1
|
Synthesis of naturally occurring β-l-arabinofuranosyl-l-arabinofuranoside structures towards the substrate specificity evaluation of β-l-arabinofuranosidase. Bioorg Med Chem 2022; 68:116849. [PMID: 35653870 DOI: 10.1016/j.bmc.2022.116849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Methyl β-l-arabinofuranosyl-(1 → 2)-, -(1 → 3)-, and -(1 → 5)-α-l-arabinofuranosides have been stereoselectively synthesized through 2-naphthylmethyl ether-mediated intramolecular aglycon delivery (NAP-IAD), whose β-linkages were confirmed by NMR analysis on the 3JH1-H2 coupling constant and 13C chemical shift of C1. The NAP-IAD approach was simply extended for the synthesis of trisaccharide motifs possessing β-l-arabinofuranosyl-(1 → 5)-l-arabinofuranosyl non-reducing terminal structure with the branched β-l-arabinofuranosyl-(1 → 5)-[α-l-arabinofuranosyl-(1 → 3)]-α-l-arabinofuranosyl and the liner β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl structures in olive arabinan and dinoflagellate polyethers, respectively. The results on the substrate specificity of a bifidobacterial β-l-arabinofuranosidase HypBA1 using the regioisomers indicated that HypBA1 could hydrolyze all three linkages however behaved clearly less active to β-(1 → 5)-linked disaccharide than other two regioisomers including the proposed natural degradation product, β-(1 → 2)-linked one from plant extracellular matrix such as extensin. On the other hand, Xanthomonas XeHypBA1 was found to hydrolyze all three disaccharides as the substrate with higher specificity to β-(1 → 2)-linkage than bifidobacterial HypBA1.
Collapse
|
2
|
Towards a Synthetic Strategy for the Ten Canonical Carrageenan Oligosaccharides - Synthesis of a Protected γ-Carrageenan Tetrasaccharide. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Hastwell AH, Corcilius L, Williams JT, Gresshoff PM, Payne RJ, Ferguson BJ. Triarabinosylation is required for nodulation-suppressive CLE peptides to systemically inhibit nodulation in Pisum sativum. PLANT, CELL & ENVIRONMENT 2019; 42:188-197. [PMID: 29722016 DOI: 10.1111/pce.13325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 05/23/2023]
Abstract
Legumes form root nodules to house beneficial nitrogen-fixing rhizobia bacteria. However, nodulation is resource demanding; hence, legumes evolved a systemic signalling mechanism called autoregulation of nodulation (AON) to control nodule numbers. AON begins with the production of CLE peptides in the root, which are predicted to be glycosylated, transported to the shoot, and perceived. We synthesized variants of nodulation-suppressing CLE peptides to test their activity using petiole feeding to introduce CLE peptides into the shoot. Hydroxylated, monoarabinosylated, and triarabinosylated variants of soybean GmRIC1a and GmRIC2a were chemically synthesized and fed into recipient Pisum sativum (pea) plants, which were used due to the availability of key AON pathway mutants unavailable in soybean. Triarabinosylated GmRIC1a and GmRIC2a suppressed nodulation of wild-type pea, whereas no other peptide variant tested had this ability. Suppression also occurred in the supernodulating hydroxyproline O-arabinosyltransferase mutant, Psnod3, but not in the supernodulating receptor mutants, Pssym29, and to some extent, Pssym28. During our study, bioinformatic resources for pea became available and our analyses identified 40 CLE peptide-encoding genes, including orthologues of nodulation-suppressive CLE peptides. Collectively, we demonstrated that soybean nodulation-suppressive CLE peptides can function interspecifically in the AON pathway of pea and require arabinosylation for their activity.
Collapse
Affiliation(s)
- April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - James T Williams
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Corcilius L, Hastwell AH, Zhang M, Williams J, Mackay JP, Gresshoff PM, Ferguson BJ, Payne RJ. Arabinosylation Modulates the Growth-Regulating Activity of the Peptide Hormone CLE40a from Soybean. Cell Chem Biol 2017; 24:1347-1355.e7. [PMID: 28943356 DOI: 10.1016/j.chembiol.2017.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/05/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022]
Abstract
Small post-translationally modified peptide hormones mediate crucial developmental and regulatory processes in plants. CLAVATA/ENDOSPERM-SURROUNDING REGION (CLE) genes are found throughout the plant kingdom and encode for 12-13 amino acid peptides that must often undergo post-translational proline hydroxylation and glycosylation with O-β1,2-triarabinose moieties before they become functional. Apart from a few recent examples, a detailed understanding of the structure and function of most CLE hormones is yet to be uncovered. This is mainly owing to difficulties in isolating mature homogeneously modified CLE peptides from natural plant sources. In this study, we describe the efficient synthesis of a synthetic Araf3Hyp glycosylamino acid building block that was used to access a hitherto uninvestigated CLE hormone from soybean called GmCLE40a. Through the development and implementation of a novel in vivo root growth assay, we show that the synthetic triarabinosylated glycopeptide suppresses primary root growth in this important crop species.
Collapse
Affiliation(s)
- Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mengbai Zhang
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James Williams
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Pfrengle F. Synthetic plant glycans. Curr Opin Chem Biol 2017; 40:145-151. [PMID: 29024888 DOI: 10.1016/j.cbpa.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022]
Abstract
For more than a century the primary carbon source for the production of fuels, chemicals and many materials has been fossil resources. Recently, plant polysaccharides from non-food biomass have emerged as a promising renewable alternative that may displace a significant fraction of petroleum-derived products. As a food source, plant polysaccharides can provide beneficial effects on the human immune system in the form of dietary fiber. Despite the strong impact of plant glycans on society and human health, their chemical synthesis remains largely unexplored compared to the synthesis of mammalian and bacterial glycans. Synthetic glycans such as described in this review provide an important toolbox for studying the role of carbohydrates in plant biology and their interaction with human health.
Collapse
Affiliation(s)
- Fabian Pfrengle
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Tilve MJ, Cori CR, Gallo-Rodriguez C. Regioselective 5-O-Opening of Conformationally Locked 3,5-O-Di-tert-butylsilylene-d-galactofuranosides. Synthesis of (1→5)-β-d-Galactofuranosyl Derivatives. J Org Chem 2016; 81:9585-9594. [PMID: 27673745 DOI: 10.1021/acs.joc.6b01562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of thiogalactofuranoside as donors for the construction of internal Galf containing oligosaccharide is limited, probably due to the difficulty to functionalize thiogalactofuranoside derivatives showing O-2, O-3, and O-5 with similar reactivity. An efficient method for complete regioselective 5-O-opening of conformationally restricted 3,5-O-di-tert-butylsilylene-d-galactofuranoside derivatives was developed. The use of a solution nBu4NF (1.1 equiv) in CH2Cl2 on 6 gave the 5-OH free derivative 10 as the only product (90%). 3-O-Di-tert-butylhydroxysilyl derivative 10 was stable upon purification and glycosylation reaction. Preactivation of conformationally restricted thioglycoside 6 employing p-NO2-benzensulfenyl chloride/AgOTf followed by condensation over the 5-OH thioglycoside acceptor 10 gave the corresponding disaccharide 12 without autocondensation byproduct. Regioselective 5-O-deprotection was also successfully performed over the (1→5)-β-d-galactofuranosyl di- and trisaccharide derivatives 12 and 13. This methodology allowed the differentiation between the secondary hydroxyl groups OH-3 and OH-5 of 1,2-cis or 1,2-trans d-galactofuranoside derivatives, and it still constitutes an innovative approach to access oligosaccharides of pharmacological importance.
Collapse
Affiliation(s)
- Mariano J Tilve
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| | - Carmen R Cori
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- CIHIDECAR, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria , Pabellón II, 1428 Buenos Aires, Argentina
| |
Collapse
|
8
|
Tilve MJ, Gallo-Rodriguez C. Conformationally restricted 3,5-O-(di-tert-butylsilylene)-d-galactofuranosyl thioglycoside donor for 1,2-cis α-d-galactofuranosylation. Carbohydr Res 2014; 397:7-17. [DOI: 10.1016/j.carres.2014.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
|
9
|
Ishiwata A, Kaeothip S, Takeda Y, Ito Y. Synthesis of the Highly Glycosylated Hydrophilic Motif of Extensins. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Ishiwata A, Kaeothip S, Takeda Y, Ito Y. Synthesis of the Highly Glycosylated Hydrophilic Motif of Extensins. Angew Chem Int Ed Engl 2014; 53:9812-6. [DOI: 10.1002/anie.201404904] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 01/08/2023]
|
11
|
Kaeothip S, Ishiwata A, Ito T, Fushinobu S, Fujita K, Ito Y. Preparation of p-nitrophenyl β-l-arabinofuranoside as a substrate of β-l-arabinofuranosidase. Carbohydr Res 2013; 382:95-100. [PMID: 24239541 DOI: 10.1016/j.carres.2013.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/30/2013] [Accepted: 10/07/2013] [Indexed: 01/09/2023]
Abstract
Synthesis of p-nitrophenyl β-l-arabinofuranoside 1 as the substrate for novel β-l-arabinofuranosidase has been achieved by using both our inter- and intra-molecular glycosylation methodologies. Although the intermolecular glycosylation with l-Araf donors 3 and 4 resulted in a mixture of both α- and β-isomers, NAP ether-mediated IAD with 3 and 6 afforded the desired β-l-arabinofuranoside stereospecifically which was confirmed by NMR analysis on the (3)JH1-H2 coupling constant and (13)C chemical shift of C1. As expected, 1 has been revealed to be an efficient substrate in the biological study of a novel β-arabinofuranosidase such as HypBA1 with higher apparent affinity compared with other reported substrates.
Collapse
Affiliation(s)
- Sophon Kaeothip
- ERATO Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|