1
|
Turdybekov KM, Nurkenov OA, Fazylov SD, Makhmutova AS, Turdybekov DM, Seilkhanov TM, Arinova AE. SYNTHESIS, CRYSTAL STRUCTURE, AND CONFORMATION OF N-ISONICOTINOYLPHTHALIMIDE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621080151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Singh P. Synthetic Approaches Towards the Synthesis of C-1 Azole Substituted Tetrahydroisoquinolines. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201228140959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C-1 substituted tetrahydroisoquinolines have emerged as important scaffolds in
pharmaceutical and medical research. Although various methods for α-substitution on tetrahydroisoquinolines
have been discovered, the introduction of the azole group at C-1 position
remains a challenge. Recently, direct C-H activation methods and multicomponent reactions
have been employed towards the synthesis of azole containing tetrahydroisoquinolines. A
summary of such synthetic strategies is presented here as these promising methods can help
in developing more efficient synthetic routes. This minireview covers the available synthetic
methods and their mechanistic pathways for the preparation of C-1 azole substituted tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Pushpinder Singh
- Department of Chemistry, DAV University, Jalandhar, Punjab, 144012, India
| |
Collapse
|
3
|
Cao WB, Jiang S, Li HY, Xu XP, Ji SJ. Synthesis of strained 1,2-diazetidines via [3 + 1] cycloaddition of C,N-cyclic azomethine imines with isocyanides and synthetic derivation. Org Chem Front 2021. [DOI: 10.1039/d1qo00130b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Strained diazetidines are assembled simply from 1,3-dipolar cycloaddition of isocyanides and C,N-cyclic azomethine imines, and their diversified transformations are presented.
Collapse
Affiliation(s)
- Wen-Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Shuai Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Hai-Yan Li
- Analysis and Testing Center
- Soochow University
- Suzhou 215123
- China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| |
Collapse
|
4
|
Cao W, Li S, Xu M, Li H, Xu X, Lan Y, Ji S. Hydrogen‐Bonding‐Promoted Cascade Rearrangement Involving the Enlargement of Two Rings: Efficient Access to Polycyclic Quinoline Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wen‐Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Shijun Li
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University Zhengzhou Henan 450001 China
| | - Meng‐Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Haiyan Li
- Analysis and Testing Center Soochow University Suzhou 215123 China
| | - Xiao‐Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University Zhengzhou Henan 450001 China
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| |
Collapse
|
5
|
Cao W, Li S, Xu M, Li H, Xu X, Lan Y, Ji S. Hydrogen‐Bonding‐Promoted Cascade Rearrangement Involving the Enlargement of Two Rings: Efficient Access to Polycyclic Quinoline Derivatives. Angew Chem Int Ed Engl 2020; 59:21425-21430. [DOI: 10.1002/anie.202008110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/13/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Wen‐Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Shijun Li
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University Zhengzhou Henan 450001 China
| | - Meng‐Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Haiyan Li
- Analysis and Testing Center Soochow University Suzhou 215123 China
| | - Xiao‐Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University Zhengzhou Henan 450001 China
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
| |
Collapse
|
6
|
Nazeri MT, Farhid H, Mohammadian R, Shaabani A. Cyclic Imines in Ugi and Ugi-Type Reactions. ACS COMBINATORIAL SCIENCE 2020; 22:361-400. [PMID: 32574488 DOI: 10.1021/acscombsci.0c00046] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ugi four-component reactions (U-4CRs) are widely recognized as being highly efficient for the synthesis of pseudopeptides. However, the products of these reactions are not so interesting as drug candidates because they are not conformationally restricted enough for a potent interaction with biological targets. One possible way to overcome this problem is to replace amine and oxo components in the U-4CRs with cyclic imines in so-called Joullié-Ugi three-component reactions (JU-3CRs). This approach provides a robust single-step route to peptide moieties connected to N-heterocyclic motifs that are found as core skeletons in many natural products and pharmaceutical compounds. JU-3CRs also provide much better diastereoselectivity than their four-component analogues. We survey here the redesign of many synthetic routes for the efficient preparation of a wide variety of three-, five-, six-, and seven-membered heterocyclic compounds connected to the peptide backbone. Additionally, in the Ugi reactions based on the cyclic imines, α-acidic isocyanides, or azides can be replaced with normal isocyanides or acids, respectively, leading to the synthesis of N-heterocycles attached to oxazoles or tetrazoles, which are of great pharmaceutical significance. This Review includes all research articles related to Ugi reactions based on the cyclic imines to the year 2020 and will be useful to chemists in designing novel synthetic routes for the synthesis of individual and combinatorial libraries of natural products and drug-like compounds.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Reza Mohammadian
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| |
Collapse
|
7
|
Zhang D, Liu J, Kang Z, Qiu H, Hu W. A rhodium-catalysed three-component reaction to access C1-substituted tetrahydroisoquinolines. Org Biomol Chem 2019; 17:9844-9848. [PMID: 31724684 DOI: 10.1039/c9ob02303h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A rhodium-catalyzed three-component reaction of diazo compounds, anilines and C,N-cyclic azomethine imines via trapping of transient ammonium ylides was developed. This reaction provided a simple and convenient approach for the synthesis of pharmaceutically intriguing tetrahydroisoquinoline derivatives in moderate to good yields (36-85%) with good diastereoselectivities (up to 95 : 5 dr) under mild reaction conditions.
Collapse
Affiliation(s)
- Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Tetrazole derivatives are a prime class of heterocycles, very important to medicinal chemistry and drug design due to not only their bioisosterism to carboxylic acid and amide moieties but also to their metabolic stability and other beneficial physicochemical properties. Although more than 20 FDA-approved drugs contain 1 H- or 2 H-tetrazole substituents, their exact binding mode, structural biology, 3D conformations, and in general their chemical behavior is not fully understood. Importantly, multicomponent reaction (MCR) chemistry offers convergent access to multiple tetrazole scaffolds providing the three important elements of novelty, diversity, and complexity, yet MCR pathways to tetrazoles are far from completely explored. Here, we review the use of multicomponent reactions for the preparation of substituted tetrazole derivatives. We highlight specific applications and general trends holding therein and discuss synthetic approaches and their value by analyzing scope and limitations, and also enlighten their receptor binding mode. Finally, we estimated the prospects of further research in this field.
Collapse
Affiliation(s)
- Constantinos G. Neochoritis
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Ting Zhao
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
9
|
One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process. Mol Divers 2017; 22:291-303. [PMID: 29230611 DOI: 10.1007/s11030-017-9801-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.
Collapse
|
10
|
Four-component, five-centered, one-pot synthesis of 1-(1H-tetrazol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole derivatives. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
A new efficient synthesis of highly functionalized alizarins from alizarin, acetylenic esters, and isocyanides. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-015-1643-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Sadjadi S, Heravi MM, Nazari N. Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Adv 2016. [DOI: 10.1039/c6ra02143c] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this review, we update our previous presentation, underscoring the recent applications of isocyanides as privileged synthons in the synthesis of various heterocyclic compounds, especially focused on those synthesizedviamulticomponent reactions.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department
- Faculty of Petrochemicals
- Iran Polymer and Petrochemical Institute
- Tehran
- Iran
| | - Majid M. Heravi
- Department of Chemistry
- School of Science
- Alzahra University
- Tehran
- Iran
| | - Niousha Nazari
- Department of Chemistry
- School of Science
- Alzahra University
- Tehran
- Iran
| |
Collapse
|
13
|
Koptelov YB, Molchanov AP, Kostikov RR. Regio- and diastereoselective cycloaddition of stable cyclic azomethine imines to N-arylitaconimides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015080126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Cao C, Wang W, Zhang F, Huang N, Zou K. TMSCl Promoted Direct sp3C-H Alkenylation to Construct (E)-2-Styryl-tetrahydrobenzo[d]thiazoles. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol Divers 2015; 20:185-232. [DOI: 10.1007/s11030-015-9596-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023]
|
16
|
Efremova MM, Molchanov AP, Stepakov AV, Kostikov RR, Shcherbakova VS, Ivanov AV. A highly efficient [3+2] cycloaddition of nitrile oxides and azomethine imines to N-vinylpyrroles. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Ukaji Y, Soeta T. Development of New Synthetic Methods for Heterocycles Utilizing 1,3-Dipoles. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yutaka Ukaji
- School of Chemistry, College of Science and Engineering, Kanazawa University
| | | |
Collapse
|
18
|
Shinde AH, Archith N, Malipatel S, Sharada DS. A facile one-pot protocol for the synthesis of tetrazolyl-tetrahydroisoquinolines via novel domino intramolecular cyclization/Ugi-azide sequence. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
N-Imide Ylide-Based Reactions: CH Functionalization, Nucleophilic Addition and Cycloaddition. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400631] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Soeta T, Ohgai T, Sakai T, Fujinami S, Ukaji Y. Ring enlargement reaction of C,N-cyclic-N'-acyl azomethine imines with sulfonium ylide: an efficient synthesis of 3-benzazepine derivatives. Org Lett 2014; 16:4854-7. [PMID: 25198375 DOI: 10.1021/ol502347n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Highly efficient formation of 3-benzazepine derivatives has been achieved, based on the ring expansion reaction of C,N-cyclic-N'-acyl azomethine imines with sulfonium ylide generated in situ from the corresponding sulfonium salt. The reactions proceeded smoothly to afford the tricyclic 3-benzazepine derivatives in good to high yields. A wide range of C,N-cyclic N'-acyl azomethine imines were applicable to this reaction.
Collapse
Affiliation(s)
- Takahiro Soeta
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University , Kakuma, Kanazawa 920-1192, Japan
| | | | | | | | | |
Collapse
|
21
|
Soeta T, Tamura K, Ukaji Y. [4+1] Cycloaddition of N-acylimine derivatives with isocyanides: efficient synthesis of 5-aminooxazoles and 5-aminothiazoles. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Soeta T, Ukaji Y. Carboxylic acid free novel isocyanide-based reactions. CHEM REC 2014; 14:101-16. [PMID: 24449481 DOI: 10.1002/tcr.201300021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 01/03/2023]
Abstract
In order to develop a practical method for the construction of drug-like and heterocyclic compounds, we have designed a novel Passerini- or Ugi-type reaction system where a compound (which we write in the general form as Z-X) composed of an electrophilic (Z) and a nucleophilic group (X) could essentially perform the same function as the carboxylic acid. Based on this concept, we have developed the O-silylative Passerini reaction and the borinic acid catalyzed α-addition of isocyanides to aldehydes and water. In addition, we have designed and demonstrated the addition reaction of isocyanides to nitrones in the presence of TMSCl to afford the corresponding 1,2,3,4-tetrahydroisoquinoline-1-carboxyamides. Furthermore, a novel [5 + 1] cycloaddition of isocyanide was explored with C,N-cyclic N'-acyl azomethine imines as a "1,5-dipole" via a strategy involving intramolecular trapping of the isocyanide.
Collapse
Affiliation(s)
- Takahiro Soeta
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | | |
Collapse
|