and found that the electrocatalytic activity of Cu1.8Se and PbSe toward polysulfide reduction was superior to that of Pt. In depth investigation into these two materials further revealed that, while the electrocatalytic activity of both metal selenides surpasses that of Pt, the long-term utilization of the PbSe CE is hindered by the formation of PbO on the surface of PbSe, which is attributed to the instability of PbSe under air. Unlike PbSe, Cu1.8Se was found to be chemically stable with a polysulfide electrolyte and was even better than Cu2S, a commonly used CE material for QDSSCs. Using the Cu1.8Se CE, we obtained a power conversion efficiency of 5.0% for CdS/CdSe-sensitized solar cells, which was an efficiency almost twice that obtained from Pt CE. This work provides a new application for metal selenides, which have been traditionally utilized as sensitizers for QDSSCs.
Collapse
Affiliation(s)
- Hye Mi Choi
- Department of Bionanotechnology and ‡Department of Chemistry and Applied Chemistry, Hanyang University , 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Kyeonggi-do 426-791, Republic of Korea
| | | | | |
Collapse
|