1
|
Luo Z, Zhang X, Li Z, Luo M, Zeng X. Mild ketyl radical generation and coupling with alkynes enabled by Cr catalysis: stereoselective access to E-exocyclic allyl alcohols. Chem Sci 2024; 15:11428-11434. [PMID: 39054998 PMCID: PMC11268464 DOI: 10.1039/d4sc02967d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The mild catalytic generation of ketyl radicals for organic transformations remains an unsolved issue, although it facilitates the discovery of metal-catalyzed reactions with the features of high functional group tolerance. Here, we report the generation of the ketyl radicals and coupling with alkynes that was enabled by cost-effective chromium catalysis, allowing for the formation of valuable E-exocyclic allyl alcohols with high stereo- and chemoselectivity. A broad range of synthetically useful functional groups that are sensitive to strong reductants are compatible with the catalytic system, providing access to diverse substituted E-exocyclic allyl alcohols under mild conditions. Appended hydroxyl groups in products are facilely late-stage functionalized in accessing numerous derivatives, as well as the enantio-enrichment of exocyclic allyl alcohol using chiral ligands. Mechanistic studies suggest that bipyridine-ligated Cr(ii) complex serves as a reactive catalyst enabling the generation of the ketyl radical for coupling, giving vinyl radical, followed by the combination of Cr and transmetalation with Cp2ZrCl moiety in affording oxazirconiumacycle. This reaction provides a new opportunity for the mild formation of transient ketyl radicals from widely accessible aliphatic aldehydes for coupling with Earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zaiyang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
2
|
Tang N, Zachmann RJ, Xie H, Zheng J, Breit B. Visible-light induced metal-free intramolecular reductive cyclisations of ketones with alkynes and allenes. Chem Commun (Camb) 2023; 59:2122-2125. [PMID: 36723349 DOI: 10.1039/d2cc06972e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A visible-light-induced, intramolecular, reductive cyclisation of ketones with an unsaturated hydrocarbon moiety was developed. In contrast to conventional protocols requiring resource precious or hazardous metal sources, this method enables facile access to ketyl radicals under metal-free and mild reaction conditions. By polarity-reversed, ketyl radical hydroalkoxylation of alkynes and allenes, a variety of five-membered (hetero-)cyclic products were generated in good yields with good to excellent stereoselectivities. The embedded homoallylic tertiary alcohol could be transformed into other useful functionalities, highlighting the synthetic utility of this reaction. This efficient and sustainable ketyl-alkyne/allene cross coupling also features broad functional group tolerance and scalability.
Collapse
Affiliation(s)
- Nana Tang
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Raphael J Zachmann
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| |
Collapse
|
3
|
Szych LS, Pilopp Y, Bresien J, Villinger A, Rabeah J, Schulz A. Ein persistentes phosphanyl‐substituiertes Thioketylradikalanion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lilian Sophie Szych
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Yannic Pilopp
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Jonas Bresien
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Alexander Villinger
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| | - Axel Schulz
- Institut für Chemie Universität Rostock Albert-Einstein-Straße 3a 18059 Rostock Deutschland
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| |
Collapse
|
4
|
Schulz A, Szych LS, Pilopp Y, Bresien J, Villinger A, Rabeah J. A Persistent Phosphanyl-Substituted Thioketyl Radical Anion. Angew Chem Int Ed Engl 2021; 61:e202114792. [PMID: 34843637 PMCID: PMC9303638 DOI: 10.1002/anie.202114792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/05/2022]
Abstract
Alkali metal salts, M+[Ter(iPr)P−C(=S)−P(iPr)2S].− (M=Na, K; 2_M; Ter=2,6‐bis‐(2,4,6‐trimethylphenyl)phenyl) containing a room‐temperature‐stable thioketyl radical anion were obtained by reduction of the thioketone precursor, Ter(iPr)P−C(=S)−P(iPr)2S (1), with alkali metals (Na, K). Single‐crystal X‐ray studies as well as EPR spectroscopy revealed the unequivocal existence of a thioketyl radical anion in the solid state and in solution, respectively. The computed Mulliken spin density within 2_M is mainly located at the sulfur (49 %) and the carbonyl carbon (33 %) atoms. Upon adding [2.2.2]‐cryptand to the radical species 2_K to minimize the interionic interaction, an activation reaction was observed, yielding a potassium salt with a phosphanyl thioether based anion, [K(crypt)]+[Ter(iPr)P−C(−S‐iPr)−P(iPr)2S]− (3) as the product of an intermolecular shift of an iPr group from a second anion. The products were fully characterized and application of the radical anion as a reducing agent was demonstrated.
Collapse
Affiliation(s)
- Axel Schulz
- Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059, Rostock, GERMANY
| | - Lilian Sophie Szych
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Yannic Pilopp
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Jonas Bresien
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Alexander Villinger
- Universität Rostock Mathematisch-Naturwissenschaftliche Fakultät: Universitat Rostock Mathematisch-Naturwissenschaftliche Fakultat, Chemie, GERMANY
| | - Jabor Rabeah
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV, Chemie, GERMANY
| |
Collapse
|
5
|
Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Recent advances in the chemistry of ketyl radicals. Chem Soc Rev 2021; 50:5349-5365. [PMID: 33972956 PMCID: PMC8111543 DOI: 10.1039/d0cs00358a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketyl radicals are valuable reactive intermediates for synthesis and are used extensively to construct complex, functionalized products from carbonyl substrates. Single electron transfer (SET) reduction of the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O bond of aldehydes and ketones is the classical approach for the formation of ketyl radicals and metal reductants are the archetypal reagents employed. The past decade has, however, witnessed significant advances in the generation and harnessing of ketyl radicals. This tutorial review highlights recent, exciting developments in the chemistry of ketyl radicals by comparing the varied contemporary – for example, using photoredox catalysts – and more classical approaches for the generation and use of ketyl radicals. The review will focus on different strategies for ketyl radical generation, their creative use in new synthetic protocols, strategies for the control of enantioselectivity, and detailed mechanisms where appropriate. Ketyl radicals are valuable reactive intermediates for synthesis. This review highlights exciting recent developments in the chemistry of ketyl radicals by comparing contemporary and more classical approaches for their generation and use.![]()
Collapse
Affiliation(s)
- Áron Péter
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | |
Collapse
|
6
|
Palanivel A, Mubeen S, Warner T, Ahmed N, Clive DLJ. Formation of Enol Ethers by Radical Decarboxylation of α-Alkoxy β-Phenylthio Acids. J Org Chem 2019; 84:12542-12552. [PMID: 31462047 DOI: 10.1021/acs.joc.9b02042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enol ethers are formed by radical decarboxylation of α-alkoxy β-phenylthio acids via the corresponding Barton esters. The phenylthio acids were usually made by the known regioselective reaction of α,β-epoxy acids with PhSH in the presence of InCl3, followed by O-alkylation of the resulting alcohol. In one case, thiol addition to an α,β-unsaturated ethoxymethyl ester was used.
Collapse
Affiliation(s)
- Ashokkumar Palanivel
- Chemistry Department , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Sidra Mubeen
- Chemistry Department , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Thomas Warner
- Chemistry Department , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Nayeem Ahmed
- Chemistry Department , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Derrick L J Clive
- Chemistry Department , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
7
|
Lu Y, Zhao S, Zhou S, Chen SC, Luo T. Enantioselective syntheses and application of 4-epi-galiellalactone and the corresponding activity-based probe: from strained bicycles to strained tricycles. Org Biomol Chem 2019; 17:1886-1892. [PMID: 30183048 DOI: 10.1039/c8ob01915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The [6,5,5] tricyclic fungal metabolite galiellalactone is a Michael acceptor that has been demonstrated to be a covalent inhibitor for Signal Transducer and Activator of Transcription 3 (STAT3). Recognizing the ring strain associated with the skeleton of this natural product, we utilized 1R-5S-bicyclo[3.1.0]hexan-2-one as the starting material and developed two novel approaches to accomplish the enantioselective total synthesis of the C4 epimer of galiellalactone in 5 and 7 steps, respectively, which capitalized on an efficient radical cyclization/fragmentation cascade reaction. Furthermore, an activity-based probe of 4-epi-galiellalactone with a terminal alkyne tag was successfully prepared to enable the experiments of activity-based protein profiling (ABPP). Through western blot and proteomic analysis, we not only confirmed the known target STAT3, but also identified a new target protein ataxin-7, which formed a covalent bond with the probe in intact cells via the Cys-129 residue.
Collapse
Affiliation(s)
- Yandong Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
8
|
Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Thirty Years of (TMS)3SiH: A Milestone in Radical-Based Synthetic Chemistry. Chem Rev 2018; 118:6516-6572. [DOI: 10.1021/acs.chemrev.8b00109] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Yannick Landais
- University of Bordeaux, Institute of Molecular Sciences, UMR-CNRS 5255, 351 cours de la libération, 33405 Talence Cedex, France
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin-Madison, 1552 University Avenue, Madison, Wisconsin 53726, United States
| |
Collapse
|
9
|
Feuillastre S, Pelotier B, Piva O. Stereoselective Access to Trisubstituted Cyclopentanols from Chiral Unsaturated Oxo Esters by Ketyl Radical Cyclization. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Santoso H, Casana MI, Donner CD. Exploring O-stannyl ketyl and acyl radical cyclizations for the synthesis of γ-lactone-fused benzopyrans and benzofurans. Org Biomol Chem 2014; 12:171-6. [DOI: 10.1039/c3ob42090f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|