1
|
Kusada K, Kitagawa H. Phase Control in Monometallic and Alloy Nanomaterials. Chem Rev 2025. [PMID: 39751381 DOI: 10.1021/acs.chemrev.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Metal nanomaterials with unconventional phases have been recently developed with a variety of methods and exhibit novel and attractive properties such as high activities for various catalytic reactions and magnetic properties. In this review, we discuss the progress and the trends in strategies for synthesis, crystal structure, and properties of phase-controlled metal nanomaterials in terms of elements and the combination of alloys. We begin with a brief introduction of the anomalous phase behavior derived from the nanosize effect and general crystal structures observed in metal nanomaterials. Then, phase control in monometallic nanomaterials with respect to each element and alloy nanomaterials classified into three types based on their crystal structures is discussed. In the end, all the content introduced in this review is summarized, and challenges for advanced phase control are discussed.
Collapse
Affiliation(s)
- Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- The HAKUBI Center for Advanced Research, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Zhang M, Wang Z, Bo X, Huang R, Deng D. Two-Dimensional Catalysts: From Model to Reality. Angew Chem Int Ed Engl 2024:e202419661. [PMID: 39617995 DOI: 10.1002/anie.202419661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 12/12/2024]
Abstract
Two-dimensional (2D) materials have been utilized broadly in kinds of catalytic reactions due to their fully exposed active sites and special electronic structure. Compared with real catalysts, which are usually bulk or particle, 2D materials have more well-defined structures. With easily identified structure-modulated engineering, 2D materials become ideal models to figure out the catalytic structure-function relations, which is helpful for the precise design of catalysts. In this review, the unique function of 2D materials was summarized from model study to reality catalysis and application. It includes several typical 2D materials, such as graphene, transition metal dichalcogenides, metal, and metal (hydr)oxide materials. We introduced the structural characteristics of 2D materials and their advantages in model researches. It emphatically summarized how 2D materials serve as models to explore the structure-activity relationship by combining theoretical calculations and surface research. The opportunities of 2D materials and the challenges for fundamentals and applications they facing are also addressed. This review provides a reference for the design of catalyst structure and composition, and could inspire the realization of two-dimensional materials from model study to reality application in industry.
Collapse
Affiliation(s)
- Mo Zhang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Zifeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Bo
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Rui Huang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Khavar AHC, Khazaee Z, Mahjoub A. Electron flux at the Schottky junction of Bi NPs and WO 3-supported g-C 3N 4: an efficient ternary S-scheme catalyst for removal of fluoroquinolone-type antibiotics from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18461-18479. [PMID: 36215017 DOI: 10.1007/s11356-022-23370-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Recently, global-scale attempts have been conducted to develop clean technologies and affordable materials to remediate pharmaceutical contaminants of water resources that are resistant to the biodegradation. In line with global efforts, this study reports a facile method to fabricate Bi nanocrystals in situ decorated on WO3 nanoplates and its composite with graphitic carbon nitride (WO3/Bi/g-C3N4) for photocatalytic degradation of fluoroquinolone-type antibiotics (ciprofloxacin and ofloxacin). The designed ternary S-scheme WO3/Bi/g-C3N4 composite material was fully characterized by physicochemical and electrochemical analysis. Depositing the cost-effective and earth-abundant Bi nanocrystals onto WO3 via a facile reduction route has been shown to increase the boosting of electron flux at their interface (Schottky junction). The S-scheme separation is confirmed by the calculation of band positions and the analysis of photogenerated hydroxyl radicals and holes. The complete removal of contaminants was obtained over the WO3/Bi/g-C3N4 photocatalyst after 90 min under visible light irradiation. The present work would provide a rational route for developing Bi NP-based photocatalysis to replace metallic Au, Pt, and Ag NPs.
Collapse
Affiliation(s)
| | - Zeynab Khazaee
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Mahjoub
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Xia S, Wu F, Cheng L, Bao H, Gao W, Duan J, Niu W, Xu G. Maneuvering the Peroxidase-Like Activity of Palladium-Based Nanozymes by Alloying with Oxophilic Bismuth for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205997. [PMID: 36461731 DOI: 10.1002/smll.202205997] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Engineering the catalytic performance of nanozymes is of vital importance for their broad applications in biological analysis, cancer treatment, and environmental management. Herein, a strategy to boost the peroxidase-like activity of Pd-based nanozymes with oxophilic metallic bismuth (Bi) is demonstrated, which is based on the incorporation of oxophilic Bi in the Pd-based alloy nanocrystals (NCs). To synthesize PdBi alloy NCs, a seed-mediated method is employed with the assistance of underpotential deposition (UPD) of Bi on Pd. The strong interaction of Bi atoms with Pd surfaces favors the formation of alloy structures with controllable shapes and excellent monodispersity. More importantly, the PdBi NCs show excellent peroxidase-like activities compared with pristine Pd NCs. The structure-function correlations for the PdBi nanozymes are elucidated, and an indirect colorimetric method based on cascade reactions to determine alkaline phosphatase (ALP) is established. This method has good linear range, low detection limit, excellent selectivity, and anti-interference. Collectively, this work not only provides new insights for the design of high-efficiency nanozymes, expands the colorimetric sensing platform based on enzyme cascade reactions, but also represents a new example for UPD-directed synthesis of alloy NCs.
Collapse
Affiliation(s)
- Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lu Cheng
- National Engineering Research Center for New Material Synthesis of Rubber and Plastics, Yanshan Branch of Beijing Chemical Research Institute, Sinopec, Beijing, 102500, China
| | - Haibo Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenping Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Duan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
Wang X, Liu Y, Ma XY, Chang LY, Zhong Q, Pan Q, Wang Z, Yuan X, Cao M, Lyu F, Yang Y, Chen J, Sham TK, Zhang Q. The Role of Bismuth in Suppressing the CO Poisoning in Alkaline Methanol Electrooxidation: Switching the Reaction from the CO to Formate Pathway. NANO LETTERS 2023; 23:685-693. [PMID: 36594847 DOI: 10.1021/acs.nanolett.2c04568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.
Collapse
Affiliation(s)
- Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xing-Yu Ma
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qi Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhiqiang Wang
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Fenglei Lyu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry, and Soochow-Western Center for Synchrotron Radiation Research, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Alkhawaldeh AK. Electrocatalytic Activities of a Platinum Nanostructured Electrode Modified by Gold Adatom toward Methanol and Glycerol Electrooxidation in Acid and Alkaline Media. J Oleo Sci 2023; 72:347-356. [PMID: 36878588 DOI: 10.5650/jos.ess22376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
For practical applications such as fuel cells, it is important to exploit electrocatalysis with high activity for methanol and glycerol oxidation. A platinum nanostructured electrode (PtNPs) is modified by gold adatoms and is created by application of a square wave potential regime to a tantalum surface electrode. In nanostructured platinum, the structure and the surface properties are characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and cyclic voltammetry (CV). In acid and alkaline media, the CV and Chronoamperometric (CA) are studied to investigate the catalytic activity of the PtNPs nanoparticles for the electrooxidation of methanol and glycerol. The prepared nanostructured platinum on a tantalum electrode was allowed to balance an open circuit with a 1.0×10-3 M solution containing an Au ion. Consequently, the proximity of the irreversibly adsorbed Au-adatoms on the already described Pt-nanostructured electrode. In acidic and alkaline solutions, the electrocatalytically activities toward methanol and glycerol oxidation were evaluated and is found to strongly on the surface of the gold-modified PtNPs. The PtNPs modified by Au electrode system used direct methanol fuel cell (DMFC) and direct glycerol fuel cell (DGFC). The DMFC and DGFC are much higher than in acid output in alkaline. Comparison of the i-E curves of nanostructure platinum electrode with that of a platinum nanostructure electrode modified by Au under similar conditions for the letter, the charge under the peak (i-E curve) in the oxidation region was higher. Furthermore, rough chronoamperometric measurements confirmed the results. The results of showed that the electrocatalytic properties of the nanostructured prepared surface were enhanced by the inclusion of gold adatoms with a variable extent of advancement. The current peak (Ip) and the current chronoamperometric (ICA) of glycerol oxidation on the PtNPs electrode modified by Au in acid media (130 mA/cm2, 47 µA/cm2) were higher than those of the bare PtNPs electrode and in alkaline media (171 mA/cm2, 66 µA/cm2). The stronger catalytic behavior in alkaline media of the Au-PtNP electrode indicates its promising use in alkaline direct alcohol cells.
Collapse
|
8
|
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2022; 5:13. [PMID: 36212026 PMCID: PMC9536324 DOI: 10.1007/s41918-022-00173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2022]
Abstract
AbstractProton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans. However, their performance, cost, and durability are significantly related to Pt-based electrocatalysts, hampering their large-scale commercial application. Hence, considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use, and consequently, the cost. Therefore, this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts, which significantly affect the nanoparticle size, shape, and dispersion on supports and thus the activity and durability of the prepared electrocatalysts. The reviewed processes include (i) the functionalization of a commercial carbon support for enhanced catalyst–support interaction and additional catalytic effects, (ii) the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts, (iii) the preparation of spherical and nonspherical Pt-based electrocatalysts (polyhedrons, nanocages, nanoframes, one- and two-dimensional nanostructures), and (iv) the postsynthesis treatments of supported electrocatalysts. The influences of the supports, key experimental parameters, and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail. Future research directions are outlined, including (i) the full exploitation of the potential functionalization of commercial carbon supports, (ii) scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts, and (iii) simplification of postsynthesis treatments. One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts.
Graphical Abstract
This review focuses on the synthesis process of Pt-based electrocatalysts/C to develop aqueous one-pot synthesis at large-scale production for PEMFC stack application.
Collapse
|
9
|
Liu Z, Zhang J, Yu L, Wang H, Huang X. Thermal derived bismuth nanoparticles on nitrogen-doped carbon aerogel enable selective electrochemical production of formate from CO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Facile One-step Aqueous-phase Synthesis of Porous PtBi Nanosponges for Efficient Electrochemical Methanol Oxidation with a High CO Tolerance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Bismuth-doped cobaltosic oxide as a noble-metal free electrocatalyst for the efficient methanol oxidation reaction. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Jung WS, Han J. Enhanced stability of PdPtAu alloy catalyst for formic acid oxidation. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Guan J, Yang S, Liu T, Yu Y, Niu J, Zhang Z, Wang F. Intermetallic FePt@PtBi Core–Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jingyu Guan
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Shaoxuan Yang
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Tongtong Liu
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yihuan Yu
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jin Niu
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
15
|
Yuan Y, Yang Z, Lai W, Gao L, Li M, Zhang J, Huang H. Intermetallic Compounds: Liquid-Phase Synthesis and Electrocatalytic Applications. Chemistry 2021; 27:16564-16580. [PMID: 34428332 DOI: 10.1002/chem.202102500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Characterized by long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure, intermetallics have attracted increasing attention in the area of chemical synthesis and catalytic applications. Liquid-phase synthesis of intermetallics has arisen as the promising methodology due to its precise control over size, shape, and resistance toward sintering compared with the traditional metallurgy. This short review tends to provide perspectives on the liquid-phase synthesis of intermetallics in terms of both thermodynamics and methodology, as well as its applications in various catalytic reactions. Specifically, basic thermodynamics and kinetics in the synthesis of intermetallics will be first discussed, followed by discussing the main factors that will affect the formation of intermetallics during synthesis. The application of intermetallics in electrocatalysis will be demonstrated case by case at last. We conclude the review with perspectives on the future developments with respect to both synthesis and catalytic applications.
Collapse
Affiliation(s)
- Yuliang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhilong Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wenchuan Lai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiawei Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
16
|
Guan J, Yang S, Liu T, Yu Y, Niu J, Zhang Z, Wang F. Intermetallic FePt@PtBi Core-Shell Nanoparticles for Oxygen Reduction Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:21899-21904. [PMID: 34331724 DOI: 10.1002/anie.202107437] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 01/19/2023]
Abstract
The development of active and stable platinum (Pt)-based oxygen reduction reaction (ORR) electrocatalysts with good resistance to poisoning is a prerequisite for widespread practical application of fuel cells. An effective strategy for enhancing the electrocatalytic performance is to tune or control the physicochemical state of the Pt surface. Herein, we show a general surface-engineering approach to prepare a range of nanostructured Pt alloys by coating with alloy PtBi shells. FePt@PtBi core-shell nanoparticles showed the best ORR performance with a mass activity of 0.96 A mgPt -1 and a specific activity of 2.06 mA cm-2 , respectively 7 times and 11 times those of the corresponding values for benchmark Pt/C. Moreover, FePt@PtBi shows much better tolerance to methanol and carbon monoxide than conventional Pt-based electrocatalysts. The observed comprehensive enhancement in ORR performance of FePt@PtBi can be attributed to the increased compressive strain of the Pt surface due to in-plane shearing resulting from the presence of the large Bi atoms in the surface-structured PtBi overlayers, as well as charge displacement via Pt-Bi bonding which mitigates crossover issues.
Collapse
Affiliation(s)
- Jingyu Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaoxuan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tongtong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yihuan Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jin Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
17
|
Li X, You H, Wang C, Liu D, Yu R, Guo S, Wang Y, Du Y. 3D Taraxacum-like porous Pd nanocages with Bi doping: High-performance non-Pt electrocatalysts for ethanol oxidation reaction. J Colloid Interface Sci 2021; 591:203-210. [PMID: 33609892 DOI: 10.1016/j.jcis.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Modifying the electronic structure and optimizing the geometric structure can expeditiously tune the electrocatalytic properties of catalysts, resulting in considerably enhanced electrocatalytic performance towards electrocatalytic oxidation of liquid fuels. We herein report a simple synthetic strategy to prepare Bi-doped 3D taraxacum-like Pd nanocages (NCs) composed of porous nanosheets, which possess high surface areas and strong synergistic effects. Notably, a trace of Bi diffuses into the lattice of Pd and increases the electronic effects of the surface of Pd, endowing PdBi-0.5 NCs/C with superior electrocatalytic performance towards ethanol oxidation reaction (EOR). The mass activity and specific activity of PdBi-0.5 NCs/C were 3494.8 mA mgPd-1 and 10.37 mA cm-2, being 4.08- and 4.82- fold enhancements as compared with commercial Pd/C, respectively. Moreover, the highly open porous 3D nanocages structure with rich active sites and defects can also facilitate the mass/electron transfer to favor the EOR kinetics.
Collapse
Affiliation(s)
- Xingchi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
18
|
Xu H, Shang H, Wang C, Du Y. Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005092. [PMID: 33448126 DOI: 10.1002/smll.202005092] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Pd- and Pd-based catalysts have emerged as potential alternatives to Pt- and Pt-based catalysts for numerous electrocatalytic reactions, particularly fuel cell-related reactions, including the anodic fuel oxidation reaction (FOR) and cathodic oxygen reduction reaction (ORR). The creation of Pd- and Pd-based architectures with large surface areas, numerous low-coordinated atoms, and high density of defects and edges is the most promising strategy for improving the electrocatalytic performance of fuel cells. Recently, 2D Pd-based nanomaterials with single or few atom thickness have attracted increasing interest as potential candidates for both the ORR and FOR, owing to their remarkable advantages, including high intrinsic activity, high electron mobility, and straightforward surface functionalization. In this review, the recent advances in 2D Pd-based nanomaterials for the FOR and ORR are summarized. A fundamental understanding of the FOR and ORR is elaborated. Subsequently, the advantages and latest advances in 2D Pd-based nanomaterials for the FOR and ORR are scientifically and systematically summarized. A systematic discussion of the synthesis methods is also included which should guide researchers toward more efficient 2D Pd-based electrocatalysts. Lastly, the future outlook and trends in the development of 2D Pd-based nanomaterials toward fuel cell development are also presented.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
19
|
Sarkar S, Ramarao SD, Das T, Das R, Vinod CP, Chakraborty S, Peter SC. Unveiling the Roles of Lattice Strain and Descriptor Species on Pt-Like Oxygen Reduction Activity in Pd–Bi Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03415] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - S. D. Ramarao
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Tisita Das
- Harish-Chandra Research Institute, HBNI, Allahabad, Uttar Pradesh 211019, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - C. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sudip Chakraborty
- Department of Physics, Indian Institute of Technology, Simrol, Indore 453552, India
| | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
20
|
Zheng Y, Wang X, Kong Y, Ma Y. Two-dimensional multimetallic alloy nanocrystals: recent progress and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00975c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this highlight article, the recent progress on the preparation and application of multimetallic alloy nanocrystals with 2D nanostructures is systematically reviewed, as well as perspectives on future challenges and opportunities.
Collapse
Affiliation(s)
- Yiqun Zheng
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Xiping Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuhan Kong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Yanyun Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
21
|
Zhang J, Shen L, Jiang Y, Sun S. Random alloy and intermetallic nanocatalysts in fuel cell reactions. NANOSCALE 2020; 12:19557-19581. [PMID: 32986070 DOI: 10.1039/d0nr05475e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fuel cells that use small organic molecules or hydrogen as the anode fuel can power clean electric vehicles. From an experimental perspective, the possible fuel cells' electrocatalytic reaction mechanisms are obtained through in situ electrochemical spectroscopy techniques and density functional theory calculations, providing theoretical guidance for further development of novel nanocatalysts. As advanced nanocatalysts for fuel cells' electrochemical reactions, alloy nanomaterials have greatly improved electrocatalytic activity and stability and have attracted widespread attention. Enhanced electrocatalytic performance of alloy nanocatalysts could be closely related to the synergistic effects, such as electronic and strain effects. Depending on the arrangement of atoms, alloys can be classified into random alloy and intermetallic compounds (ordered structure). Intermetallic compounds generally have lower heats of formation and stronger heteroatomic bonding strength relative to the random alloy, resulting in high chemical and structural stability in either full pH solutions or electrochemical tests. Here, we summarize the latest advances and the structure-function relationship of noble metal alloy nanocatalysts, among which Pt-based catalysts are the main ones, as well as comprehensively understand why they significantly affect the electrocatalytic performance of fuel cells. Novel alloy nanocatalysts with a robust three-phase interface to achieve efficient charge and mass transfer can obtain desirable activity and stability in the electrochemical workstation tests, and is expected to acquire a higher power density on fuel cell test systems with harsh test conditions.
Collapse
Affiliation(s)
- Junming Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | |
Collapse
|
22
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
23
|
|
24
|
Dubale AA, Zheng Y, Wang H, Hübner R, Li Y, Yang J, Zhang J, Sethi NK, He L, Zheng Z, Liu W. High‐Performance Bismuth‐Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amare Aregahegn Dubale
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Honglei Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - René Hübner
- Helmholtz-Zentrum Dresden—Rossendorf Institute of Ion Beam Physics and Materials Research Bautzner Landstraße 400 01328 Dresden Germany
| | - Yi Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences (CAS) Dalian 116023 P. R. China
| | - Navpreet Kaur Sethi
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Lanqi He
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
25
|
Dubale AA, Zheng Y, Wang H, Hübner R, Li Y, Yang J, Zhang J, Sethi NK, He L, Zheng Z, Liu W. High‐Performance Bismuth‐Doped Nickel Aerogel Electrocatalyst for the Methanol Oxidation Reaction. Angew Chem Int Ed Engl 2020; 59:13891-13899. [DOI: 10.1002/anie.202004314] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Amare Aregahegn Dubale
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Honglei Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - René Hübner
- Helmholtz-Zentrum Dresden—Rossendorf Institute of Ion Beam Physics and Materials Research Bautzner Landstraße 400 01328 Dresden Germany
| | - Yi Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences (CAS) Dalian 116023 P. R. China
| | - Navpreet Kaur Sethi
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Lanqi He
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
26
|
Khan IA, Sofian M, Badshah A, Khan MA, Imran M, Nadeem MA. Stable and Efficient PtRu Electrocatalysts Supported on Zn-BTC MOF Derived Microporous Carbon for Formic Acid Fuel Cells Application. Front Chem 2020; 8:367. [PMID: 32478034 PMCID: PMC7237749 DOI: 10.3389/fchem.2020.00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/08/2020] [Indexed: 12/04/2022] Open
Abstract
Highly efficient, well-dispersed PtRu alloy nanoparticles supported on high surface area microporous carbon (MPC) electrocatalysts, are prepared and tested for formic acid oxidation reaction (FAOR). The MPC is obtained by controlled carbonization of a zinc-benzenetricarboxylate metal-organic framework (Zn-BTC MOF) precursor at 950°C, and PtRu (30 wt.%) nanoparticles (NPs) are prepared and deposited via a polyol chemical reduction method. The structural and morphological characterization of the synthesized electrocatalysts is carried out using powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), an energy dispersive X-ray (EDX) technique, and gas adsorption analysis (BET). The FAOR performance of the catalysts is investigated through cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). A correlation between high electrochemical surface area (ECSA) and high FAOR performance of the catalysts is observed. Among the materials employed, Pt1Ru2/MPC 950 with a high electrochemical surface area (25.3 m2 g−1) consequently showed superior activity of the FAOR (Ir = 9.50 mA cm−2 and Jm = 2,403 mA mgPt-1) at room temperature, with improved tolerance and stability toward carbonaceous species. The superior electrochemical performance, and tolerance to CO-poisoning and long-term stability is attributed to the high surface area carbon support (1,455 m2 g−1) and high percentage loading of ruthenium (20 wt.%). The addition of Ru promotes the efficiency of electrocatalyst by offering FAOR via a bifunctional mechanism.
Collapse
Affiliation(s)
- Inayat Ali Khan
- Chemistry of Interfaces, Luleå University of Technology, Luleå, Sweden.,Catalysis and Nanomaterials Laboratory 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sofian
- Catalysis and Nanomaterials Laboratory 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amin Badshah
- Catalysis and Nanomaterials Laboratory 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Muhammad Imran
- Department of Chemistry, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Laboratory 27, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
27
|
Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01400-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Sui L, An W, Rhee CK, Hur SH. Irreversibly Adsorbed Tri-metallic PtBiPd/C Electrocatalyst for the Efficient Formic Acid Oxidation Reaction. J ELECTROCHEM SCI TE 2020. [DOI: 10.33961/jecst.2019.00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Shang H, Xu H, Wang C, Jin L, Chen C, Zhou G, Wang Y, Du Y. General synthesis of Pd-pm (pm = Ga, In, Sn, Pb, Bi) alloy nanosheet assemblies for advanced electrocatalysis. NANOSCALE 2020; 12:3411-3417. [PMID: 31989139 DOI: 10.1039/c9nr10084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Owing to the synergistic compositional and structural advantages, ultrathin bimetallic nanosheet assembly nanostructures are widely recognized as advanced catalysts for alcohol electrooxidation reaction. Although numerous efforts have been made, the fabrication of well-defined ultrathin bimetallic nanosheet assemblies (NSAs) at large scale is still a tough challenge. Herein, a universal synthetic approach has been proposed to produce a series of well-defined Pd-pm (pm = Ga, In, Sn, Pb, Bi) alloy NSAs. Due to multiple merits of their unique 3D flower-like nanostructure and alloyed crystalline features, the self-supported Pd-pm NSAs show excellent electrocatalytic performance for the methanol oxidation reaction (MOR) and glycerol oxidation reaction (GOR). Given the eco-friendly synthetic concept, facile universality, and outstanding electrocatalytic properties of the generated bimetallic Pd-pm NSAs, we believe that this method could be employed for building more advanced nanocatalysts toward efficient electrocatalytic applications.
Collapse
Affiliation(s)
- Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Guangyao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
30
|
Chen L, Zhou L, Lu H, Zhou Y, Huang J, Wang J, Wang Y, Yuan X, Yao Y. Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction. Chem Commun (Camb) 2020; 56:9138-9141. [PMID: 32644079 DOI: 10.1039/d0cc03704d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, novel insights into the influence of different nanocrystal structures on the electrocatalytic oxidation of methanol are reported. Herein, we have successfully prepared high-yield PtPb nanoplates in the diethylene glycol (DEG) solvent. The as-obtained PtPb nanoplates with a large surface area of the (102) facet show higher MOR activity and superior durability in alkaline electrolyte compared with both zero-dimensional PtPb nanoparticles and commercial Pt/C. Further chronoamperometric (CA) measurements and discrete Fourier transform (DFT) calculations indicate that the PtPb nanoplates possess much better operation durability and CO tolerance due to the negative adsorption energy of the (102) facet.
Collapse
Affiliation(s)
- Lei Chen
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China. and SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Luozeng Zhou
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai, 200245, P. R. China
| | - Hongbin Lu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China.
| | - Yaqin Zhou
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai, 200245, P. R. China
| | - Jialu Huang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China.
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, P. R. China.
| |
Collapse
|
31
|
Wang P, Xu L, Zhu J, Gao K, Zhang Y, Wang J. Reaction induced robust PdxBiy/SiC catalyst for the gas phase oxidation of monopolistic alcohols. RSC Adv 2020; 10:42564-42569. [PMID: 35516743 PMCID: PMC9057962 DOI: 10.1039/d0ra07859j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022] Open
Abstract
Reaction induced PdxBiy/SiC catalysts exhibit excellent catalytic activity (92% conversion of benzyl alcohol and 98% selectivity of benzyl aldehyde) and stability (time on stream of 200 h) in the gas phase oxidation of alcohols at a low temperature of 240 °C due to the formation of Pd0–Bi2O3 species. TEM indicates that the agglomeration of the 5.8 nm nanoparticles is inhibited under the reaction conditions. The transformation from inactive PdO–Bi2O3 to active Pd0–Bi2O3 under the reaction conditions is confirmed elaborately by XRD and XPS. Reaction induced PdxBiy/SiC catalysts exhibit excellent catalytic activity and stability in the gas phase oxidation of monopolistic alcohols at a low temperature of 240 °C due to the formation of Pd0–Bi2O3 species.![]()
Collapse
Affiliation(s)
- Pengwei Wang
- Research Center of Resource Recycling Science and Engineering
- College of Arts and Sciences
- Shanghai Polytechnic University
- Shanghai 201209
- China
| | - Lijun Xu
- Research Center of Resource Recycling Science and Engineering
- College of Arts and Sciences
- Shanghai Polytechnic University
- Shanghai 201209
- China
| | - Jianming Zhu
- Research Center of Resource Recycling Science and Engineering
- College of Arts and Sciences
- Shanghai Polytechnic University
- Shanghai 201209
- China
| | - Kunqi Gao
- Research Center of Resource Recycling Science and Engineering
- College of Arts and Sciences
- Shanghai Polytechnic University
- Shanghai 201209
- China
| | - Yan Zhang
- Research Center of Resource Recycling Science and Engineering
- College of Arts and Sciences
- Shanghai Polytechnic University
- Shanghai 201209
- China
| | - Jifen Wang
- Research Center of Resource Recycling Science and Engineering
- College of Arts and Sciences
- Shanghai Polytechnic University
- Shanghai 201209
- China
| |
Collapse
|
32
|
Kumar A, Mohammadi MM, Swihart MT. Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures. NANOSCALE 2019; 11:19058-19085. [PMID: 31433427 DOI: 10.1039/c9nr05835d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Palladium-based nanostructures have attracted the attention of researchers due to their useful catalytic properties and unique ability to form hydrides, which finds application in hydrogen storage and hydrogen detection. Palladium-based nanowires have some inherent advantages over other Pd nanomaterials, combining high surface-to-volume ratio with good thermal and electron transport properties, and exposing high-index crystal facets that can have enhanced catalytic activity. Over the past two decades, both synthesis methods and applications of 1D palladium nanostructures have advanced greatly. In this review, we start by discussing different types of 1D palladium nanostructures before moving on to the different synthesis approaches that can produce them. Next, we discuss factors including kinetic vs. thermodynamic control of growth, oxidative etching, and surface passivation that affect palladium nanowire synthesis. We also review efforts to gain insight into growth mechanisms using different characterization tools. We discuss the effects of concentration of capping agents, reducing agents, metal halides, pH, and sacrificial oxidation on the growth of Pd-based nanowires in solution, from shape control, to yield, to aspect ratio. Various applications of palladium and palladium alloy nanowires are then discussed, including electrocatalysis, hydrogen storage, and sensing of hydrogen and other chemicals. We conclude with a summary and some perspectives on future research directions for this category of nanomaterials.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
33
|
Bera KK, Chakraborty M, Chowdhury SR, Ray A, Das S, Bhattacharya SK. Significantly improved and synergistic effect of Pt–ZnO–Bi2O3 ternary hetero-junctions toward anode-catalytic oxidation of methanol in alkali. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Luo S, Chen W, Cheng Y, Song X, Wu Q, Li L, Wu X, Wu T, Li M, Yang Q, Deng K, Quan Z. Trimetallic Synergy in Intermetallic PtSnBi Nanoplates Boosts Formic Acid Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903683. [PMID: 31423678 DOI: 10.1002/adma.201903683] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Platinum is the most effective metal for a wide range of catalysis reactions, but it fails in the formic acid electrooxidation test and suffers from severe carbon monoxide poisoning. Developing highly active and stable catalysts that are capable of oxidizing HCOOH directly into CO2 remains challenging for commercialization of direct liquid fuel cells. A new class of PtSnBi intermetallic nanoplates is synthesized to boost formic acid oxidation, which greatly outperforms binary PtSn and PtBi intermetallic, benefiting from the synergism of chosen three metals. In particular, the best catalyst, atomically ordered Pt45 Sn25 Bi30 nanoplates, exhibits an ultrahigh mass activity of 4394 mA mg-1 Pt and preserves 78% of the initial activity after 4000 potential cycles, which make it a state-of-the-art catalyst toward formic acid oxidation. Density functional theory calculations reveal that the electronic and geometric effects in PtSnBi intermetallic nanoplates help suppress CO* formation and optimize dehydrogenation steps.
Collapse
Affiliation(s)
- Shuiping Luo
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Wen Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Xing Song
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Qilong Wu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Lanxi Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Xiaotong Wu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Tianhao Wu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Mingrui Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Qi Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Kerong Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
35
|
Sun D, Wang Y, Livi KJT, Wang C, Luo R, Zhang Z, Alghamdi H, Li C, An F, Gaskey B, Mueller T, Hall AS. Ordered Intermetallic Pd 3Bi Prepared by an Electrochemically Induced Phase Transformation for Oxygen Reduction Electrocatalysis. ACS NANO 2019; 13:10818-10825. [PMID: 31469544 DOI: 10.1021/acsnano.9b06019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The synthesis of alloys with long-range atomic-scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in material development. Herein, we report a process for converting colloidally synthesized ordered intermetallic PdBi2 to ordered intermetallic Pd3Bi nanoparticles under ambient conditions by electrochemical dealloying. The low melting point of PdBi2 corresponds to low vacancy formation energies, which enables the facile removal of the Bi from the surface while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd3Bi exhibits 11 times and 3.5 times higher mass activity and high methanol tolerance for the oxygen reduction reaction compared with Pt/C and Pd/C, respectively, which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble-metal-rich ordered intermetallic phases with high catalytic activity and set forth guidelines for the design of ordered intermetallic compounds under ambient conditions.
Collapse
Affiliation(s)
- Du Sun
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Yunfei Wang
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kenneth J T Livi
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Chuhong Wang
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Ruichun Luo
- School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Zhuoqun Zhang
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Hamdan Alghamdi
- Department of Chemical and Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Chenyang Li
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Fufei An
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
- School of Materials Science and Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Bernard Gaskey
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Tim Mueller
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Anthony Shoji Hall
- Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
36
|
Chen Q, Cheng T, Fu H, Zhu Y. Crystal phase regulation in noble metal nanocrystals. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63385-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Iqbal M, Kaneti YV, Kim J, Yuliarto B, Kang YM, Bando Y, Sugahara Y, Yamauchi Y. Chemical Design of Palladium-Based Nanoarchitectures for Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804378. [PMID: 30633438 DOI: 10.1002/smll.201804378] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol oxidation, oxygen reduction, hydrogenation, coupling reactions, and carbon monoxide oxidation. Creating Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms, and maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-based nanoarchitectures, including alloys, intermetallics, and supported Pd nanomaterials, have been fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic reactions. Herein, recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and future outlook in the development of Pd nanocatalysts toward practical catalytic applications are discussed.
Collapse
Affiliation(s)
- Muhammad Iqbal
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Brian Yuliarto
- Department of Engineering Physics and Research Center for Nanoscience and Nanotechnology, Institute of Technology Bandung, Ganesha 10, Bandung, 40132, Indonesia
| | - Yong-Mook Kang
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yoshio Bando
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
38
|
Affiliation(s)
- Leonard Rößner
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
39
|
Yin HJ, Zhou JH, Zhang YW. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00689c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in shaping protocols and structure-activity relationships of noble-metal-based catalysts with well-defined nanostructures in electrochemical reactions.
Collapse
Affiliation(s)
- Hai-Jing Yin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jun-Hao Zhou
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
40
|
Luo S, Tang M, Wu X, Ou Y, Wang Z, Jian N, Li X, Lin Y, Yan Y, Huang J, Zhang H, Yang D. Intermetallic Pd3Pb square nanoplates as highly efficient electrocatalysts for oxygen reduction reaction. CrystEngComm 2019. [DOI: 10.1039/c8ce01490f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intermetallic Pd3Pb square nanoplates were synthesized and exhibited excellent performance for the oxygen reduction reaction in alkaline solution.
Collapse
|
41
|
|
42
|
Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem Rev 2018; 118:6409-6455. [PMID: 29927583 DOI: 10.1021/acs.chemrev.7b00727] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As one unique group of two-dimensional (2D) nanomaterials, 2D metal nanomaterials have drawn increasing attention owing to their intriguing physiochemical properties and broad range of promising applications. In this Review, we briefly introduce the general synthetic strategies applied to 2D metal nanomaterials, followed by describing in detail the various synthetic methods classified in two categories, i.e. bottom-up methods and top-down methods. After introducing the unique physical and chemical properties of 2D metal nanomaterials, the potential applications of 2D metal nanomaterials in catalysis, surface enhanced Raman scattering, sensing, bioimaging, solar cells, and photothermal therapy are discussed in detail. Finally, the challenges and opportunities in this promising research area are proposed.
Collapse
Affiliation(s)
- Ye Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhanxi Fan
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Wenxin Niu
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Cuiling Li
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Nailiang Yang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
43
|
Qin Y, Luo M, Sun Y, Li C, Huang B, Yang Y, Li Y, Wang L, Guo S. Intermetallic hcp-PtBi/fcc-Pt Core/Shell Nanoplates Enable Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04406] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yingnan Qin
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingchuan Luo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yingjun Sun
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chunji Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR
| | - Yong Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yingjie Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaojun Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Xiao W, Lei W, Gong M, Xin HL, Wang D. Recent Advances of Structurally Ordered Intermetallic Nanoparticles for Electrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04420] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Weiping Xiao
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wen Lei
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mingxing Gong
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Huolin L. Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Deli Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
45
|
Xu H, Yan B, Li S, Wang J, Wang C, Guo J, Du Y. One-pot fabrication of N-doped graphene supported dandelion-like PtRu nanocrystals as efficient and robust electrocatalysts towards formic acid oxidation. J Colloid Interface Sci 2018; 512:96-104. [DOI: 10.1016/j.jcis.2017.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/29/2022]
|
46
|
Lee JW, Han J, Lee DS, Bae S, Lee SH, Lee SK, Moon BJ, Choi CJ, Wang G, Kim TW. 2D Single-Crystalline Copper Nanoplates as a Conductive Filler for Electronic Ink Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703312. [PMID: 29266730 DOI: 10.1002/smll.201703312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Large-scale 2D single-crystalline copper nanoplates (Cu NPLs) are synthesized by a simple hydrothermal method. The combination of a mild reductant, stabilizer, and shape modifier allows the dimensional control of the Cu nanocrystals from 1D nanowires (NWs) to 2D nanoplates. High-resolution transmission electron microscopy (HR-TEM) reveals that the prepared Cu NPLs have a single-crystalline structure. From the X-ray photoelectron spectroscopy (XPS) analysis, it is found that iodine plays an important role in the modification of the copper nanocrystals through the formation of an adlayer on the basal plane of the nanoplates. Cu NPLs with an average edge length of 10 μm are successfully synthesized, and these Cu NPLs are the largest copper 2D crystals synthesized by a solution-based process so far. The application of the metallic 2D crystals as a semitransparent electrode proves their feasibility as a conductive filler, exhibiting very low sheet resistance (0.4 Ω ▫-1 ) compared to Cu NWs and a transmittance near 75%. The efficient charge transport is due to the increased contact area between each Cu NPL, i.e., so-called plane contact (2D electrical contact). In addition, this type of contact enhances the current-carrying capability of the Cu NPL electrodes, implying that the large-size Cu NPLs are promising conductive fillers for printable electrode applications.
Collapse
Affiliation(s)
- Jin-Won Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Jiyoon Han
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Dong Su Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Sukang Bae
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Sang Hyun Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Seoung-Ki Lee
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Byung Joon Moon
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| | - Chel-Jong Choi
- School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Wook Kim
- Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea
| |
Collapse
|
47
|
Promotional effects of trace Bi on its highly catalytic activity for methanol oxidation of hollow Pt/graphene catalyst. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Zeb Gul Sial MA, Ud Din MA, Wang X. Multimetallic nanosheets: synthesis and applications in fuel cells. Chem Soc Rev 2018; 47:6175-6200. [DOI: 10.1039/c8cs00113h] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
From the perspective of multimetallic nanosheets, their synthesis and applications in fuel cells are highlighted.
Collapse
Affiliation(s)
- Muhammad Aurang Zeb Gul Sial
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Muhammad Aizaz Ud Din
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
49
|
The study of platinum-tellurium intermetallic nanoparticles for formic acid electro-oxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Newly Designed Ternary Metallic PtPdBi Hollow Catalyst with High Performance for Methanol and Ethanol Oxidation. Catalysts 2017. [DOI: 10.3390/catal7070208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This paper reported the fabrication of ternary metallic PtPdBi hollow nanocatalyst through a facile, one-pot, wet-chemical method by adopting sodium borohydride and polyvinylpyrrolidone as reducing agent and surfactant directing agent, respectively. The hollow structure offers novel morphology and large surface areas, which are conducive to enhancing the electrocatalytic activity. The electrocatalytic properties of hollow PtPdBi nanocatalyst were investigated systematically in alkaline media through cyclic voltammetry and the as-prepared PtPdBi nanocatalyst displays greatly enhanced electrocatalytic activities towards methanol and ethanol oxidation. The calculated mass activities of PtPdBi electrocatalyst are 2.133 A mgPtPd−1 for methanol oxidation reaction and 5.256 A mgPtPd−1 for ethanol oxidation reaction, which are much better than that of commercial Pt/C and commercial Pd/C. The as-prepared hollow nanocatalyst may be a potential promising electrocatalyst in fuel cells and also may be extended to the applications of other desirable functions.
Collapse
|