1
|
Sachdeva H, Khaturia S, Saquib M, Khatik N, Khandelwal AR, Meena R, Sharma K. Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents. Appl Biochem Biotechnol 2022; 194:6438-6467. [PMID: 35900713 DOI: 10.1007/s12010-022-04099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.
Collapse
Affiliation(s)
- Harshita Sachdeva
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India.
| | - Sarita Khaturia
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh (Sikar), Rajasthan, India
| | - Mohammad Saquib
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Narsingh Khatik
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | | | - Ravina Meena
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | - Khushboo Sharma
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| |
Collapse
|
2
|
Gao YQ, Hou Y, Chen J, Zhen Y, Xu D, Zhang H, Wei H, Xie W. Asymmetric synthesis of 9-alkyl tetrahydroxanthenones via tandem asymmetric Michael/cyclization promoted by chiral phosphoric acid. Org Biomol Chem 2021; 19:348-354. [PMID: 33300926 DOI: 10.1039/d0ob02140g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem asymmetric Michael-addition/cyclization of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed by chiral phosphoric acid is presented. This protocol provides a facile approach for the construction of enantioenriched 9-alkyl tetrahydroxanthenones, an ubiquitous framework found in a number of natural products and pharmaceutical molecules, in high yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Dongyang Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongli Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongbo Wei
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China. and Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Escolano M, Torres Fernández J, Rabasa-Alcañiz F, Sánchez-Roselló M, Pozo CD. Enantioselective Synthesis of Pyrrolizidinone Scaffolds through Multiple-Relay Catalysis. Org Lett 2020; 22:9433-9438. [PMID: 33253590 DOI: 10.1021/acs.orglett.0c03344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A triple-tandem protocol for the synthesis of the pyrrolizidinone skeleton has been devised. It involves a cross metathesis-intramolecular aza-Michael reaction-intramolecular Michael addition tandem sequence, starting from N-pentenyl-4-oxo-2-alkenamides and conjugated ketones. In the presence of two cooperative catalysts, namely the second-generation Hoveyda-Grubbs catalyst and (R)-TRIP-derived BINOL phosphoric acid, this multiple-relay catalytic process takes place in good yields and outstanding levels of diastero- and enantioselectivity with the simultaneous generation of three contiguous stereocenters.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Javier Torres Fernández
- Department of Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Fernando Rabasa-Alcañiz
- Department of Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| |
Collapse
|
4
|
Smetanin IA, Agafonova AV, Rostovskii NV, Khlebnikov AF, Yufit DS, Novikov MS. Stereoselective assembly of 3,4-epoxypyrrolines via nucleophilic addition induced domino cyclization of 6-halo-1-oxa-4-azahexatrienes. Org Chem Front 2020. [DOI: 10.1039/c9qo01401b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly convergent assembly of 3,4-epoxypyrroline derivatives from azirines, diazo compounds and amines is developed based on the domino cyclization of 6-halo-1-oxa-4-azahexatrienes.
Collapse
Affiliation(s)
- Ilia A. Smetanin
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| | | | | | | | | | - Mikhail S. Novikov
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| |
Collapse
|
5
|
El Bouakher A, Martel A, Comesse S. α-Halogenoacetamides: versatile and efficient tools for the synthesis of complex aza-heterocycles. Org Biomol Chem 2019; 17:8467-8485. [DOI: 10.1039/c9ob01683j] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review presents the use of α-alkyl- and α-alkoxy-halogenoacetamides as powerful partners for domino and 1,3-dipolar cycloaddition reactions resulting in a ring closure.
Collapse
Affiliation(s)
| | - Arnaud Martel
- IMMM
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | | |
Collapse
|
6
|
Ashokkumar V, Siva A, Ramaswamy Chidambaram R. A highly enantioselective asymmetric Darzens reaction catalysed by proline based efficient organocatalysts for the synthesis of di- and tri-substituted epoxides. Chem Commun (Camb) 2018; 53:10926-10929. [PMID: 28930307 DOI: 10.1039/c7cc06194c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of easily available and readily tunable proline based chiral organocatalysts was found to efficiently catalyse an unprecedented highly enantioselective asymmetric Darzens reaction of α-chloroketones and substituted α-chloroketones with various aldehydes, which directly produces optically active di- and tri-substituted chiral epoxides with higher product yields (up to 97%) and excellent ee's (up to 99%) under mild reaction conditions.
Collapse
Affiliation(s)
- Veeramanoharan Ashokkumar
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu-625 021, India.
| | | | | |
Collapse
|
7
|
Pashev AS, Burdzhiev NT, Stanoeva ER. Synthetic Approaches toward the Benzo[a]quinolizidine System. A Review. ORG PREP PROCED INT 2016. [DOI: 10.1080/00304948.2016.1234820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Szcześniak P, Ulikowski A, Staszewska-Krajewska O, Lipner G, Furman B. Stereoselective synthesis of benzoquinolizidines and related homologues via intramolecular addition to dihydropyridones. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Selvakumar J, Rao RS, Srinivasapriyan V, Marutheeswaran S, Ramanathan CR. Synthesis of Condensed Tetrahydroisoquinoline Class of Alkaloids by Employing TfOH-Mediated Imide Carbonyl Activation. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Guo J, Yu S. Enantioselective synthesis of benzoindolizidine derivatives using chiral phase-transfer catalytic intramolecular domino aza-Michael addition/alkylation. Org Biomol Chem 2015; 13:1179-86. [DOI: 10.1039/c4ob02227k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and enantioselective strategy to synthesize benzoindolizidinesviadomino intramolecular aza-Michael addition/alkylation was developed.
Collapse
Affiliation(s)
- Jiajia Guo
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
11
|
Lapinsky DJ. Three-Membered Ring Systems. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-100024-3.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Cheng S, Yu S. Enantioselective synthesis of 3-substituted 1,2-oxazinanes via organocatalytic intramolecular aza-Michael addition. Org Biomol Chem 2014; 12:8607-10. [PMID: 25272305 DOI: 10.1039/c4ob01646g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective intramolecular 6-exo-trig aza-Michael addition was developed to afford chiral 3-substituted 1,2-oxazinanes in high yields (up to 99% yield) and good enantioselectivities (up to 98/2 er). These reactions were enabled by a quinine-derived primary-tertiary diamine as a catalyst and pentafluoropropionic acid (PFP) as a co-catalyst.
Collapse
Affiliation(s)
- Shuanghua Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | | |
Collapse
|