• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643607)   Today's Articles (624)   Subscriber (50553)
For: Zeng X, Xiong D, Zhang W, Ming L, Xu Z, Huang Z, Wang M, Chen W, Cheng YB. Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. Nanoscale 2013;5:6992-6998. [PMID: 23800939 DOI: 10.1039/c3nr01564e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Number Cited by Other Article(s)
1
Muthalif MPA, Choe Y. Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells. J Colloid Interface Sci 2021;595:15-24. [PMID: 33813220 DOI: 10.1016/j.jcis.2021.03.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022]
2
Givalou L, Tsichlis D, Zhang F, Karagianni CS, Terrones M, Kordatos K, Falaras P. Transition metal – Graphene oxide nanohybrid materials as counter electrodes for high efficiency quantum dot solar cells. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
3
Lin Y, Song H, Rao H, Du Z, Pan Z, Zhong X. MOF-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells. J Phys Chem Lett 2019;10:4974-4979. [PMID: 31411029 DOI: 10.1021/acs.jpclett.9b02082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
4
Cuprous Sulfide@Carbon nanostructures based counter electrodes with cadmium sulfide/titania photoanode for liquid junction solar cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
5
Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X. Quantum dot-sensitized solar cells. Chem Soc Rev 2018;47:7659-7702. [DOI: 10.1039/c8cs00431e] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
6
Wang H, Wu D, Cao K, Wang F, Gao Z, Xu F, Jiang K. Co(SxSe1-x)2 Nanorods Arrays with Rhombus Cross-section Exhibiting High Catalytic Activity for Quantum dot Sensitized Solar Cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
7
Muralee Gopi CVV, Ravi S, Rao SS, Eswar Reddy A, Kim HJ. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci Rep 2017;7:46519. [PMID: 28422182 PMCID: PMC5395955 DOI: 10.1038/srep46519] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 12/22/2022]  Open
8
Jiao S, Du J, Du Z, Long D, Jiang W, Pan Z, Li Y, Zhong X. Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12. J Phys Chem Lett 2017;8:559-564. [PMID: 28075601 DOI: 10.1021/acs.jpclett.6b02864] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
9
Kumar PN, Kolay A, Kumar SK, Patra P, Aphale A, Srivastava AK, Deepa M. Counter Electrode Impact on Quantum Dot Solar Cell Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2016;8:27688-27700. [PMID: 27700023 DOI: 10.1021/acsami.6b08921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
10
Du Z, Pan Z, Fabregat-Santiago F, Zhao K, Long D, Zhang H, Zhao Y, Zhong X, Yu JS, Bisquert J. Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. J Phys Chem Lett 2016;7:3103-3111. [PMID: 27455143 DOI: 10.1021/acs.jpclett.6b01356] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
11
A new probe into thin copper sulfide counter electrode with thickness below 100 nm for quantum dot-sensitized solar cells. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
12
Milan R, Hassan M, Selopal GS, Borgese L, Natile MM, Depero LE, Sberveglieri G, Concina I. A Player Often Neglected: Electrochemical Comprehensive Analysis of Counter Electrodes for Quantum Dot Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2016;8:7766-7776. [PMID: 26955853 DOI: 10.1021/acsami.5b11508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
13
Chen SL, Tao J, Tao HJ, Shen YZ, Xu AC, Cao FX, Jiang JJ, Wang T, Pan L. Rounded Cu2ZnSnS4 nanosheet networks as a cost-effective counter electrode for high-efficiency dye-sensitized solar cells. Dalton Trans 2016;45:4513-7. [PMID: 26898462 DOI: 10.1039/c5dt04690d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
14
Zhang W, Zeng X, Wang H, Fang R, Xu Y, Zhang Y, Chen W. High-yield synthesis of “oriented attachment” TiO2 nanorods as superior building blocks of photoanodes in quantum dot sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra04209k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
15
Wang S, Tian J. Recent advances in counter electrodes of quantum dot-sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra19226b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
16
Hwang I, Yong K. Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ChemElectroChem 2015. [DOI: 10.1002/celc.201402405] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
17
Kim CS, Choi SH, Bang JH. New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells: composition-dependent electrocatalytic activity and stability. ACS APPLIED MATERIALS & INTERFACES 2014;6:22078-87. [PMID: 25423356 DOI: 10.1021/am505473d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
18
Yun S, Hagfeldt A, Ma T. Pt-free counter electrode for dye-sensitized solar cells with high efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014;26:6210-37. [PMID: 25080873 DOI: 10.1002/adma.201402056] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Indexed: 05/24/2023]
19
Xu J, Chen Z, Zapien JA, Lee CS, Zhang W. Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014;26:5337-67. [PMID: 24817111 DOI: 10.1002/adma.201400403] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/07/2014] [Indexed: 05/26/2023]
20
Ganapathy V, Kong EH, Park YC, Jang HM, Rhee SW. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells. NANOSCALE 2014;6:3296-3301. [PMID: 24509529 DOI: 10.1039/c3nr05705d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
21
Choi HM, Ji IA, Bang JH. Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu(1.8)Se and PbSe. ACS APPLIED MATERIALS & INTERFACES 2014;6:2335-2343. [PMID: 24490774 DOI: 10.1021/am404355m] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA