1
|
Nakamura K, Takahashi T, Hosomi T, Tanaka W, Yamaguchi Y, Liu J, Kanai M, Tsuji Y, Yanagida T. Van der Waals interactions between nonpolar alkyl chains and polar oxide surfaces prevent catalyst deactivation in aldehyde gas sensing. Nat Commun 2024; 15:9211. [PMID: 39482324 PMCID: PMC11528008 DOI: 10.1038/s41467-024-53577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Catalysis-based electrical sensing of volatile organic compounds on metal oxide surfaces is a powerful method for molecular discrimination. However, catalyst deactivation caused by the poisoning of catalytic sites by analytes and/or catalyzed products remains a challenge. This study highlights the underestimated role of van der Waals interactions between hydrophobic aliphatic alkyl chains and hydrophilic ZnO surfaces in mitigating catalyst deactivation during aliphatic aldehyde sensing. By immobilizing octadecylphosphonic acid (ODPA) on ZnO nanowire sensors, recovery times for nonanal detection are significantly reduced without compromising sensitivity. Temperature-programmed measurements demonstrate a reduction in desorption temperature of carboxylates on ODPA-modified ZnO to below 150 °C, whereas carboxylates on bare ZnO remain above 300 °C, indicating a significant decrease in catalyst deactivation. Density functional theory calculations reveal that accumulated van der Waals interactions between alkyl chains and ZnO surfaces significantly contributed to adsorption molecular kinetics. IR spectroscopy using deuterated self-assembled monolayers (SAMs) reveals conformational changes of alkyl chains within the SAMs caused by aldehyde adsorption, supporting the suggested adsorption kinetics. A model is proposed based on the dynamic surface-covering by alkyl chains destabilizes catalytically oxidized carboxylic acids.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yu Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka, Japan
| | - Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kyushu University, Kasuga, Fukuoka, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo, Japan.
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka, Japan.
| |
Collapse
|
2
|
Kamata K, Aihara T, Wachi K. Synthesis and catalytic application of nanostructured metal oxides and phosphates. Chem Commun (Camb) 2024; 60:11483-11499. [PMID: 39282987 DOI: 10.1039/d4cc03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The design and development of new high-performance catalysts is one of the most important and challenging issues to achieve sustainable chemical and energy production. This Feature Article describes the synthesis of nanostructured metal oxides and phosphates mainly based on earth-abundant metals and their thermocatalytic application to selective oxidation and acid-base reactions. A simple and versatile methodology for the control of nanostructures based on crystalline complex oxides and phosphates with diverse structures and compositions is proposed as another approach to catalyst design. Herein, two unique and verstile methods for the synthesis of metal oxide and phosphate nanostructures are introduced; an amino acid-aided method for metal oxides and phosphates and a precursor crystallization method for porous manganese oxides. Nanomaterials based on perovskite oxides, manganese oxides, and metal phosphates can function as effective heterogeneous catalysts for selective aerobic oxidation, biomass conversion, direct methane conversion, one-pot synthesis, acid-base reactions, and water electrolysis. Furthermore, the structure-activity relationship is clarified based on experimental and computational approaches, and the influence of oxygen vacancy formation, concerted activation of molecules, and the redox/acid-base properties of the outermost surface are discussed. The proposed methodology for nanostructure control would be useful not only for the design and understanding of the complexity of metal oxide catalysts, but also for the development of innovative catalysts.
Collapse
Affiliation(s)
- Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| |
Collapse
|
3
|
Wang W, Yang K, Zhu Q, Zhang T, Guo L, Hu F, Zhong R, Wen X, Wang H, Qi J. MOFs-Based Materials with Confined Space: Opportunities and Challenges for Energy and Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311449. [PMID: 38738782 DOI: 10.1002/smll.202311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ke Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Qinghan Zhu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Tingting Zhang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Feiyang Hu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaojing Wen
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Nieukirk BD, Tang R, Hughes RA, Neretina S. Site-Selective Deposition of Silica Nanoframes and Nanocages onto Faceted Gold Nanostructures Using a Primer-free Tetraethyl Orthosilicate Synthesis. ACS NANO 2024; 18:19257-19267. [PMID: 38984856 DOI: 10.1021/acsnano.4c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The Stöber method for forming spherical silica colloids is well-established as one of the pillars of colloidal synthesis. In a modified form, it has been extensively used to deposit both porous and protective shells over metal nanomaterials. Current best-practice techniques require that the vitreophobic surface of metal nanoparticles be primed with a surface ligand to promote silica deposition. Although such techniques have proved highly successful in forming core-shell configurations, the site-selective deposition of silica onto preselected areas of faceted metal nanostructures has proved far more challenging. Herein, a primer-free TEOS-based synthesis is demonstrated that is capable of forming architecturally complex nanoframes and nanocages on the pristine surfaces of faceted gold nanostructures. The devised synthesis overcomes vitreophobicity using elevated TEOS concentrations that trigger silica nucleation along the low-coordination sites where gold facets meet. Continued deposition sees the emergence of a well-connected frame followed by the lateral infilling of the openings formed over gold facets. With growth readily terminated at any point in this sequence, the synthesis distinguishes itself in being able to achieve patterned and tunable silica depositions expressing interfaces that are uncorrupted by primers. The so-formed structures are demonstrated as template materials capable of asserting high-level control over synthesis and assembly processes by using the deposited silica as a mask that deactivates selected areas against these processes while allowing them to proceed elsewhere. The work, hence, extends the capabilities and versatility of TEOS-based syntheses and provides pathways for forming multicomponent nanostructures and nanoassemblies with structurally engineered properties.
Collapse
Affiliation(s)
- Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runze Tang
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Kumar L, Nandan B, Sarkar S, König TAF, Pohl D, Tsuda T, Zainuddin MSB, Humenik M, Scheibel T, Horechyy A. Enhanced photocatalytic performance of coaxially electrospun titania nanofibers comprising yolk-shell particles. J Colloid Interface Sci 2024; 674:560-575. [PMID: 38945024 DOI: 10.1016/j.jcis.2024.06.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The present paper reports the fabrication of novel types of hybrid fibrous photocatalysts by combining block copolymer (BCP) templating, sol-gel processing, and coaxial electrospinning techniques. Coaxial electrospinning produces core-shell nanofibers (NFs), which are converted into hollow porous TiO2 NFs using an oxidative calcination step. Hybrid BCP micelles comprising a single plasmonic nanoparticle (NP) in their core and thereof derived silica-coated core-shell particles are utilized as precursors to generate yolk-shell type particulate inclusions in photocatalytically active NFs. The catalytic and photocatalytic activity of calcined NFs comprising different types of yolk-shell particles is systematically investigated and compared. Interestingly, calcined NFs comprising silica-coated yolk-shells demonstrate enhanced catalytic and photocatalytic performance despite the presence of silica shell separating plasmonic NP from the TiO2 matrix. Electromagnetic simulations indicate that this enhancement is caused by a localized surface plasmon resonance and a confinement effect in silica-coated yolk-shells embedded in porous TiO2 NFs. Utilization of the coaxially electrospun TiO2 NFs in combination with yolk-shells comprising plasmonic NPs reveals to be a potent method for the photocatalytic decomposition of numerous pollutants. It is worth noting that this study stands as the first occurrence of combining yolk-shells (Au@void@SiO2) with porous electrospun NFs (TiO2) for photocatalytic purposes and gaining an understanding of plasmon and confinement effects for photocatalytic performance. This approach represents a promising route for fabricating highly active and up-scalable fibrous photocatalytic systems.
Collapse
Affiliation(s)
- Labeesh Kumar
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany.
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagato Sarkar
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany; Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01062 Dresden, Germany; Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Takuya Tsuda
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany
| | - Muhammad S B Zainuddin
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Martin Humenik
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Andriy Horechyy
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute for Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069 Dresden, Germany.
| |
Collapse
|
6
|
Zhao B, Yao Y, Huang K, Li J, Chen M, Liu C, Xu H, Zhao X, Chang G. Hollow UiO-66-NH 2 Encapsulated Pd Catalysts for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol. Chemistry 2024; 30:e202400333. [PMID: 38639068 DOI: 10.1002/chem.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The selective hydrogenation of furfural (FFA) to furfuryl alcohol (FA) is regarded as attractive transformation to achieve the sustainable synthesis of value-added chemicals from biomass resources. However, the conventional supported catalysts are significantly restricted by their narrow pore size, ununiform dispersion and easy leaching or aggregation of catalytic sites. Herein, we designed hollow UiO-66-NH2 as the support to encapsulate Pd nanoparticles (Pd@H-UiO-66-NH2) to achieve the highly active and selective conversion of FFA to FA. Benefiting from the void-confinement effect and substrate enrichment of hollow structure, as well as the surface wrinkles, the as-prepared catalyst Pd@H-UiO-66-NH2 exhibited 96.8 % conversion of FFA with satisfactory selectivity reaching up to 92.4 % at 80 °C, 0.5 MPa H2 in isopropanol solvent within 6 h. More importantly, as-prepared Pd@H-UiO-66-NH2 catalyst exhibited excellent long-term stability, as well as good universality toward a series of hydrogenation of unsaturated hydrocarbons.
Collapse
Affiliation(s)
- Bo Zhao
- School of Power Engineering, Naval University of Engineering, Wuhan, 430033, China
| | - Yao Yao
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Kexin Huang
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiaxin Li
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Minjie Chen
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Chao Liu
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongjian Xu
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xinyu Zhao
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
7
|
Sajid I, Hassan A, Begum R, Zhou S, Irfan A, Chaudhry AR, Farooqi ZH. Yolk-shell smart polymer microgels and their hybrids: fundamentals and applications. RSC Adv 2024; 14:8409-8433. [PMID: 38476178 PMCID: PMC10929002 DOI: 10.1039/d4ra00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Yolk-shell microgels and their hybrids have attained great importance in modern-day research owing to their captivating features and potential uses. This manuscript provides the strategies for preparation, classification, properties and current applications of yolk-shell microgels and their hybrids. Some of the yolk-shell microgels and their hybrids are identified as smart polymer yolk-shell microgels and smart hybrid microgels, respectively, as they react to changes in particular environmental stimuli such as pH, temperature and ionic strength of the medium. This unique behavior makes them a perfect candidate for utilization in drug delivery, selective catalysis, adsorption of metal ions, nanoreactors and many other fields. This review demonstrates the contemporary progress along with suggestions and future perspectives for further research in this specific field.
Collapse
Affiliation(s)
- Iqra Sajid
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Robina Begum
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island, PhD Program in Chemistry of The Graduate Centre, The City University of New York 2800 Victory Boulevard, Staten Island NY 10314 USA
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551, Bisha 61922 Saudi Arabia
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| |
Collapse
|
8
|
Salim ET, Saimon JA, Muhsin MS, Fakhri MA, Amin MH, Azzahrani AS, Ibrahim RK. Mesoporous Ag@WO 3 core-shell, an investigation at different concentrated environment employing laser ablation in liquid. Sci Rep 2024; 14:5473. [PMID: 38443371 PMCID: PMC10914857 DOI: 10.1038/s41598-024-55146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
In this study, silver-tungsten oxide core-shell nanoparticles (Ag-WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag-WO3 core-shell NPs were subjected to characterization using UV-visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV-visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon resonance of Ag NPs and WO3 NPs, respectively. The absorbance values of the Ag-WO3 core-shell NPs increased as the core concentrations rose, while the band gap decreased by 2.73-2.5 eV, The (PL) results exhibited prominent peaks with a central wavelength of 456, 458, 458, 464, and 466 nm. Additionally, the PL intensity of the Ag-WO3-NP samples increased proportionally with the concentration of the core. Furthermore, the redshift seen at the peak of the PL emission band may be attributed to the quantum confinement effect. EDX analysis can verify the creation process of the Ag-WO3 core-shell nanostructure. XRD analysis confirms the presence of Ag and WO3 (NPs). The TEM images provided a good visualization of the core-spherical shell structure of the Ag-WO3 core-shell NPs. The average size of the particles ranged from 30.5 to 89 (nm). The electrical characteristics showed an increase in electrical conductivity from (5.89 × 10-4) (Ω cm)-1 to (9.91 × 10-4) (Ω cm)-1, with a drop in average activation energy values of (0.155 eV) and (0.084 eV) at a concentration of 1.6 μg/mL of silver.
Collapse
Affiliation(s)
- Evan T Salim
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Jehan A Saimon
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq
| | - Maryam S Muhsin
- Applied Science Department, University of Technology-Iraq, Baghdad, Iraq
| | - Makram A Fakhri
- Laser and Optoelectronic Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Mustafa H Amin
- Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
| | - Ahmad S Azzahrani
- Electrical Engineering Department, Northern Border University, Arar, Saudi Arabia.
| | | |
Collapse
|
9
|
Liu S, Han S, Li Y, Shen W. Fabrication of a PdCu@SiO 2@Cu core-shell-satellite catalyst for the selective hydrogenation of acetylene. Dalton Trans 2023; 53:206-214. [PMID: 38032071 DOI: 10.1039/d3dt03170e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Pd25Cu75@SiO2 core-shell and PdCu@SiO2@Cu core-shell-satellite architectures were fabricated by silica-coating of Pd25Cu75 colloids in a reverse microemulsion. Hydrolysis of tetraethylorthosilicate in the reverse microemulsion containing hydrazine and ammonia yielded a core-shell structure, while the use of ammonia only, instead of a mixture of hydrazine and ammonia, formed a core-shell-satellite structure. The ammonia-leached copper species migrated onto the developing silica shell and formed smaller Cu clusters. Air-calcination at 673 K followed by H2-reduction at 773 K of the as-synthesized samples removed the organic surfactants and generated the permeable porous silica shells. The core-shell catalyst consisted of a metal core (8.5 nm) and a silica shell (7.8 nm), while the core-shell-satellite catalyst was composed by a metal core (7.0 nm), a silica shell (8.0 nm), and satellite Cu clusters (1.4 nm) on the silica shell. When used to catalyze the selective hydrogenation of acetylene to ethylene, the core-shell-satellite catalyst showed substantially enhanced activity and stability because of the synergetic catalysis between the metal core and the surrounding Cu clusters.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Tuff WJ, Hughes RA, Nieukirk BD, Ciambriello L, Neal RD, Golze SD, Gavioli L, Neretina S. Periodic arrays of structurally complex oxide nanoshells and their use as substrate-confined nanoreactors. NANOSCALE 2023; 15:17609-17620. [PMID: 37876284 DOI: 10.1039/d3nr04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sacrificial templates present an effective pathway for gaining high-level control over nanoscale reaction products. Atomic layer deposition (ALD) is ideally suited for such approaches due to its ability to replicate the surface topography of a template material through the deposition of an ultrathin conformal layer. Herein, metal nanostructures are demonstrated as sacrificial templates for the formation of architecturally complex and deterministically positioned oxide nanoshells, open-topped nanobowls, vertically standing half-shells, and nanorings. The three-step process sees metal nanocrystals formed in periodic arrays, coated with an ALD-deposited oxide, and hollowed out with a selective etch through nanopores formed in the oxide shell. The procedure is further augmented through the use of a directional ion beam that is used to sculpt the oxide shells into bowl- and ring-like configurations. The functionality of the so-formed materials is demonstrated through their use as substrate-confined nanoreactors able to promote the growth and confinement of nanomaterials. Taken together, the work expands the design space for substrate-based nanomaterials, creates a platform for advancing functional surfaces and devices and, from a broader perspective, advances the use of ALD in forming complex nanomaterials.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Brendan D Nieukirk
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Luca Ciambriello
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Robert D Neal
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP), Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25133 Brescia, Italy
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, Unites States.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
11
|
Hu Y, Yan Z, Du L, Yu Y, Huang W, Shi Q. Mesoporous black TiO 2 hollow shells with controlled cavity size for enhanced visible light photocatalysis. OPTICS EXPRESS 2023; 31:33883-33897. [PMID: 37859158 DOI: 10.1364/oe.503344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Black TiO2 formed by introducing lattice disorder into pristine TiO2 has a narrowed band gap and suppresses the recombination of charge carriers. This provides a potential strategy for visible light photocatalysis. However, the microstructural design of black TiO2 for a higher optimization of visible light is still in high demand. In this work, we proposed the preparation of black TiO2 hollow shells with controllable cavity diameters using silica spheres as templates for the cavities and the NaBH4 reduction method. The decreased cavity size resulted in a hollow shell with an enhanced visible-light absorption and improved photocatalytic performance. Moreover, we demonstrated that this cavity can be combined with gold nanoparticles (AuNPs) to form AuNPs@black TiO2 yolk-shells. The AuNPs provided additional visible light absorption and promoted the separation of photogenerated carriers in the yolk-shell structures. This further improved the photocatalysis, the degradation rate of Cr(VI) can reach 0.066 min-1. Our work evaluated the effect of the cavity size on the photocatalytic performance of hollow and yolk-shell structures and provided concepts for the further enhancement of visible-light photocatalysis.
Collapse
|
12
|
Kazempour S, Naeimi H. Design, Fabrication and Characterization of Multi-Yolk@Shell NiCuFe 2 O 4 @mSiO 2 Mesoporous Nanocomposite Spheres for the Synthesis of Pyrimido-Quinolines under Solvent-Free Conditions. ChemistryOpen 2023; 12:e202300053. [PMID: 37688353 PMCID: PMC10491931 DOI: 10.1002/open.202300053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Indexed: 09/10/2023] Open
Abstract
Multi-yolk@shell mesoporous silica spheres are becoming more and more attractive as high-performance catalysts because of their high surface areas, variable pore sizes, and low densities. In this work, a NiCuFe2 O4 magnetic core with a shell of mesoporous silica mesoporous has been prepared in an easy two-step procedure. The prepared multi-yolk@shell NiCuFe2 O4 @mSiO2 spheres were characterized by using FT-IR, XRD, VSM, EDX, BET, FE-SEM and HR-TEM techniques. These unique multi-yolk@shell NiCuFe2 O4 @mSiO2 spheres demonstrated high catalytic activity for the synthesis of pyrimidoquinolines. Also, this method exposes obvious benefits such as catalyst recyclability, easy reaction condition, simplicity of work up, high product yields and short reaction times.
Collapse
Affiliation(s)
- Somayeh Kazempour
- Department of Organic ChemistryUniversity of Kashan87317-51167KashanIran
| | - Hossein Naeimi
- Department of Organic ChemistryUniversity of Kashan87317-51167KashanIran
| |
Collapse
|
13
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
14
|
Wang Y, He H, Sun J, Zhang X, Zulpya M, Zheng X, Xu L, Dong B. In situ infrared CO detection using silver loaded EMT zeolite films. NANOSCALE ADVANCES 2023; 5:3934-3941. [PMID: 37496618 PMCID: PMC10367965 DOI: 10.1039/d3na00238a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
Ag cluster catalyst-based oxidation of CO to CO2 is an important way to remove CO at low temperatures. However, the instability of silver clusters seriously limits the catalytic application. Herein, sub-nanosized EMT zeolite nanoparticles served as Ag cluster carriers with high selectivity, low coordination, and unsaturated atom active sites. The silver clusters with sub-nanometer size can be controlled with different charge states and loading rates. A detection film with 500 nm was further prepared by assembling the Ag-EMT composites with a small amount of Nalco as an adhesive. For CO detection, a completely enclosed gas sensing device based on in situ infrared spectroscopy was employed without air interference. CO was accurately introduced into the detection chamber and catalysed into CO2 by silver loaded EMT zeolite films, and the whole process was accurately recorded by infrared spectroscopy. CO with a detection range of 2-50 ppm was realized, showing great application potential in gas monitoring.
Collapse
Affiliation(s)
- Yuda Wang
- Department of Cell Biology, College of Basic Medical Science, Jilin University China
| | - Haitao He
- Department of Cell Biology, College of Basic Medical Science, Jilin University China
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Science, Jilin University China
| | - Xinyao Zhang
- Department of Cell Biology, College of Basic Medical Science, Jilin University China
| | - Mahmut Zulpya
- Department of Cell Biology, College of Basic Medical Science, Jilin University China
| | - Xianhong Zheng
- Department of Cell Biology, College of Basic Medical Science, Jilin University China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University China
| |
Collapse
|
15
|
Liu Y, Li C, Tan C, Pei Z, Yang T, Zhang S, Huang Q, Wang Y, Zhou Z, Liao X, Dong J, Tan H, Yan W, Yin H, Liu ZQ, Huang J, Zhao S. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat Commun 2023; 14:2475. [PMID: 37120624 PMCID: PMC10148798 DOI: 10.1038/s41467-023-38129-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
The chlor-alkali process plays an essential and irreplaceable role in the modern chemical industry due to the wide-ranging applications of chlorine gas. However, the large overpotential and low selectivity of current chlorine evolution reaction (CER) electrocatalysts result in significant energy consumption during chlorine production. Herein, we report a highly active oxygen-coordinated ruthenium single-atom catalyst for the electrosynthesis of chlorine in seawater-like solutions. As a result, the as-prepared single-atom catalyst with Ru-O4 moiety (Ru-O4 SAM) exhibits an overpotential of only ~30 mV to achieve a current density of 10 mA cm-2 in an acidic medium (pH = 1) containing 1 M NaCl. Impressively, the flow cell equipped with Ru-O4 SAM electrode displays excellent stability and Cl2 selectivity over 1000 h continuous electrocatalysis at a high current density of 1000 mA cm-2. Operando characterizations and computational analysis reveal that compared with the benchmark RuO2 electrode, chloride ions preferentially adsorb directly onto the surface of Ru atoms on Ru-O4 SAM, thereby leading to a reduction in Gibbs free-energy barrier and an improvement in Cl2 selectivity during CER. This finding not only offers fundamental insights into the mechanisms of electrocatalysis but also provides a promising avenue for the electrochemical synthesis of chlorine from seawater electrocatalysis.
Collapse
Affiliation(s)
- Yangyang Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Chunhui Tan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tao Yang
- Department of Mechanical Engineering, University of Aveiro, Aveiro, 3810-93, Portugal
| | - Shuzhen Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qianwei Huang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yihan Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zheng Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaozhou Liao
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Huajie Yin
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Pan Y, Huang Z, Zheng D, Yang C. Interface engineering of sandwich SiO@α-FeO@COF core-shell S-scheme heterojunctions for efficient photocatalytic oxidation of gas-phase HS. J Colloid Interface Sci 2023; 644:19-28. [PMID: 37088014 DOI: 10.1016/j.jcis.2023.03.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Hydrogen sulfide (H2S) is considered to be a broad-spectrum toxicant, and it is crucial to address this problem due to its serious health and climate change impacts. Photocatalysis can be effectively applied for the reduction of H2S molecules to S and other products. We synthesized sandwich-structured composite materials with internally immobilized SiO2 nanospheres and externally wrapped COF layers co-modified with iron oxide nanoparticles. Furthermore, originally looked at the efficiency of photocatalysis in reducing hydrogen sulfide to sulfur. In this paper, a sandwich structure of core-shell composite photocatalysts based on SiO2 was prepared by a multi-step method including Stöber and double ligand-regulated solvent heat, and these sandwich core-shell structures exhibited high hydrogen sulfide reduction and stability in applications. In addition, characterization, degradation studies, active substance trapping studies, and energy band structure analysis showed that S-type heterojunctions could effectively increase photo-generated carrier separation. This research advanced knowledge of photocatalytic hydrogen sulfide reduction and offered a novel approach for catalysts in COF sandwich core-shell structures.
Collapse
|
17
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206314. [PMID: 36515282 DOI: 10.1002/smll.202206314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced . First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
18
|
Synergetic contribution of Co3+/Co2+ and FeNC in CoFe@CoFe2O4 toward efficient electrocatalysts for oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Ramezanzadeh S, Akbarzadeh H, Mehrjouei E, Shamkhali AN, Abbaspour M, Salemi S. Yolk-shell nanoparticles with different cores: A molecular dynamics study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Lai TH, Tsao CW, Fang MJ, Wu JY, Chang YP, Chiu YH, Hsieh PY, Kuo MY, Chang KD, Hsu YJ. Au@Cu 2O Core-Shell and Au@Cu 2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40771-40783. [PMID: 36040289 DOI: 10.1021/acsami.2c07145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we demonstrated the practical use of Au@Cu2O core-shell and Au@Cu2Se yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core-shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk-shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal-semiconductor yolk-shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.
Collapse
Affiliation(s)
- Ting-Hsuan Lai
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Wen Tsao
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mei-Jing Fang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhen-Yang Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Peng Chang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Hsuan Chiu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ping-Yen Hsieh
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ming-Yu Kuo
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kao-Der Chang
- Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
22
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
23
|
He Y, Wang P, Chen X, Li Y, Wei J, Cai G, Aoyagi K, Wang W. Facile preparation of Fe 3O 4@Pt nanoparticles as peroxidase mimics for sensitive glucose detection by a paper-based colorimetric assay. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220484. [PMID: 36177202 PMCID: PMC9515637 DOI: 10.1098/rsos.220484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
A simple strategy to rapidly detect glucose was developed by utilizing core (Fe3O4)-shell (Pt) magnetic nanoparticles (Fe3O4@Pt NPs) as a nanoenzyme and a paper-based colorimetric sensor. In the presence of H2O2, Fe3O4@Pt NPs catalyze the redox reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and generate a colour change from colourless to blue. On this basis, a colorimetric glucose sensing method assisted by glucose oxidase (GOx) was developed. Under the optimal conditions, the detection limits of the proposed assay for H2O2 and glucose were 0.36 µM and 1.27 µM, respectively. Furthermore, the fabricated colorimetric method was successfully applied to analyze glucose concentrations by using a paper device as a measuring platform without a spectrometer. In addition, this method exhibited satisfactory recovery for glucose detection in human serum samples and urine samples, which satisfied the requirements for normal detection of real samples. This study provides a good candidate for health monitoring of glucose and also expands the applications of nanoenzymes and paper-based colorimetric assays in point-of-care testing.
Collapse
Affiliation(s)
- Ye He
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Panlin Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaojing Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yahuang Li
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jiajun Wei
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Guoxi Cai
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kiyoshi Aoyagi
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
24
|
Facile Surfactant-Free synthesis of Pd-Sn1.1Nb2O5.5F0.9@SnO2 Core–Shell Nano-Octahedrons for efficient photocatalytic ethylene oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Liu M, Liu K, Gao C. Effects of Ligands on Synthesis and Surface‐Engineering of Noble Metal Nanocrystals for Electrocatalysis. ChemElectroChem 2022. [DOI: 10.1002/celc.202200651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Moxuan Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Kai Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| | - Chuanbo Gao
- Xi'an Jiaotong University Frontier Institute of Science and Technology 99 Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
26
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
27
|
Wang Z, Liu Z, Wang L, Zhao K, Sun X, Jia D, Liu J. Construction of core‐shell heterostructured nanoarrays of Cu(OH)2@NiFe‐layered double hydroxide via facile potentiostatic electrodeposition for highly efficient supercapacitors. ChemElectroChem 2022. [DOI: 10.1002/celc.202101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zihao Wang
- Qingdao University College of Materials Science and Engineering CHINA
| | - Zhiqiang Liu
- Qingdao University College of Materials Science and Engineering CHINA
| | - Lei Wang
- Qingdao University College of Materials Science and Engineering CHINA
| | - Kai Zhao
- Qingdao University College of Materials Science and Engineering CHINA
| | - Xiaolin Sun
- Qingdao University College of Materials Science and Engineering CHINA
| | - Dedong Jia
- Qingdao University College of Materials Science and Engineering CHINA
| | | |
Collapse
|
28
|
Ingenious design of ternary hollow nanosphere with shell hierarchical tandem heterojunctions toward optimized Visible-light photocatalytic reduction of U(VI). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
30
|
The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells. NANOMATERIALS 2022; 12:nano12020267. [PMID: 35055282 PMCID: PMC8780537 DOI: 10.3390/nano12020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022]
Abstract
An optimization work on dye-sensitized solar cells (DSSCs) based on both artificial and natural dyes was carried out by a fine synthesis work embedding gold nanoparticles in a TiO2 semiconductor and perfecting the TiO2 particle sizes of the scattering layer. Noble metal nanostructures are known for the surface plasmon resonance peculiarity that reveals unique properties and has been implemented in several fields such as sensing, photocatalysis, optical antennas and PV devices. By embedding gold nanoparticles in the mesoporous TiO2 layer and adding a scattering layer, we were able to boost the power conversion efficiency (PCE) to 10.8%, using an organic ruthenium complex. The same implementation was carried out using a natural dye, betalains, extracted from Sicilian prickly pear. In this case, the conversion efficiency doubled from 1 to 2% (measured at 1 SUN illumination, 100 mW/cm2 under solar simulation irradiation). Moreover, we obtained (measured at 0.1 SUN, 10 mW/cm2 under blue light LED irradiation) a record efficiency of 15% with the betalain-based dye, paving the way for indoor applications in organic natural devices. Finally, an attempt to scale up the system is shown, and a betalain-based- dye-sensitized solar module (DSSM), with an active area of 43.2 cm2 and a PCE of 1.02%, was fabricated for the first time.
Collapse
|
31
|
Agarwal S, Dutta A, Sarma D, Deori K. In situ fabrication of HDA-mediated NiFe–Fe 2O 3 nanorods: an efficient and recyclable heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolin-4(1 H)-ones in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj02046g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, facile and an effective route for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones via multi-component reactions using newly developed NiFe–Fe2O3 nanorods as heterogeneous catalysts.
Collapse
Affiliation(s)
- Soniya Agarwal
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Apurba Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Kalyanjyoti Deori
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India
| |
Collapse
|
32
|
Zhao Z, Wang Y, Delmas C, Mingotaud C, Marty JD, Kahn ML. Mechanistic insights into the anisotropic growth of ZnO nanoparticles deciphered through 2D size plots and multivariate analysis. NANOSCALE ADVANCES 2021; 3:6696-6703. [PMID: 36132654 PMCID: PMC9419515 DOI: 10.1039/d1na00591j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 06/16/2023]
Abstract
The control and understanding of the nucleation and growth of nano-objects are key points for improving and/or considering the new applications of a given material at the nanoscale. Mastering the morphology is essential as the final properties are drastically affected by the size, shape, and surface structure. Yet, a number of challenges remain, including evidencing and understanding the relationship between the experimental parameters of the synthesis and the shape of the nanoparticles. Here we analyzed jointly and in detail the formation of anisotropic ZnO nanoparticles under different experimental conditions by using two different analytical tools enabling the analysis of TEM images: 2D size plots and multivariate statistical analysis. Well-defined crystalline ZnO nanorods were obtained through the hydrolysis of a dicyclohexyl zinc precursor in the presence of a primary fatty amine. Such statistical tools allow one to fully understand the effect of experimental parameters such as the hydrolysis rate, the mixing time before hydrolysis, the length of the ligand aliphatic chain, and the amount of water. All these analyses suggest a growth process by oriented attachment. Taking advantage of this mechanism, the size and aspect ratio of the ZnO nanorods can be easily tuned. These findings shed light on the relative importance of experimental parameters that govern the growth of nano-objects. This general methodological approach can be easily extended to any type of nanoparticle.
Collapse
Affiliation(s)
- Zhihua Zhao
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Yinping Wang
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Céline Delmas
- MIAT, Université de Toulouse, INRA 31326 Castanet-Tolosan France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Myrtil L Kahn
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
| |
Collapse
|
33
|
Porous ZrO 2 encapsulated perovskite composite oxide for organic pollutants removal: Enhanced catalytic efficiency and suppressed metal leaching. J Colloid Interface Sci 2021; 596:455-467. [PMID: 33848748 DOI: 10.1016/j.jcis.2021.03.171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022]
Abstract
Cobalt-based perovskite material, an effective activator of PMS, is widely employed for wastewater remediation, but still affected by the leakage of the cobalt ions. In this study, a porous core-shell structured perovskite LaFe0.1Co0.9O3-λ/SiO2 core @ZrO2 shell (LFCS@ZrO2) was fabricated and partially etched to enlarge channels to further enhance mass transfer ability. The well-designed core-shell structure can not only restrain metal ion leaching by changing the surface microenvironment but also provide an additional driving force attributed to the enriched concentration gradient, thus enhancing the catalytic oxidation performance. Results showed that the partially etched LFCS@ZrO2 (eLFCS@ZrO2) particles exhibited an increased pore size and showed an attractive catalytic performance as well as a suppressed cobalt ion leaching (3.61 to 0.67 mg/L). Over 99% of tetracycline hydrochloride (20 mg/L) could be degraded in 15 min, and the reaction rate increased 2 folds compared with pristine LaFe0.1Co0.9O3-λ. Besides, quenching test and electron paramagnetic resonance analysis proved that sulfate radicals and singlet oxygen were the two predominant reactive oxygen species during the catalytic oxidation. This work provides a novel perspective for the fabrication of an environmentally friendly perovskite catalyst, which has a great potential application in organic pollutant degradation.
Collapse
|
34
|
Zhou S, Maeda M, Kubo M, Shimada M. One-step Synthesis of Gold@Silica Yolk-shell Nanoparticles with Catalytic Activity. CHEM LETT 2021. [DOI: 10.1246/cl.210266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shujun Zhou
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Makoto Maeda
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masaru Kubo
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Manabu Shimada
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
35
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
36
|
Datye AK, Votsmeier M. Opportunities and challenges in the development of advanced materials for emission control catalysts. NATURE MATERIALS 2021; 20:1049-1059. [PMID: 33020611 DOI: 10.1038/s41563-020-00805-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Advances in engine technologies are placing additional demands on emission control catalysts, which must now perform at lower temperatures, but at the same time be robust enough to survive harsh conditions encountered in engine exhaust. In this Review, we explore some of the materials concepts that could revolutionize the technology of emission control systems. These include single-atom catalysts, two-dimensional materials, three-dimensional architectures, core@shell nanoparticles derived via atomic layer deposition and via colloidal synthesis methods, and microporous oxides. While these materials provide enhanced performance, they will need to overcome many challenges before they can be deployed for treating exhaust from cars and trucks. We assess the state of the art for catalysing reactions related to emission control and also consider radical breakthroughs that could potentially completely transform this field.
Collapse
Affiliation(s)
- Abhaya K Datye
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.
| | - Martin Votsmeier
- Technical University of Darmstadt, Darmstadt, Germany.
- Umicore AG & Co. KG, Hanau, Germany.
| |
Collapse
|
37
|
Wang C, Wu H, Jie X, Zhang X, Zhao Y, Yao B, Xiao T. Yolk-Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO 2 Reforming of Methane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31699-31709. [PMID: 34191495 DOI: 10.1021/acsami.1c06847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Well-geometric-confined yolk-shell catalysts can act as nanoreactors that are of benefit for the antisintering of metals and resistance to coke formation in high-temperature reactions such as the CO2 reforming of methane. Notwithstanding the credible advances of core/yolk-shell catalysts, the enlarged shell diffusion effects that occur under high space velocity can deactivate the catalysts and hence pose a hurdle for the potential application of these types of catalysts. Here, we demonstrated the importance of the shell thickness and porosity of small-sized Ni@SiO2 nanoreactor catalysts, which can vary the diffusional paths/rates of the diffusants that directly affect the catalytic activity. The nanoreactor with an ∼4.5 nm shell thickness and rich pores performed the best in tolerating the shell diffusion effects, and importantly, no catalytic deactivation was observed. We further proposed a shell diffusion effect scheme by modifying the Weisz-Prater and blocker model and found that the "gas wall/hard blocker" formed on the openings of the shell pores can cause reversible/irreversible interruption of the shell mass transfer and thus temporarily/permanently deactivate the nanoreactor catalysts. This work highlights the shell diffusion effects, apart from the metal sintering and coke formation, as an important factor that are ascribed to the deactivation of a nanoreactor catalyst.
Collapse
Affiliation(s)
- Changzhen Wang
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Hao Wu
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiangyu Jie
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
- Merton College, University of Oxford, Oxford OX1 4JD, United Kingdom
| | - Xiaoming Zhang
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Yongxiang Zhao
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Benzhen Yao
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Tiancun Xiao
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
38
|
Arora G, Yadav M, Gaur R, Gupta R, Yadav P, Dixit R, Sharma RK. Fabrication, functionalization and advanced applications of magnetic hollow materials in confined catalysis and environmental remediation. NANOSCALE 2021; 13:10967-11003. [PMID: 34160507 DOI: 10.1039/d1nr01010g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic hollow-structured functional hybrid materials with unique architectures and preeminent properties have always been an area of extensive research. They represent a subtle collaboration of hollow architecture, mesoporous nanostructure and magnetic character. Owing to the merits of a large void space, low density, high specific surface area, well-defined active sites and facile magnetic recovery, these materials present promising application projections in numerous fields, such as drug delivery, adsorption, storage, catalysis and many others. In this review, recent progress in the design, synthesis, functionalization and applications of magnetic hollow-meso/nanostructured materials are discussed. The first part of the review has been dedicated to the preparation and functionalization of the materials. The synthetic protocols have been broadly classified into template-assisted and template-free methods and major trends in their synthesis have been elaborated in detail. Furthermore, the benefits and drawbacks of each method are compared. The later part summarizes the application aspects of confined catalysis in organic transformations and environmental remediation such as degradation of organic pollutants, dyes and antibiotics and adsorption of heavy metal ions. Finally, an outlook of future directions in this research field is highlighted.
Collapse
Affiliation(s)
- Gunjan Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | | | | | | | | | | | |
Collapse
|
39
|
Yang D, Fan R, Luo F, Chen Z, Gerson AR. Facile and green fabrication of efficient Au nanoparticles catalysts using plant extract via a mesoporous silica-assisted strategy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Single-parameter-tuned synthesis for shape-controlled gold nanocrystals stimulated by iron carbonyl. J Colloid Interface Sci 2021; 601:773-781. [PMID: 34102406 DOI: 10.1016/j.jcis.2021.05.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022]
Abstract
Shape-controlled synthesis is essential for functional nanomaterials, allowing deeper insights intothe relationship between the structures and the catalytic properties. Synthesis of nanocrystals with particular morphologies are usually studied independently among various synthetic methods, those underline that different surface capping ligands or shape-directing agents bring about disparate shapes. However, a single quantitative parameter method is still lacking to realize precise control of well-defined morphology nanocrystals, especially anisotropic structures, which is essential to understanding the growth process of nanocrystals. Herein, we proposed a single-parameter-tuned synthesis strategy for preparation of shape-controlled gold nanocrystals by regulating the amount of iron carbonyl, by which we produced highly monodisperse Au nanocrystals with various shapes in organic phase including nanoplates (diameter of 16.02 ± 1.13 nm and thickness of 5.35 ± 0.58 nm), nanorods (length of 37.53 ± 3.73 nm and width of 5.26 ± 0.37 nm) and nanospheres (diameter of 8.26 ± 0.38 nm). The single-parameter-tuned method reveals the dual roles of iron carbonyl for controlling the shapes of gold nanocrystals including reductant and oxidative etchant and empowers versatility in synthetic methodology for other noble metals. Moreover, catalytic activity shifting in shapes of nanocrystals was revealed based on the reduction of 4-nitrophenol, showing that the as-synthesized Au nanoplates displayed the enhanced catalytic performance with the lowest activation energy. Our work provides a brand-new pathway for shape-controlled synthesis of noble-metal nanocrystals and has a strong practical value in application fields.
Collapse
|
41
|
Ranadive P, Blanchette Z, Spanos A, Medlin JW, Brunelli N. Scalable synthesis of selective hydrodeoxygenation inverted Pd@TiO2 nanocatalysts. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Ellouzi I, Bouddouch A, Bakiz B, Benlhachemi A, Abou Oualid H. Glucose-assisted ball milling preparation of silver-doped biphasic TiO2 for efficient photodegradation of Rhodamine B: Effect of silver-dopant loading. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Lu Y, Guo D, Zhao Y, Moyo PS, Zhao Y, Wang S, Ma X. Enhanced catalytic performance of Nix-V@HSS catalysts for the DRM reaction: The study of interfacial effects on Ni-VOx structure with a unique yolk-shell structure. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Biomedical response under visible-light irradiation promoted by new hydrothermally synthesized SiO 2-Zn@Fe 2O 3 nanofibers. Photodiagnosis Photodyn Ther 2021; 34:102275. [PMID: 33812077 DOI: 10.1016/j.pdpdt.2021.102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022]
Abstract
In the presence of Fe3O4 nano-fibers, we prepared SiO2-Zn@Fe2O3 hybrid Nano-fibers through a novel and simple one-pot redox reaction between ZnSO4 & SiO2. The Fe3O4 exterior nano-fibers would be homogenously covered by SiO2 coating to arrange a distinctive core-shell construction and then Zn nanoparticles are intercalated in the covering of SiO2. The synthesized nanofibers were tested for photodegradation of methylene blue (MB). The result showed that 99 % MB was degraded in 60 min. Furthermore, the antibacterial potential of SiO2-Zn@Fe2O3 nanofibers was tested against E. coli and S. aureus bacteria both in light and dark. The impact of different analysis such as Reactive oxygen species (ROS) analysis, irradiation effect on bacterial inhibition, concentration effect of SiO2-Zn@Fe2O3 nanofibers and reduction of DPPH studied. The findings clearly demonstrate that ROS is produced in the presence of SiO2-Zn@Fe2O3 nanofibers in bacterial cells and is responsible for their inhibition. Findings have shown that synthesized nanostructures can also increase the stability of DPPH radicals with increasing concentrations of nanomaterials, making them a strong candidate for DPPH reduction. The overall results show that the efficacy of SiO2-Zn@Fe2O3 nanofibers for inhibition was more pronounced than that of individual iron oxides.
Collapse
|
45
|
Jia Z, Wen M, Xiong P, Yan J, Zhou W, Cheng Y, Zheng Y. Mussel bioinspired morphosynthesis of substrate anchored core-shell silver self-assemblies with multifunctionality for bioapplications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112025. [PMID: 33812641 DOI: 10.1016/j.msec.2021.112025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
Core-shell nanoparticles (CSNs) have numerous intriguing properties for advanced device applications, while it remains challenging to directly grow them from a solid substrate. Here, we report a simple mussel-bioinspired solid chemistry strategy for in-situ synthesis of CSNs that are substrate anchored and morphologically tunable for wide-ranging biotechnological applications. Briefly, silver titanate was hydrothermally grown on template titanium and subjected to reaction with mussel-derived dopamine. The synergistic reactivity between silver titanate and dopamine prompted nanosilver/polydopamine (nAg/PD) CSNs to spontaneously assemble and grow on substrate. These CSNs possessed reaction time-dependent dimensions and morphologies, which were related to differing physiochemical properties and biological behaviors. Specifically, the CSNs-modified substrates demonstrated enhanced protein affinity and durable radical scavenging properties. In addition, they manifested remarkable yet robust release-killing and anti-biofilm activities against pathogenic Staphylococcus aureus bacteria. More delightedly, the surface-engineered substrates guaranteed the victory of the anti-infective battle of osteoblastic cells during cell/bacteria coculture, promising applications in implantable medical devices. The adaptability of this strategy was demonstrated by modifying complicated 3D-printed macroporous tissue engineering scaffolds. Intriguingly, the CSNs-modified scaffolds exhibited photothermal performances that bode well for phototherapy. To sum, our strategy combines the simplicity of synthesis modality, the controllability of core-shell silver structures, and the versatility of material functions. The resulting assemblies can enrich the library of nAg-based core-shell engineered nanomaterials.
Collapse
Affiliation(s)
- Zhaojun Jia
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Min Wen
- Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pan Xiong
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianglong Yan
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wenhao Zhou
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Cheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
46
|
Ye RP, Wang X, Price CAH, Liu X, Yang Q, Jaroniec M, Liu J. Engineering of Yolk/Core-Shell Structured Nanoreactors for Thermal Hydrogenations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1906250. [PMID: 32406190 DOI: 10.1002/smll.201906250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Heterogeneous hydrogenation reactions are of great importance for chemical upgrading and synthesis, but still face the challenges of controlling selectivity and long-term stability. To improve the catalytic performance, many hydrogenation reactions utilize special yolk/core-shell nanoreactors (YCSNs) with unique architectures and advantageous properties. This work presents the developmental and technological challenges in the preparation of YCSNs that are potentially useful for hydrogenation reactions, and provides a summary of the properties of these materials. The work also addresses the scientific challenges in applications of these YCSNs in various gas and liquid-phase hydrogenation reactions. The catalyst structures, catalytic performance, structure-performance relationships, reaction mechanisms, and unsolved problems are discussed too. Also, a brief outlook and opportunities for future research in this field are presented. This work on the advancements in YCSNs might inspire the creation of new materials with desired structures for achieving maximal hydrogenation performances.
Collapse
Affiliation(s)
- Run-Ping Ye
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Cameron-Alexander Hurd Price
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mietek Jaroniec
- Department of Chemistry, Kent State University, Kent, OH, 44242, USA
| | - Jian Liu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| |
Collapse
|
47
|
Jiang J, Du L, Ding Y. Dehalogenation of Aryl Bromides by CuO/ZrO
2
in The Presence of Alcohols as Hydrogen Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202004592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Jiang
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Liyong Du
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| | - Yuqiang Ding
- International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering, Jiangnan University 1800 Lihu Road Wuxi 214122 P. R. China
| |
Collapse
|
48
|
Mukherjee A, Su WN, Pan CJ, Basu S. One pot synthesis of Pd@CuO core-shell nanoparticles for electro catalytic oxidation of ethylene glycol for alkaline direct fuel cell. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Wu X, Han R, Liu Q, Su Y, Lu S, Yang L, Song C, Ji N, Ma D, Lu X. A review of confined-structure catalysts in the catalytic oxidation of VOCs: synthesis, characterization, and applications. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00478f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This picture depicts the process of the catalytic oxidation of VOCs on confined-structure catalysts, which possess excellent activity and can effectively protect the active phase from aggregation and poisoning.
Collapse
|
50
|
Bustamante TM, Fraga MA, Fierro J, Campos CH, Pecchi G. Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|