1
|
Microbial-enabled green biosynthesis of nanomaterials: Current status and future prospects. Biotechnol Adv 2022; 55:107914. [DOI: 10.1016/j.biotechadv.2022.107914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
2
|
Yuan J, Cao J, Yu F, Ma J, Zhang D, Tang Y, Zheng J. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities. J Mater Chem B 2021; 9:6491-6506. [PMID: 34296734 DOI: 10.1039/d1tb01000j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomanufacturing metal/metallic nanomaterials with ordered micro/nanostructures and controllable functions is of great importance in both fundamental studies and practical applications due to their low toxicity, lower pollution production, and energy conservation. Microorganisms, as efficient biofactories, have a significant ability to biomineralize and bioreduce metal ions that can be obtained as nanocrystals of varying morphologies and sizes. The development of nanoparticle biosynthesis maximizes the safety and sustainability of the nanoparticle preparation. Significant efforts and progress have been made to develop new green and environmentally friendly methods for biocompatible metal/metallic nanomaterials. In this review, we mainly focus on the microbial biomanufacture of different metal/metallic nanomaterials due to their unique advantages of wide availability, environmental acceptability, low cost, and circular sustainability. Specifically, we summarize recent and important advances in the synthesis strategies and mechanisms for different types of metal/metallic nanomaterials using different microorganisms. Finally, we highlight the current challenges and future research directions in this growing multidisciplinary field of biomaterials science, nanoscience, and nanobiotechnology.
Collapse
Affiliation(s)
- Jianhua Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Chen H, Zhou Z, Chen W, Xiang Z, Nie H, Yu W. Construction of stable bio-Pd catalysts for environmental pollutant remediation. RSC Adv 2021; 11:36174-36180. [PMID: 35492763 PMCID: PMC9043477 DOI: 10.1039/d1ra06465g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
It has been reported that Pd nanoparticles were a little weak to bind to the dried microbial (yeast) surface, leading to the poor stability of the bio-supported catalysts. The objectives of the study are to construct stable Pd nanocatalysts supported on the dried yeast surface with the help of a tiny amount (<0.1 wt%) of reduced graphene oxide (Pd/yeast/rGO) and apply the catalysts in environmental pollutant remediation. The characterizations of the as-obtained Pd/yeast/rGO catalysts showed that reduced GO could cover Pd/yeast materials and prepare 15–21 nm Pd nanoparticles under acid and base media. The catalytic performance of the Pd/yeast/rGO catalyst was compared with that of control Pd/yeast catalysts without GO. The results revealed the kinetic constant Kapp in the reduction of 4-nitrophenol of Pd/yeast/rGO catalysts could reach 3.6 × 10−2 s−1 without stirring during the reaction, which was 2.4 times higher than that of Pd/yeast catalysts, and the Pd/yeast/rGO catalysts kept a good stability even after being reused in seven cycles. Furthermore, the catalysts also showed quite good catalytic activities on CO oxidation and decolorization of dye methylene blue (MB). Thus, Pd/yeast/rGO catalysts were proven to be highly active and stable for environmental remediation and have the advantage that they can prevent the loss of noble metals and be prepared conveniently from discarded microorganisms. Stable bio-supported Pd/yeast/rGO catalysts were prepared by covering with a tiny amount (<0.1 wt%) of GO based on a non-enzyme reduction method.![]()
Collapse
Affiliation(s)
- Huimei Chen
- Zhejiang Pharmaceutical College, Ningbo 315503, PR China
| | - Ziniu Zhou
- Zhejiang Pharmaceutical College, Ningbo 315503, PR China
| | - Wei Chen
- Zhejiang Pharmaceutical College, Ningbo 315503, PR China
| | - Ziwei Xiang
- Zhejiang Pharmaceutical College, Ningbo 315503, PR China
| | - Haiyan Nie
- Zhejiang Pharmaceutical College, Ningbo 315503, PR China
| | - Weiguo Yu
- Zhejiang Pharmaceutical College, Ningbo 315503, PR China
| |
Collapse
|
4
|
Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nat Rev Chem 2020; 4:638-656. [PMID: 37127973 DOI: 10.1038/s41570-020-00221-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Inorganic nanomaterials are widely used in chemical, electronics, photonics, energy and medical industries. Preparing a nanomaterial (NM) typically requires physical and/or chemical methods that involve harsh and environmentally hazardous conditions. Recently, wild-type and genetically engineered microorganisms have been harnessed for the biosynthesis of inorganic NMs under mild and environmentally friendly conditions. Microorganisms such as microalgae, fungi and bacteria, as well as bacteriophages, can be used as biofactories to produce single-element and multi-element inorganic NMs. This Review describes the emerging area of inorganic NM biosynthesis, emphasizing the mechanisms of inorganic-ion reduction and detoxification, while also highlighting the proteins and peptides involved. We show how analysing a Pourbaix diagram can help us devise strategies for the predictive biosynthesis of NMs with high producibility and crystallinity and also describe how to control the size and morphology of the product. Here, we survey biosynthetic inorganic NMs of 55 elements and their applications in catalysis, energy harvesting and storage, electronics, antimicrobials and biomedical therapy. Furthermore, a step-by-step flow chart is presented to aid the design and biosynthesis of inorganic NMs employing microbial cells. Future research in this area will add to the diversity of available inorganic NMs but should also address scalability and purity.
Collapse
|
5
|
Yuanfeng P, Ruiyi L, Xiulan S, Guangli W, Zaijun L. Highly sensitive electrochemical detection of circulating tumor DNA in human blood based on urchin-like gold nanocrystal-multiple graphene aerogel and target DNA-induced recycling double amplification strategy. Anal Chim Acta 2020; 1121:17-25. [DOI: 10.1016/j.aca.2020.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
|
6
|
Regulacio MD, Yang DP, Ye E. Toward greener methods of producing branched metal nanostructures. CrystEngComm 2020. [DOI: 10.1039/c9ce01561b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review highlights the use of biogenic resources (i.e., plant extracts, microorganisms, and biomolecules) as green reagents for the production of technologically promising branched metal nanomaterials.
Collapse
Affiliation(s)
- Michelle D. Regulacio
- Institute of Chemistry
- University of the Philippines Diliman
- Quezon City 1101
- Philippines
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- PR China
| | - Enyi Ye
- Institute of Materials Research and Engineering
- Agency for Science, Technology and Research (A*STAR)
- Singapore
| |
Collapse
|
7
|
Yao K, Huang Q, Lu W, Xu A, Li X, Zhang H, Wang J. A facile synthesis of gold micro/nanostructures at the interface of 1,3-dibutylimidazolium bis(trifluoromethylsulfonyl)imide and water. J Colloid Interface Sci 2016; 480:30-38. [DOI: 10.1016/j.jcis.2016.06.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
|
8
|
Odoom-Wubah T, Du M, Osei WB, Sun D, Huang J, Li Q. Facile synthesis of porous Pd nanoflowers with excellent catalytic activity towards CO oxidation. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Huang J, Lin L, Sun D, Chen H, Yang D, Li Q. Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 2015; 44:6330-74. [PMID: 26083903 DOI: 10.1039/c5cs00133a] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This critical review focuses on recent advances in the bio-inspired synthesis of metal nanomaterials (MNMs) using microorganisms, viruses, plants, proteins and DNA molecules as well as their applications in various fields. Prospects in the design of bio-inspired MNMs for novel applications are also discussed.
Collapse
Affiliation(s)
- Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and National Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Xiamen University, Xiamen, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Facile fabrication of Pd nanoparticle/ Pichia pastoris catalysts through adsorption–reduction method: A study into effect of chemical pretreatment. J Colloid Interface Sci 2014; 433:204-210. [DOI: 10.1016/j.jcis.2014.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 01/26/2023]
|
11
|
Yang H, Lin L, Odoom-Wubah T, Huang D, Sun D, Huang J, Li Q. Microorganism-mediated, CTAB-directed aggregation of Au nanostructures around Escherichia coli cells: Towards enhanced Au recovery through coordination of cell-CTAB–ascorbic acid. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M. Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 2014. [DOI: 10.1039/c4ra07903e] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbial biotemplates for synthesizing inorganic nanostructures of defined morphology and size.
Collapse
Affiliation(s)
- R. Selvakumar
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004, India
| | - N. Seethalakshmi
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004, India
| | - P. Thavamani
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| |
Collapse
|
13
|
Chen H, Sun D, Jiang X, Jing X, Lu F, Odoom-Wubah T, Zheng Y, Huang J, Li Q. Fabrication of Au/Pd alloy nanoparticle/Pichia pastoris composites: a microorganism-mediated approach. RSC Adv 2013. [DOI: 10.1039/c3ra41215f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
14
|
Liu Q, Zhang T, Yu L, Jia N, Yang DP. 3D nanoporous Ag@BSA composite microspheres as hydrogen peroxide sensors. Analyst 2013; 138:5559-62. [DOI: 10.1039/c3an00533j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|