1
|
Wang M, Zhang L, Li Y, Gu L. Imidazole Promoted Efficient Anomerization of β‐D‐Glucose Pentaacetate in Solid State and Reaction Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meifeng Wang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources Hunan University of Science and Engineering Yongzhou 425199 China
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liyin Zhang
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| | - Yiqun Li
- Department of Chemistry Jinan University, #601, Huangpu Avenue West Guangzhou China
| | - Liuqun Gu
- Department of Biomedical Engineering Jinan University; #601 Huangpu Avenue West Guangzhou China
| |
Collapse
|
2
|
Geng F, Wu S, Gan X, Hou W, Dong J, Zhou Y. TEMPO mediated oxidative annulation of aryl methyl ketones with amines/ammonium acetate for imidazole synthesis. Org Biomol Chem 2022; 20:5416-5422. [PMID: 35748805 DOI: 10.1039/d2ob00828a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of 1H-imidazoles by direct oxidative annulation of aryl methyl ketones and primary amines has been developed in the presence of TEMPO under weakly acidic conditions. By replacing amines with ammonium acetate, 2H-imidazole skeletons were achieved for the first time from ketones. Substrates containing various functional groups, such as alkyl, aryl, naphthyl, halogen (F, Cl, Br, I), nitro, trifluoromethyl, sulfonyl ester, furyl, thienyl, and pyridyl groups, were readily transformed into the desired products. The application potential of this method was verified by the scale-up synthesis and Sonogashira coupling functionalization of imidazoles. Mechanistically, the α-TEMPO-enamine adduct may serve as the key reaction intermediate.
Collapse
Affiliation(s)
- Furong Geng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China. .,School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.
| | - Shaofeng Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xinyang Gan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wenjuan Hou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
3
|
Mustopa AZ, Meilina L, Irawan S, Ekawati N, Fathurahman AT, Triratna L, Kusumawati A, Prastyowati A, Nurfatwa M, Hertati A, Harmoko R. Construction, expression, and in vitro assembly of virus-like particles of L1 protein of human papillomavirus type 52 in Escherichia coli BL21 DE3. J Genet Eng Biotechnol 2022; 20:19. [PMID: 35132511 PMCID: PMC8821762 DOI: 10.1186/s43141-021-00281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
A major discovery in human etiology recognized that cervical cancer is a consequence of an infection caused by some mucosatropic types of human papillomavirus (HPV). Since L1 protein of HPV is able to induce the formation of neutralizing antibodies, it becomes a protein target to develop HPV vaccines. Therefore, this study aims to obtain and analyze the expression of HPV subunit recombinant protein, namely L1 HPV 52 in E. coli BL21 DE3. The raw material used was L1 HPV 52 protein, while the synthetic gene, which is measured at 1473 bp in pD451-MR plasmid, was codon-optimized (ATUM) and successfully integrated into 5643 base pairs (bps) of pETSUMO. Bioinformatic studies were also conducted to analyze B cell epitope, T cell epitope, and immunogenicity prediction for L1HPV52 protein.
Results
The pETSUMO-L1HPV52 construct was successfully obtained in a correct ligation size when it was cut with EcoRI. Digestion by EcoRI revealed a size of 5953 and 1160 bps for both TA cloning petSUMO vector and gene of interest, respectively. Furthermore, the right direction of construct pETSUMO-L1HPV52 was proven by PCR techniques using specific primer pairs then followed by sequencing, which shows 147 base pairs. Characterization of L1 HPV 52 by SDS-PAGE analysis confirms the presence of a protein band at a size of ~55 kDa with 6.12 mg/L of total protein concentration. Observation under by transmission electron microscope demonstrates the formation of VLP-L1 at a size between 30 and 40 nm in assembly buffer under the condition of pH 5.4. Based on bioinformatics studies, we found that there are three B cell epitopes (GFPDTSFYNPET, DYLQMASEPY, KEKFSADLDQFP) and four T cell epitopes (YLQMASEPY, PYGDSLFFF, DSLFFFLRR, MFVRHFFNR). Moreover, an immunogenicity study shows that among all the T cell epitopes, the one that has the highest affinity value is DSLFFFLRR for Indonesian HLAs.
Conclusion
Regarding the achievement on successful formation of L1 HPV52-VLPs, followed by some possibilities found from bioinformatics studies, this study suggests promising results for future development of L1 HPV type 52 vaccine in Indonesia.
Collapse
|
4
|
Dutta S, Corni S, Brancolini G. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide-Nanoparticle Complex. Int J Mol Sci 2021; 22:3624. [PMID: 33807225 PMCID: PMC8037132 DOI: 10.3390/ijms22073624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular modeling of a supramolecular catalytic system is conducted resulting from the assembling between a small peptide and the surface of cationic self-assembled monolayers on gold nanoparticles, through a multiscale iterative approach including atomistic force field development, flexible docking with Brownian Dynamics and µs-long Molecular Dynamics simulations. Self-assembly is a prerequisite for the catalysis, since the catalytic peptides do not display any activity in the absence of the gold nanocluster. Atomistic simulations reveal details of the association dynamics as regulated by defined conformational changes of the peptide due to peptide length and sequence. Our results show the importance of a rational design of the peptide to enhance the catalytic activity of peptide-nanoparticle conjugates and present a viable computational approach toward the design of enzyme mimics having a complex structure-function relationship, for technological and nanomedical applications.
Collapse
Affiliation(s)
- Sutapa Dutta
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy;
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy;
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Giorgia Brancolini
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
5
|
Horowitz A, Shaul G, Silverstein MS. One‐pot emulsion templating for simultaneous hydrothermal carbonization and hydrogel synthesis: porous structures, nitrogen contents and activation. POLYM INT 2021. [DOI: 10.1002/pi.6215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adi Horowitz
- Department of Materials Science and Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Gil Shaul
- Department of Materials Science and Engineering Technion – Israel Institute of Technology Haifa Israel
| | - Michael S Silverstein
- Department of Materials Science and Engineering Technion – Israel Institute of Technology Haifa Israel
| |
Collapse
|
6
|
Brovč EV, Mravljak J, Šink R, Pajk S. Degradation of polysorbates 20 and 80 catalysed by histidine chloride buffer. Eur J Pharm Biopharm 2020; 154:236-245. [PMID: 32693155 DOI: 10.1016/j.ejpb.2020.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
Abstract
Polysorbates are amphiphilic, non-ionic surfactants, and they represent one of the key components of biopharmaceuticals. They serve as stabilisers, and their degradation can cause particle formation, which has been an industry-wide issue over the past decade. To determine the influence of the buffers most frequently used in biopharmaceuticals on polysorbate degradation, an accelerated stability study was carried out using placebo formulations containing 0.02% polysorbates and 20 mM buffers (pH 5.5, 6.5). These included histidine chloride, sodium citrate, sodium succinate and sodium phosphate buffers. The rate of polysorbate degradation was highest in histidine chloride buffer, and therefore we further focused on the mechanism here. The predominant degradation pathway of polysorbates in this buffer was ester hydrolysis, catalysed by the imidazole moiety of the histidine. Interestingly, the presence of therapeutic proteins in the formulations slowed histidine-catalysed degradation of polysorbates in 50% of cases, with negligible degradation seen otherwise. This emphasises the complex nature of the interactions between the components of biopharmaceutical drug products. Nonetheless, there are disadvantages of using histidine chloride buffers in biopharmaceuticals that contain polysorbates. Careful consideration should be given to selection of excipients used in parenteral formulations, whereby compatibility between buffer and surfactant is of key importance.
Collapse
Affiliation(s)
- Ema Valentina Brovč
- University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; Global Drug Development, Technical Research & Development, Novartis, Biologics Technical Development Mengeš, Drug Product Development Biosimilars, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia
| | - Janez Mravljak
- University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Roman Šink
- Global Drug Development, Technical Research & Development, Novartis, Biologics Technical Development Mengeš, Drug Product Development Biosimilars, Lek Pharmaceuticals d.d., Kolodvorska 27, SI-1234 Mengeš, Slovenia.
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, The Chair of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Podgórski M, Worrell BT, Sinha J, McBride MK, Bowman CN. Thermal Metamorphosis in (Meth)acrylate Photopolymers: Stress Relaxation, Reshaping, and Second-Stage Reaction. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
- Department of Polymer Chemistry, Faculty of Chemistry, Maria Curia-Sklodowska University, pl. Marii Curie-Sklodowskiej 5, 20-031 Lublin, Poland
| | - Brady T. Worrell
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Matthew K. McBride
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Dey N, Ali A, Podder S, Majumdar S, Nandi D, Bhattacharya S. Dual-Mode Optical Sensing of Histamine at Nanomolar Concentrations in Complex Biological Fluids and Living Cells. Chemistry 2017; 23:11891-11897. [DOI: 10.1002/chem.201702208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012, Karnataka India
| | - Asfa Ali
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012, Karnataka India
| | - Santosh Podder
- Department of Biochemistry; Indian Institute of Science; Bangalore 560012, Karnataka India
| | - Shamik Majumdar
- Department of Biochemistry; Indian Institute of Science; Bangalore 560012, Karnataka India
| | - Dipankar Nandi
- Department of Biochemistry; Indian Institute of Science; Bangalore 560012, Karnataka India
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012, Karnataka India
- Present address: Director's research unit; Indian Association for the Cultivation of Science; Jadavpur 700032, West Bengal India
| |
Collapse
|
9
|
Sakamoto K, Tsuda S, Mochizuki M, Nohara Y, Nishio H, Yoshiya T. Imidazole-Aided Native Chemical Ligation: Imidazole as a One-Pot Desulfurization-Amenable Non-Thiol-Type Alternative to 4-Mercaptophenylacetic Acid. Chemistry 2016; 22:17940-17944. [DOI: 10.1002/chem.201604320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ken Sakamoto
- Peptide Institute, Inc.; 7-2-9 Saito-Asagi, Ibaraki-shi Osaka 567-0085 Japan
| | - Shugo Tsuda
- Peptide Institute, Inc.; 7-2-9 Saito-Asagi, Ibaraki-shi Osaka 567-0085 Japan
| | - Masayoshi Mochizuki
- Peptide Institute, Inc.; 7-2-9 Saito-Asagi, Ibaraki-shi Osaka 567-0085 Japan
| | - Yukie Nohara
- Peptide Institute, Inc.; 7-2-9 Saito-Asagi, Ibaraki-shi Osaka 567-0085 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; 7-2-9 Saito-Asagi, Ibaraki-shi Osaka 567-0085 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; 7-2-9 Saito-Asagi, Ibaraki-shi Osaka 567-0085 Japan
| |
Collapse
|
10
|
Gulseren G, Yasa IC, Ustahuseyin O, Tekin ED, Tekinay AB, Guler MO. Alkaline Phosphatase-Mimicking Peptide Nanofibers for Osteogenic Differentiation. Biomacromolecules 2015; 16:2198-208. [DOI: 10.1021/acs.biomac.5b00593] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gulcihan Gulseren
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey, 06800
| | - I. Ceren Yasa
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey, 06800
| | - Oya Ustahuseyin
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey, 06800
| | - E. Deniz Tekin
- Faculty
of Engineering, University of Turkish Aeronautical Association, Ankara, Turkey, 06790
| | - Ayse B. Tekinay
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey, 06800
| | - Mustafa O. Guler
- Institute
of Materials Science and Nanotechnology, National Nanotechnology Research
Center (UNAM), Bilkent University, Ankara, Turkey, 06800
| |
Collapse
|
11
|
Gogoi A, Sarmah G, Dewan A, Bora U. Unique copper–salen complex: an efficient catalyst for N-arylations of anilines and imidazoles at room temperature. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|