1
|
Goi S, Shigeta H, Takahashi D, Toshima K. Photo-induced glycosylation using the edible polyphenol curcumin. Org Biomol Chem 2024; 22:5546-5551. [PMID: 38814007 DOI: 10.1039/d4ob00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photo-induced glycosylations of trichloroacetimidate donors and alcohols using an edible polyphenol, curcumin, were examined under visible photo-irradiation (470 nm). It was found, for the first time, that these glycosylations proceed smoothly under mild reaction conditions to give the corresponding glycosides in high yields. In addition, the present glycosylation method was applicable to a wide range of trichloroacetimidate donors and alcohol acceptors and showed high chemoselectivity over glycosyl phosphite, phosphate, (N-phenyl)trifluoroacetimidate, fluoride, glycal and thioglycoside.
Collapse
Affiliation(s)
- Satomi Goi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Hidenari Shigeta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
2
|
Duong T, Valenzuela EA, Ragains JR. Benzyne-Promoted, 1,2- cis-Selective O-Glycosylation with Benzylchalcogenoglycoside Donors. Org Lett 2023; 25:8526-8529. [PMID: 37970840 PMCID: PMC10696609 DOI: 10.1021/acs.orglett.3c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Here, we show that the reaction of benzylchalcogenoglycosides with benzyne in the presence of alcohols results in highly 1,2-cis-selective O-glycosylation in a solvent-dependent manner. Thioglycosides, selenoglycosides, and alcohols with a range of nucleophilicities lead to a productive reaction, and unusual protecting groups, auxiliary groups, and additives are avoided.
Collapse
Affiliation(s)
- Tiffany Duong
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Erik Alvarez Valenzuela
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| | - Justin R. Ragains
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
3
|
Tsutsui Y, Tanaka D, Manabe Y, Ikinaga Y, Yano K, Fukase K, Konishi A, Yasuda M. Synthesis of Cage‐Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation. Chemistry 2022; 28:e202202284. [DOI: 10.1002/chem.202202284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yuya Tsutsui
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Daiki Tanaka
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yuka Ikinaga
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kumpei Yano
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- Forefront Research Center Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Akihito Konishi
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
- Center for Atomic and Molecular Technologies Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Makoto Yasuda
- Department of Applied Chemistry Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
4
|
Cai L, Meng L, Zeng J, Wan Q. Sequential activation of thioglycosides enables one-pot glycosylation. Org Chem Front 2021. [DOI: 10.1039/d0qo01414a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent developments in relative reactivity value (RRV) controlled sequential glycosylation, pre-activation based iterative glycosylation, and sulfoxide activation initiated one-pot glycosylation.
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
5
|
Ghosh T, Mukherji A, Kancharla PK. Influence of Anion-Binding Schreiner's Thiourea on DMAP Salts: Synergistic Catalysis toward the Stereoselective Dehydrative Glycosylation from 2-Deoxyhemiacetals. J Org Chem 2021; 86:1253-1261. [PMID: 33352053 DOI: 10.1021/acs.joc.0c02473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amines are used as additives to facilitate or increase the host-guest chemistry between the thiourea and the anions of Bronsted acids. However, we here demonstrate, for the first time, the synergistic effect of the combination of DMAP/HCl/Schreiner's thiourea in catalyzing dehydrative glycosylation. The variations in the electronic effects of the cationic Bronsted acid part (the protonated DMAP) in the presence of chloride binding Schreiner's thiourea have been discussed using NMR and X-ray crystallographic techniques.
Collapse
Affiliation(s)
- Titli Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
6
|
Takahashi D. Development and Application of Boronic-Acid-Catalyzed Regioselective and 1,2-cis-Stereoselective Glycosylation. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|
7
|
Iibuchi N, Eto T, Aoyagi M, Kurinami R, Sakai H, Hasobe T, Takahashi D, Toshima K. Photo-induced glycosylation using a diaryldisulfide as an organo-Lewis photoacid catalyst. Org Biomol Chem 2020; 18:851-855. [PMID: 31939472 DOI: 10.1039/c9ob02674f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-induced glycosylations of several acceptors with trichloroacetimidate donors using bis(2-naphthyl)disulfide as an organo-Lewis photoacid (LPA) catalyst proceeded effectively to give the corresponding glycosides in good to high yields. In addition, the ground and excited state absorption spectra of bis(2-naphthyl)disulfide with or without NEt3 suggested the Lewis acidity of bis(2-naphthyl)disulfide upon photo-irradiation.
Collapse
Affiliation(s)
- Naoto Iibuchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Takahiro Eto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Manabu Aoyagi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Reiji Kurinami
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
8
|
Shimada N, Fukuhara K, Urata S, Makino K. Total syntheses of seminolipid and its analogues by using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent. Org Biomol Chem 2019; 17:7325-7329. [PMID: 31353379 DOI: 10.1039/c9ob01445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise total synthesis of seminolipid, a sulfoglycolipid, has been achieved; key features include regioselective, tin-free sulfation of allyl β-d-galactopyranoside using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent, stereoselective epoxidation, and site-selective acylation. The utility of this divergent synthetic approach to introduce 2,2,2-trichloroethyl-protected sulfate group at an early stage without toxic and environmentally unfavorable tin reagents was demonstrated by the syntheses of three seminolipid analogues with different side-chains from the common intermediate.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
9
|
Krumb M, Lucas T, Opatz T. Visible Light Enables Aerobic Iodine Catalyzed Glycosylation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Matthias Krumb
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Tobias Lucas
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Till Opatz
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
10
|
Shimada N, Urata S, Fukuhara K, Tsuneda T, Makino K. 2,6-Bis(trifluoromethyl)phenylboronic Esters as Protective Groups for Diols: A Protection/Deprotection Protocol for Use under Mild Conditions. Org Lett 2018; 20:6064-6068. [PMID: 30226778 DOI: 10.1021/acs.orglett.8b02427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The application of 2,6-bis(trifluoromethyl)phenyl boronic acid ( o-FXylB(OH)2; o-FXyl = 2,6-(CF3)2C6H3) as a recoverable and reusable protective agent for diols is described. The resulting cyclic boronic esters are water- and air-stable and tolerant to various organic transformations. Moreover, they can be deprotected under mild conditions. This methodology was applied to the synthesis of a highly conjugated enetriyne natural product with anti-angiogenic activities.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Sari Urata
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Kenji Fukuhara
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| | - Takao Tsuneda
- Fuel Cell Nanomaterials Center , University of Yamanashi , Kofu 400-0021 , Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences , Kitasato University , Tokyo 108-8641 , Japan
| |
Collapse
|
11
|
Abstract
Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.
Collapse
Affiliation(s)
- Clay S. Bennett
- Department
of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
12
|
Stereoselective oxidative glycosylation of anomeric nucleophiles with alcohols and carboxylic acids. Nat Commun 2018; 9:3650. [PMID: 30194299 PMCID: PMC6128909 DOI: 10.1038/s41467-018-06016-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/03/2018] [Indexed: 11/10/2022] Open
Abstract
Oligosaccharides, one of the most abundant biopolymers, are involved in numerous biological processes. Although many efforts have been put in preparative carbohydrate chemistry, achieving optimal anomeric and regioselectivities remains challenging. Herein we describe an oxidative glycosylation method between anomeric stannanes and oxygen nucleophiles resulting in the formation of a C−O bond with consistently high anomeric control for glycosyl donors bearing a free C2-hydroxyl group. These reactions are promoted by hypervalent iodine reagents with catalytic or stoichiometric amounts of Cu or Zn salts. The generality of this transformation is demonstrated in 42 examples. Mechanistic studies indicate that the oxidative glycosylation is initiated by the hydroxyl-guided delivery of the hypervalent iodine and tosylate into the anomeric position, and results in excellent 1,2-trans selectivity. The unique mechanistic paradigm, high selectivities, and mild reaction conditions make this method suitable for the synthesis of oligosaccharides and for integration with other methodologies such as automated synthesis. Glycosylation of partially protected sugars is usually limited by suboptimal regio- and stereo-selectivities. Here, the authors show a general oxidative glycosylation between anomeric stannanes with a nonprotected hydroxyl group and oxygen nucleophiles, additionally providing mechanistic insights into the origin of selectivity.
Collapse
|
13
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
14
|
Xia MJ, Yao W, Meng XB, Lou QH, Li ZJ. Co 2 (CO) 6 -propargyl cation mediates glycosylation reaction by using thioglycoside. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Abstract
Photocatalytic formation of glycosidic bonds employing stable and readily accessible O-glycosyl derivatives of 2,2,6,6-tetramethylpiperidin-1-ol is presented that employs an iridium-based photocatalyst and blue LEDs. The reaction proceeds at room temperature and in the absence of additives other than 4 Å molecular sieves. Stereoselectivities are modest but nevertheless dependent on the anomeric configuration of the donor, suggesting a substantial degree of concerted character.
Collapse
Affiliation(s)
- Peng Wen
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
16
|
Nishi N, Nashida J, Kaji E, Takahashi D, Toshima K. Regio- and stereoselective β-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. coli O75. Chem Commun (Camb) 2017; 53:3018-3021. [DOI: 10.1039/c7cc00269f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A novel regio- and stereoselective β-mannosylation using 1,2-anhydromannose and a diol sugar acceptor in the presence of a boronic acid catalyst and its application are reported.
Collapse
Affiliation(s)
- Nobuya Nishi
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Junki Nashida
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Eisuke Kaji
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
17
|
Sangwan R, Mandal PK. Recent advances in photoinduced glycosylation: oligosaccharides, glycoconjugates and their synthetic applications. RSC Adv 2017. [DOI: 10.1039/c7ra01858d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbohydrates have been demonstrated to perform imperative act in biological processes. This review highlights recent uses of photoinduced glycosylation in carbohydrate chemistry for the synthesis of oligosaccharides, thiosugars, glycoconjugates and glycoprotein.
Collapse
Affiliation(s)
- Rekha Sangwan
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
18
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
19
|
Kimura T, Eto T, Takahashi D, Toshima K. Stereocontrolled Photoinduced Glycosylation Using an Aryl Thiourea as an Organo photoacid. Org Lett 2016; 18:3190-3. [DOI: 10.1021/acs.orglett.6b01404] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tomoya Kimura
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takahiro Eto
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry,
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
20
|
Spell ML, Deveaux K, Bresnahan CG, Bernard BL, Sheffield W, Kumar R, Ragains JR. A Visible-Light-Promoted O
-Glycosylation with a Thioglycoside Donor. Angew Chem Int Ed Engl 2016; 55:6515-9. [DOI: 10.1002/anie.201601566] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Mark L. Spell
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Kristina Deveaux
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Caitlin G. Bresnahan
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Bradley L. Bernard
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - William Sheffield
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Revati Kumar
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Justin R. Ragains
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| |
Collapse
|
21
|
Spell ML, Deveaux K, Bresnahan CG, Bernard BL, Sheffield W, Kumar R, Ragains JR. A Visible-Light-Promoted O
-Glycosylation with a Thioglycoside Donor. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601566] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark L. Spell
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Kristina Deveaux
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Caitlin G. Bresnahan
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Bradley L. Bernard
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - William Sheffield
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Revati Kumar
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Justin R. Ragains
- Department of Chemistry; Louisiana State University; 232 Choppin Hall Baton Rouge LA 70803 USA
| |
Collapse
|
22
|
Mao RZ, Xiong DC, Guo F, Li Q, Duan J, Ye XS. Light-driven highly efficient glycosylation reactions. Org Chem Front 2016. [DOI: 10.1039/c6qo00021e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient light-driven glycosylation strategy was developed with wide substrate scope/generality.
Collapse
Affiliation(s)
- Run-Ze Mao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Fan Guo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Jinyou Duan
- College of Science
- Northwest A&F University
- Yangling
- China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
23
|
Mao RZ, Guo F, Xiong DC, Li Q, Duan J, Ye XS. Photoinduced C–S Bond Cleavage of Thioglycosides and Glycosylation. Org Lett 2015; 17:5606-9. [DOI: 10.1021/acs.orglett.5b02823] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Run-Ze Mao
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Fan Guo
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - De-Cai Xiong
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Qin Li
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Jinyou Duan
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin-Shan Ye
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
24
|
Nakagawa A, Tanaka M, Hanamura S, Takahashi D, Toshima K. Regioselective and 1,2-cis-α-Stereoselective Glycosylation Utilizing Glycosyl-Acceptor-Derived Boronic Ester Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201504182] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Nakagawa A, Tanaka M, Hanamura S, Takahashi D, Toshima K. Regioselective and 1,2-cis-α-Stereoselective Glycosylation Utilizing Glycosyl-Acceptor-Derived Boronic Ester Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Meng B, Zhu Z, Baker DC. 1,2-cis Alkyl glycosides: straightforward glycosylation from unprotected 1-thioglycosyl donors. Org Biomol Chem 2015; 12:5182-91. [PMID: 24915049 DOI: 10.1039/c4ob00626g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1,2-cis-alkyl glycosidation protocol that makes use of unprotected phenyl 1-thioglycosyl donors is reported. Glycosylation of various functionalized alcohols was accomplished in moderate to high yield and selectivity to give the 1,2-cis-glycosides. In order to quickly develop optimum glycosylation conditions, an FIA (flow injection analysis)-ESI-TOF-MS method was developed that enabled rapid and quantitative evaluation of yield on small scale. This methodology, coupled with NMR spectroscopy, allowed for rapid evaluation of the overall reactions.
Collapse
Affiliation(s)
- Bo Meng
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, USA.
| | | | | |
Collapse
|
27
|
Bohé L, Crich D. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art. Carbohydr Res 2015; 403:48-59. [PMID: 25108484 PMCID: PMC4281519 DOI: 10.1016/j.carres.2014.06.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022]
Abstract
An overview of recent advances in glycosylation with particular emphasis on mechanism is presented. The mounting evidence for both the existence of glycosyl oxocarbenium ions as fleeting intermediates in some reactions, and the crucial role of the associated counterion in others is discussed. The extremes of the SN1 and SN2 manifolds for the glycosylation reaction are bridged by a continuum of mechanisms in which it appears likely that most examples are located.
Collapse
Affiliation(s)
- Luis Bohé
- Centre de Recherche de Gif, CNRS, Institut de Chimie des Substances Naturelles, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| |
Collapse
|
28
|
Lian G, Zhang X, Yu B. Thioglycosides in Carbohydrate Research. Carbohydr Res 2015; 403:13-22. [DOI: 10.1016/j.carres.2014.06.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022]
|
29
|
Iwata R, Uda K, Takahashi D, Toshima K. Photo-induced glycosylation using reusable organophotoacids. Chem Commun (Camb) 2014; 50:10695-8. [PMID: 25079918 DOI: 10.1039/c4cc04753b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycosylation reactions of glycosyl trichloroacetimidates and several alcohols using an organophotoacid as an activator under photoirradiation proceeded smoothly to give the corresponding glycosides in high yields. The organophotoacid was recovered and reused without any loss of efficiency.
Collapse
Affiliation(s)
- Ryosuke Iwata
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | |
Collapse
|