1
|
Wu ZP, Shan S, Zang SQ, Zhong CJ. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies. Acc Chem Res 2020; 53:2913-2924. [PMID: 33170638 DOI: 10.1021/acs.accounts.0c00564] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ConspectusMultimetallic nanomaterials containing noble metals (NM) and non-noble 3d-transition metals (3d-TMs) exhibit unique catalytic properties as a result of the synergistic combination of NMs and 3d-TMs in the nanostructure. The exploration of such a synergy depends heavily on the understanding of the atomic-scale structural details of NMs and 3d-TMs in the nanomaterials. This has attracted a great deal of recent interest in the field of catalysis science, especially concerning the core-shell and alloy nanostructures. A rarely asked question of fundamental significance is how the core-shell and alloy structural arrangements of atoms in the multimetallic nanomaterials dynamically change under reaction conditions, including reaction temperature, surface adsorbate, chemical environment, applied electrochemical potential, etc. The dynamic evolution of the core-shell/alloy structures under the reaction conditions plays a crucial role in the catalytic performance of the multimetallic nanocatalysts.This Account focuses on the dynamic structure characteristics for several different types of composition-tunable alloy and core-shell nanomaterials, including phase-segregated, elemental-enriched, dynamically evolved, and structurally different core-shell structures. In addition to outlining core-shell/alloy structure formation via processes such as seed-mediated growth, thermochemical calcination, adsorbate-induced evolution, chemical dealloying, underpotential deposition/galvanic displacement, etc., this Account will highlight the progress in understanding the dynamic core-shell/alloy structures under chemical or catalytic reaction conditions, which has become an important focal point of the research fronts in catalysis and electrocatalysis. The employment of advanced techniques, especially in situ/operando synchrotron high-energy X-ray diffraction and pair distribution function analyses, has provided significant insights into the dynamic evolution processes of NM/3d-TM nanocatalysts under electrocatalytic or fuel cell operating conditions. Examples will highlight Pt- or Pd-based nanoparticles and nanowires alloyed with various 3d-TMs with a focus on their structural evolution under reaction conditions. While the dynamic process is complex, the ability to gain an insight into the evolution of core-shell and alloy structures under the catalytic reaction condition is essential for advancing the design of multimetallic nanocatalysts. This Account serves as a springboard from fundamental understanding of the core-shell and alloy structural dynamics to the various applications of nanostructured catalysts/electrocatalysts, especially in the fronts of energy and environmental sustainability.
Collapse
Affiliation(s)
- Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shuang-Quan Zang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
2
|
Liang Y, Liu Y, Deng J, Zhang K, Hou Z, Zhao X, Zhang X, Zhang K, Wei R, Dai H. Coupled Palladium-Tungsten Bimetallic Nanosheets/TiO 2 Hybrids with Enhanced Catalytic Activity and Stability for the Oxidative Removal of Benzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5926-5935. [PMID: 31035751 DOI: 10.1021/acs.est.9b00370] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since the conventional Pd-based catalysts often suffer severe deactivation by water, development of a catalyst with good activity and moisture-resistance ability is of importance in effectively controlling emissions of volatile organic compounds (VOCs). Herein, we report the efficient synthesis of ultrathin palladium-tungsten bimetallic nanosheets with exceptionally high dispersion of tungsten species. The supported catalyst (TiO2/PdW) shows good performance for benzene oxidation, and 90% conversion is achieved at a temperature of 200 °C and a space velocity of 40 000 mL g-1 h-1. The TiO2/PdW catalyst also exhibits better water-tolerant ability than the traditional Pd/TiO2 catalyst. The high catalytic efficiency can be explained by the facile redox cycle of the active Pd2+/Pd0 couple in the close-contact PdO x-WO x-TiO2 arrangement. We propose that the reason for good tolerance to water is that the lattice oxygen of the TiO2/PdW catalyst can effectively replenish the oxygen in active PdO x sites consumed by benzene oxidation. A four-step benzene transformation mechanism promoted by the catalyst is proposed. The present work provides a useful idea for the rational design of efficient bimetallic catalysts for the removal of VOCs under the high humidity conditions.
Collapse
Affiliation(s)
- Yijing Liang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Kunfeng Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xingtian Zhao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xing Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Kaiyue Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Rujian Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| |
Collapse
|
3
|
Kareem H, Shan S, Lin F, Li J, Wu Z, Prasai B, O'Brien CP, Lee IC, Tran DT, Yang L, Mott D, Luo J, Petkov V, Zhong CJ. Evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys. NANOSCALE 2018; 10:3849-3862. [PMID: 29417115 DOI: 10.1039/c7nr08748a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale alloying constitutes an increasingly-important pathway for design of catalysts for a wide range of technologically important reactions. A key challenge is the ability to control the surface catalytic sites in terms of the alloying composition, thermochemical treatment and phase in correlation with the catalytic properties. Herein we show novel findings of the nanoscale evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys by probing CO adsorption and oxidation using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique. In addition to the bimetallic composition and the support, the surface sites are shown to depend strongly on the thermochemical treatment condition, demonstrating that the ratio of three-fold vs. bridge or atop Pd sites is greatly reduced by thermochemical treatment under hydrogen in comparison with that under oxygen. This type of surface reconstruction is further supported by synchrotron high-energy X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis of the nanoalloy structure, revealing an enhanced degree of random alloying for the catalysts thermochemically treated under hydrogen. The nanoscale alloying and surface site evolution characteristics were found to correlate strongly with the catalytic activity of CO oxidation. These findings have significant implications for the nanoalloy-based design of catalytic synergy.
Collapse
Affiliation(s)
- Haval Kareem
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kareem H, Shan S, Wu ZP, Velasco L, Moseman K, O'Brien CP, Tran DT, Lee IC, Maswadeh Y, Yang L, Mott D, Luo J, Petkov V, Zhong CJ. Catalytic oxidation of propane over palladium alloyed with gold: an assessment of the chemical and intermediate species. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01704b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface intermediate species for catalytic oxidation of propane depend strongly on the catalyst composition.
Collapse
|
5
|
An H, Ha H, Yoo M, Kim HY. Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd) 147 bimetallic nanoparticles. NANOSCALE 2017; 9:12077-12086. [PMID: 28799609 DOI: 10.1039/c7nr04435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When the elements that compose bimetallic catalysts interact asymmetrically with reaction feedstock, the surface concentration of the bimetallic catalysts and the morphology of the reaction center evolve dynamically as a function of environmental factors such as the partial pressure of the triggering molecule. Relevant experimental and theoretical findings of the dynamic structural evolution of bimetallic catalysts under the reaction conditions are emerging, thus enabling the design of more consistent, reliable, and efficient bimetallic catalysts. In an initial attempt to provide an atomic-level understanding of the adsorption-induced structural evolution of bimetallic nanoparticles (NPs) under CO oxidation conditions, we used density functional theory to study the details of CO-adsorption-driven Pd surface segregation in (AuPd)147 bimetallic NPs. The strong CO affinity of Pd provides a driving force for Pd surface segregation. We found that the vertex site of the NP becomes a gateway for the initial Pd-Au swapping and the subsequent formation of an internal vacancy. This self-generated internal vacancy easily diffuses inside the NP and activates Pd-Au swapping pathways in the (100) NP facet. Our results reveal how the surface and internal concentrations of bimetallic NPs respond immediately to changes in the reaction conditions. Our findings should aid in the rational design of highly active and versatile bimetallic catalysts by considering the environmental factors that systematically affect the structure of bimetallic catalysts under the reaction conditions.
Collapse
Affiliation(s)
- Hyesung An
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | | | | | | |
Collapse
|
6
|
Cusinato L, del Rosal I, Poteau R. Shape, electronic structure and steric effects of organometallic nanocatalysts: relevant tools to improve the synergy between theory and experiment. Dalton Trans 2017; 46:378-395. [DOI: 10.1039/c6dt04207d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An integrated package that uses structural, first principles and thermodynamic approaches is expected to play a significant role in advancing our knowledge of nanocatalysts.
Collapse
|
7
|
Shan S, Petkov V, Prasai B, Wu J, Joseph P, Skeete Z, Kim E, Mott D, Malis O, Luo J, Zhong CJ. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. NANOSCALE 2015; 7:18936-18948. [PMID: 26404795 DOI: 10.1039/c5nr04535e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo phase segregation into distinct chemically-ordered (B2-type) and disordered (fcc-type) domains. This finding is significant since it provides a rational basis for streamlining the design and preparation of Pd-based nanoalloy catalysts in terms of atomic structure and phase state.
Collapse
Affiliation(s)
- Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Prasai B, Wilson AR, Wiley BJ, Ren Y, Petkov V. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. NANOSCALE 2015; 7:17902-17922. [PMID: 26463562 DOI: 10.1039/c5nr04678e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.
Collapse
Affiliation(s)
- Binay Prasai
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48858, USA.
| | - A R Wilson
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - B J Wiley
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Y Ren
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48858, USA.
| |
Collapse
|
9
|
Petkov V, Prasai B, Shastri S, Chen TY. 3D Atomic Arrangement at Functional Interfaces Inside Nanoparticles by Resonant High-Energy X-ray Diffraction. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23265-23277. [PMID: 26415142 DOI: 10.1021/acsami.5b07391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With current science and technology moving rapidly into smaller scales, nanometer-sized materials, often referred to as NPs, are produced in increasing numbers and explored for numerous useful applications. Evidence is mounting, however, that useful properties of NPs can be improved further and even new NP functionality achieved by not only controlling the NP size and shape but also interfacing chemically or structurally distinct entities into single, so-called "composite" NPs. A typical example is core-shell NPs wherein the synergy of distinct atoms at the core\shell interface endows the NPs with otherwise unachievable functionality. However, though advantageous, the concept of functional interfaces inside NPs is still pursued largely by trial-and-error. That is because it is difficut to assess the interfaces precisely at the atomic level using traditional experimental techniques and, hence, difficult to take control of. Using the core\shell interface in less than 10 nm in size Ru core-Pt shells NPs as an example, we demonstrate that precise knowledge of the 3D atomic arrangement at functional interfaces inside NPs can be obtained by resonant high-energy X-ray diffraction (XRD) coupled to element-specific atomic pair distribution function (PDF) analysis. On the basis of the unique structure knowledge obtained, we scrutinize the still-debatable influence of core\shell interface on the catalytic functionality of Ru core-Pt shell NPs, thus evidencing the usefulness of this nontraditional technique for practical applications.
Collapse
Affiliation(s)
- Valeri Petkov
- Department of Physics, Central Michigan University , Mt. Pleasant, Michigan 48859, United States
| | - Binay Prasai
- Department of Physics, Central Michigan University , Mt. Pleasant, Michigan 48859, United States
| | - Sarvjit Shastri
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University , Hsinchu 30013, Taiwansinchu
| |
Collapse
|
10
|
Prasai B, Ren Y, Shan S, Zhao Y, Cronk H, Luo J, Zhong CJ, Petkov V. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts. NANOSCALE 2015; 7:8122-8134. [PMID: 25874741 DOI: 10.1039/c5nr00800j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ∼ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.
Collapse
Affiliation(s)
- Binay Prasai
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48858, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cai F, Shan S, Yang L, Chen B, Luo J, Zhong CJ. CO oxidation on supported platinum group metal (PGM) based nanoalloys. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5264-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Petkov V, Prasai B, Ren Y, Shan S, Luo J, Joseph P, Zhong CJ. Solving the nanostructure problem: exemplified on metallic alloy nanoparticles. NANOSCALE 2014; 6:10048-61. [PMID: 25030531 DOI: 10.1039/c4nr01633e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called "nanostructure problem" from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized Pd(x)Ni(100-x) particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now.
Collapse
Affiliation(s)
- Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Shan S, Luo J, Yang L, Zhong CJ. Nanoalloy catalysts: structural and catalytic properties. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00469h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Shan S, Petkov V, Yang L, Luo J, Joseph P, Mayzel D, Prasai B, Wang L, Engelhard M, Zhong CJ. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium–Nickel Nanoalloys. J Am Chem Soc 2014; 136:7140-51. [DOI: 10.1021/ja5026744] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyao Shan
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Valeri Petkov
- Department
of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Lefu Yang
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin Luo
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Pharrah Joseph
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Dina Mayzel
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Binay Prasai
- Department
of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Lingyan Wang
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Mark Engelhard
- EMSL, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Chuan-Jian Zhong
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
15
|
Petkov V, Ren Y, Shan S, Luo J, Zhong CJ. A distinct atomic structure-catalytic activity relationship in 3-10 nm supported Au particles. NANOSCALE 2014; 6:532-538. [PMID: 24232747 DOI: 10.1039/c3nr05362h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bulk Au is very inert but Au nanoparticles less than 5 nm in size have been found to be catalytically active for several reactions, in particular for low-temperature oxidation of CO. Using high-energy X-ray diffraction coupled with atomic pair distribution function analysis and computer simulations we determine the structure of 3 nm and 10 nm Au particles supported on titania and silica as typical representatives of reducible and irreducible supports, respectively. We find that the synthesis protocol adopted in our work affects strongly and differently the structure of the Au nanoparticles on the different supports. This leads to clearly distinct dependences of the catalytic activity of the nanoparticles on their size. In the case of the silica support the catalytic activity of Au nanoparticles increases and in the case of the titania support it decreases with decreasing nanoparticle size. The experimental results are considered in terms of current theoretical predictions and found to be in good accord with them.
Collapse
Affiliation(s)
- Valeri Petkov
- Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA.
| | | | | | | | | |
Collapse
|
16
|
Shan S, Petkov V, Yang L, Mott D, Wanjala BN, Cai F, Chen BH, Luo J, Zhong CJ. Oxophilicity and Structural Integrity in Maneuvering Surface Oxygenated Species on Nanoalloys for CO Oxidation. ACS Catal 2013. [DOI: 10.1021/cs400700r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyao Shan
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Valeri Petkov
- Department
of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, United States
| | - Lefu Yang
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Derrick Mott
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292 Ishikawa, Japan
| | - Bridgid N. Wanjala
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Fan Cai
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing H. Chen
- College
of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin Luo
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Chuan-Jian Zhong
- Department
of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|