1
|
Naganuma T. Selective inhibition of partial EMT-induced tumour cell growth by cerium valence states of extracellular ceria nanoparticles for anticancer treatment. Colloids Surf B Biointerfaces 2024; 236:113794. [PMID: 38382224 DOI: 10.1016/j.colsurfb.2024.113794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Targeting specific tumour cells and their microenvironments is essential for enhancing the efficacy of chemotherapy and reducing its side effects. A partial epithelial-to-mesenchymal transition state (pEMT, with a hybrid epithelial/mesenchymal phenotype) in tumour cells is an attractive targeting for anticancer treatment because it potentially provides maximal stemness and metastasis relevant to malignant cancer stem cell-like features. However, treatment strategies to target pEMT in tumour cells remain a challenge. This study demonstrates that extracellular cerium oxide nanoparticles (CNPs) selectively inhibit the growth of pEMT-induced tumour cells, without affecting full epithelial tumour cells. Herein, highly concentrated Ce3+ and Ce4+ ions are formed on CNP-layered poly-L-lactic acid surfaces. Cell cultures of pEMT-induced and uninduced lung cancer cell lines on the CNP-layered substrates allow the effect of extracellular CNPs on tumour cell growth to be investigated. The extracellular CNPs with dominant Ce3+ and Ce4+ ions were able to trap pEMT-induced tumour cells in a growth-arrested quiescent/dormant or cytostatic state without generating redox-related reactive oxygen species (ROS), i.e. non-redox mechanisms. The dominant Ce3+ state provided highly efficient growth inhibition of the pEMT-induced tumour cells. In contrast, the dominant Ce4+ state showed highly selective and appropriate growth regulation of normal and tumour cells, including a mesenchymal phenotype. Furthermore, Ce4+-CNPs readily adsorbed serum-derived fibronectin and laminin. Cerium valence-specific proteins adsorbed on CNPs may influence receptor-mediated cell-CNP interactions, leading to tumour cell growth inhibition. These findings provide new perspectives for pEMT-targeting anticancer treatments based on the unique biointerface of extracellular CNPs with different Ce valence states.
Collapse
Affiliation(s)
- Tamaki Naganuma
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
2
|
Ederer J, Janoš P, Vrtoch L, Št'astný M, Henych J, Matoušek J, Kormunda M, Ryšánek P. Effect of Surface Treatment of Nanocrystalline CeO 2 on Its Dephosphorylation Activity and Adsorption of Inorganic Phosphates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:302-316. [PMID: 38117753 DOI: 10.1021/acs.langmuir.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The surface of nanocrystalline cerium oxide (CeO2) was treated with various chemical agents by a simple postmodification method at 25 °C and atmospheric pressure. Hydrogen peroxide, ammonium persulfate, deionized water, ascorbic acid, and ortho-phosphoric acid were used in order to study and evaluate their effect on surface materials, such as surface area, crystallite size, number of surface hydroxyl groups, particle morphology, and Ce3+/Ce4+ ratio. Paraoxon-methyl (PO) decomposition and inorganic phosphate adsorption were used to evaluate the effect of surface treatment on catalytic and adsorption properties. CeO2 surface was studied by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and acid-base titration. While the treatment procedure affected the number of surface hydroxyl groups and the amount of bulk surface oxygen vacancies, only negligible changes were observed in the Ce3+/Ce4+ ratio. Interestingly, surface treatment affected the ability to decompose PO, but only a small effect on inorganic phosphate adsorption was observed, indicating the robustness of CeO2 for the latter. A mechanism for possible interaction of the used chemicals with the CeO2 surface was proposed.
Collapse
Affiliation(s)
- Jakub Ederer
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Pavel Janoš
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Luboš Vrtoch
- Faculty of Science, Jan Evangelista Purkyně University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Martin Št'astný
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jiří Henych
- Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jindřich Matoušek
- Faculty of Science, Jan Evangelista Purkyně University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Martin Kormunda
- Faculty of Science, Jan Evangelista Purkyně University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Petr Ryšánek
- Faculty of Science, Jan Evangelista Purkyně University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
3
|
Ederer J, Novák A, Janoš P, Šťastný M, Henych J, Bárta M, Ryšánek P, Tolasz J. Influence of surface chemical properties of nanocrystalline CeO2 on phosphate adsorption and methyl-paraoxon decomposition. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Wlodarczyk D, Amilusik M, Kosyl KM, Chrunik M, Lawniczak-Jablonska K, Strankowski M, Zajac M, Tsiumra V, Grochot A, Reszka A, Suchocki A, Giela T, Iwanowski P, Bockowski M, Przybylinska H. Synthesis Attempt and Structural Studies of Novel A 2CeWO 6 Double Perovskites (A 2+ = Ba, Ca) in and outside of Ambient Conditions. ACS OMEGA 2022; 7:18382-18408. [PMID: 35694470 PMCID: PMC9178617 DOI: 10.1021/acsomega.2c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 05/25/2023]
Abstract
This comprehensive work showcases two novel, rock-salt-type minerals in the form of amphoteric cerium-tungstate double perovskite and ilmenite powders created via a high-temperature solid-state reaction in inert gases. The presented studies have fundamental meaning and will mainly focus on a detailed synthesis description of undoped structures, researching their possible polymorphism in various conditions and hinting at some nontrivial physicochemical properties like charge transfer for upcoming optical studies after eventual doping with selectively chosen rare-earth ions. The formerly mentioned, targeted A2BB'X6 group of compounds contains mainly divalent alkali cations in the form of XIIA = Ba2+, Ca2+ sharing, here, oxygen-arranged clusters (IIX = O2-) with purposely selected central ions from f-block VIB = Ce4/3+ and d-block VIB' = W4/5/6+ since together they often possess some exotic properties that could be tuned and implemented into futuristic equipment like sensors or energy converters. Techniques like powder XRD, XPS, XAS, EPR, Raman, and FTIR spectroscopies alongside DSC and TG were involved with an intent to thoroughly describe any possible changes within these materials. Mainly, to have a full prospect of any desirable or undesirable phenomena before diving into more complicated subjects like: energy or charge transfer in low temperatures; to reveal whether or not the huge angular tilting generates large enough dislocations within the material's unit cell to change its initial properties; or if temperature and pressure stimuli are responsible for any phase transitions and eventual, irreversible decomposition.
Collapse
Affiliation(s)
- Damian Wlodarczyk
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Mikolaj Amilusik
- Institute
of High Pressure, Polish Academy of Sciences, Sokolowska 29/37, PL-01142 Warsaw, Poland
| | - Katarzyna M. Kosyl
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Maciej Chrunik
- Military
University of Technology, Gen. Sylwestra Kaliskiego 2, PL-00908 Warsaw, Poland
| | | | - Michal Strankowski
- Chemical
Faculty, Gdansk University of Technology, G. Narutowicza 11/12, PL-80233 Gdansk, Poland
| | - Marcin Zajac
- Solaris
Synchrotron NSRC, Jagiellonian University, Czerwone Maki 98, PL-30392 Cracow, Poland
| | - Volodymyr Tsiumra
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Aneta Grochot
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Anna Reszka
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Andrzej Suchocki
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Tomasz Giela
- Solaris
Synchrotron NSRC, Jagiellonian University, Czerwone Maki 98, PL-30392 Cracow, Poland
| | - Przemyslaw Iwanowski
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michal Bockowski
- Institute
of High Pressure, Polish Academy of Sciences, Sokolowska 29/37, PL-01142 Warsaw, Poland
| | - Hanka Przybylinska
- Institute
of Physics, Polish Academy of Sciences, Ave. Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
5
|
Naganuma T. Tunable phosphate-mediated stability of Ce 3+ ions in cerium oxide nanoparticles for enhanced switching efficiency of their anti/pro-oxidant activities. Biomater Sci 2021; 9:1345-1354. [PMID: 33367328 DOI: 10.1039/d0bm01860k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switching of the Ce3+/Ce4+ oxidation states in cerium oxide nanoparticles (CNPs) provides various superior nanozyme activities. However, nanozymes lack a switch to reversibly regulate the multi-nanozyme capacity depending on physiological/pathological environments, e.g. different pH and H2O2 levels. Furthermore, highly concentrated Ce3+ ions with abundant oxygen vacancies (Vo) in CNPs have the potential to enhance their catalytic activities, but the phosphate anions (P) adsorbed on Ce3+ ions block their several catalytic activities. This study, therefore, demonstrates that the tunable P-mediated stability of Ce3+ ions involves the superoxide dismutase (SOD) mimetic activity of CNPs, and leads to enhanced switching efficiency of their anti/pro-oxidant activities. Herein, highly concentrated Ce3+ ions in Vo-CNP layers (Vo-CNPLs) were fabricated, and the threshold conditions necessary to alter the stability of Ce3+ ions treated with P were explored by X-ray photoelectron spectroscopy. P-adsorbed Ce3+ ions (P-Ce3+) in Vo-CNPLs were efficiently destabilized in H2O2 solution (pH 5-6) rather than in HCl and HNO3 solutions (pH 3), and the presence of H2O2 readily released P from Ce3+ sites. Indeed, though P-Ce3+ temporarily arrested the SOD mimetic activity to generate H2O2 (linked to anti-oxidant activity) at physiological pH, they did enable the initiation of SOD mimetic activity (pro-oxidant activity) even at pH 5 close to biologically-appropriate acid conditions, e.g. in lysosome/endosome/tumor-microenvironments. These findings suggest that P-Ce3+ ions enhance the switching efficiency of their anti/pro-oxidant activities. Thus, P-mediated switches could be utilized to achieve a better understanding of the nanozyme switching-mechanisms, and for the design of multi-functional nanozymes for enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Tamaki Naganuma
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
6
|
Khulbe K, Karmakar K, Ghosh S, Chandra K, Chakravortty D, Mugesh G. Nanoceria-Based Phospholipase-Mimetic Cell Membrane Disruptive Antibiofilm Agents. ACS APPLIED BIO MATERIALS 2020; 3:4316-4328. [PMID: 35025431 DOI: 10.1021/acsabm.0c00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kritika Khulbe
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya-ICAR, Coochbehar 736165, West Bengal, India
| | - Sourav Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Zou S, Guo F, Wu L, Ju H, Sun M, Cai R, Xu L, Gong Y, Gong A, Zhang M, Du F. One-pot synthesis of cerium and praseodymium co-doped carbon quantum dots as enhanced antioxidant for hydroxyl radical scavenging. NANOTECHNOLOGY 2020; 31:165101. [PMID: 31766034 DOI: 10.1088/1361-6528/ab5b40] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The antioxidant activity of ceria nanoparticles is tightly regulated by size distribution and heteroatom doping. Inspired by this rule, cerium and praseodymium codoped carbon quantum dots (Ce/Pr-CQDs) were synthesized through the one-pot hydrothermal carbonization method. Taking intrinsic advantage of CQDs, the resultant Ce/Pr-CQDs exhibited uniform and ultra-small morphology with an average size of 2.8 nm, which led to an increased proportion of Ce3+. In addition, the doping of Pr into Ce-CQDs improved the redox properties. As we expected, the Ce/Pr-CQDs possessed enhanced hydroxyl radical scavenging properties compared with the cerium-doped carbon quantum dots (Ce-CQDs). Furthermore, Ce/Pr-CQDs with favorable biocompatibility and negligible cytotoxicity are readily internalized into cytoplasm, decreasing the level of reactive oxygen species (ROS). Taken together, the resultant Ce/Pr-CQDs displayed great potential for applications relating to oxidative-stress-associated disease.
Collapse
Affiliation(s)
- Shengqiang Zou
- Department of Hepatosis, The Affiliated Third Hospital of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dantelle G, Testemale D, Homeyer E, Cantarano A, Kodjikian S, Dujardin C, Hazemann JL, Ibanez A. A new solvothermal method for the synthesis of size-controlled YAG:Ce single-nanocrystals. RSC Adv 2018; 8:26857-26870. [PMID: 35541064 PMCID: PMC9083342 DOI: 10.1039/c8ra05914d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
This modified solvothermal method, combined with in situ photoluminescence measurements, allows the synthesis of well-crystallized size-controlled YAG:Ce nanocrystals.
Collapse
Affiliation(s)
| | - Denis Testemale
- Univ. Grenoble Alpes
- CNRS
- Grenoble INP
- Institut Néel
- 38000 Grenoble
| | - Estelle Homeyer
- Institut Lumière Matière
- Univ. Lyon 1 – CNRS – 10
- 69 622 Villeurbanne Cedex
- France
| | | | | | - Christophe Dujardin
- Institut Lumière Matière
- Univ. Lyon 1 – CNRS – 10
- 69 622 Villeurbanne Cedex
- France
| | | | - Alain Ibanez
- Univ. Grenoble Alpes
- CNRS
- Grenoble INP
- Institut Néel
- 38000 Grenoble
| |
Collapse
|
9
|
Nagata T, Miyajima K, Mafuné F. Gold Atoms Supported on Gas-Phase Cerium Oxide Cluster Ions: Stable Stoichiometry and Reactivity with CO. J Phys Chem A 2016; 120:7624-7633. [DOI: 10.1021/acs.jpca.6b08257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiaki Nagata
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Fumitaka Mafuné
- Department of Basic Science,
School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Nagata T, Miyajima K, Hardy RA, Metha GF, Mafuné F. Reactivity of Oxygen Deficient Cerium Oxide Clusters with Small Gaseous Molecules. J Phys Chem A 2015; 119:5545-52. [DOI: 10.1021/acs.jpca.5b02816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiaki Nagata
- Department of Basic Science, School of
Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science, School of
Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Robert Allan Hardy
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gregory F. Metha
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Fumitaka Mafuné
- Department of Basic Science, School of
Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|