1
|
Embo-Ibouanga AW, Nguyen M, Paloque L, Joly JP, Bikanga R, Augereau JM, Robert A, Audran G, Mellet P, Boissier J, Benoit-Vical F, Marque SRA. Dynamic covalent bonding (DCB): the bond lability of alkoxyamines as drugs against Schistosoma mansoni and Plasmodium falciparum. Org Biomol Chem 2025; 23:734-743. [PMID: 39623943 DOI: 10.1039/d4ob01644k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Dynamic covalent bonding (DCB) has been a rising concept for the past several years in materials sciences. This article describes how the bond lability involved in DCB is applied to develop drugs against tropical parasitic diseases such as malaria and bilharziasis. Recently, we showed that some alkoxyamines (typical molecules exhibiting DCB) exhibit in vitro activities against S. mansoni (for A8L, 100% worm mortality in 48 hours at 10 μg ml-1) and P. falciparum (for A8L, IC50 = 270 nM). Here, the combination of enzymatic-physical (solvent effect) activation or of enzymatic-chemical (acetal hydrolysis) activation is used to develop alkoxyamines that show activity against both parasites. The enzymatic step controls the specificity of the drug.
Collapse
Affiliation(s)
- Ange W Embo-Ibouanga
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France.
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Lucie Paloque
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Patrick Joly
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France.
| | - Raphaël Bikanga
- Université des Sciences et Techniques de Masuku, LASNSOM, Franceville BP 901, Gabon.
| | - Jean-Michel Augereau
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Gérard Audran
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France.
| | - Philippe Mellet
- INSERM, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France.
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France
| | - Jérôme Boissier
- IHPE, CNRS, Ifremer, University Perpignan Via, Domitia, 66860 Perpignan, France
| | - Françoise Benoit-Vical
- Laboratoire de Chimie de Coordination (LCC-CNRS) and, New Antimalarial Molecules and Pharmacological Approaches (MAAP), Inserm ERL 1289, Université de Toulouse, CNRS, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Sylvain R A Marque
- Aix-Marseille University, CNRS, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France.
| |
Collapse
|
2
|
Fauvel E, Moussounda Moussounda Koumba T, El Kadiry F, Maria S, Rollet M, Maresca M, Siri D, Clément JL, Gigmes D, Nechab M. Through Space π-Electrons Communication in [2,2]-Paracyclophanes: Unprecendented Stabilization of Radicals. Angew Chem Int Ed Engl 2024:e202422253. [PMID: 39714450 DOI: 10.1002/anie.202422253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Efforts to understand radical stability have led to considerable progress in radical chemistry. In this article, we investigated a novel approach to enhancing the radical stability of carbon-centered radicals through space electron delocalization within [2,2]-paracyclophanes. Alkoxyamines possessing a paracyclophane scaffold exploit face-to-face π-π-interactions between the aromatic rings to effectively lower bond dissociation energy (BDE) for NO-C bond homolysis. Electron spin resonance (ESR) experiments and computational modeling have confirmed a better stability compared to the analogues without the paracyclophane core. Theoretical analyses further elucidate the role of through-space electron communication in enhancing radical stability. This study highlights promising applications in fields such as organic synthesis, material science, and drug design. By achieving a low BDE for homolysis, the alkoxyamines efficiently release radicals, enabling successful application in nitroxide-mediated polymerization (NMP) of styrene, which provides high control over polymer architecture. Additionally, preliminary anti-proliferative assays reveal that the alkoxyamines exhibit promising anti-cancer activities against lung, breast, and prostate cells, which is correlated to their ability to release radicals upon homolysis.
Collapse
Affiliation(s)
- Eléa Fauvel
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | | | - Firas El Kadiry
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2 UMR 7313, 13013, Marseille, France
| | - Sébastien Maria
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Marion Rollet
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2 UMR 7313, 13013, Marseille, France
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | | | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, ICR UMR 7273, 13013, Marseille, France
| |
Collapse
|
3
|
Innocent M, Tanguy C, Gavelle S, Aubineau T, Guérinot A. Iron-Catalyzed, Light-Driven Decarboxylative Alkoxyamination. Chemistry 2024; 30:e202401252. [PMID: 38736425 DOI: 10.1002/chem.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
An iron-catalyzed visible-light driven decarboxylative alkoxyamination is disclosed. In the presence of FeBr2 and TEMPO, a large array of carboxylic acids including marketed drugs and biobased molecules is turned into the corresponding alkoxyamine derivatives. The versatility of the latter offers an entry towards molecular diversity generation from abundant starting materials and catalyst. Overall, this method proposes a unified and general approach for LMCT-based iron-catalyzed decarboxylative functionalization.
Collapse
Affiliation(s)
- Milan Innocent
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Clément Tanguy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Sigrid Gavelle
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Thomas Aubineau
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
4
|
Piris P, Buric D, Yamasaki T, Huchedé P, Rossi M, Matteudi M, Montero MP, Rodallec A, Appay R, Roux C, Combes S, Pasquier E, Castets M, André N, Brémond P, Carré M. Conditional generation of free radicals by selective activation of alkoxyamines: towards more effective and less toxic targeting of brain tumors. Chem Sci 2023; 14:7988-7998. [PMID: 37502321 PMCID: PMC10370576 DOI: 10.1039/d3sc01315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors are an important cause of suffering and death. Glioblastoma are the most frequent primary tumors of the central nervous system in adults. They are associated with a very poor prognosis, since only 10% of GBM patients survive 5 years after diagnosis. Medulloblastoma are the most frequent brain malignancies in childhood; they affect the cerebellum in children under 10 years of age in 75% of cases. The current multimodal treatment comes at the expense of serious and often long-lasting side effects. Herein, we propose the synthesis of a library of novel alkoxyamines as anticancer drug candidates. The most efficient molecule, ALK4, was selected based on its ability to inhibit both survival and migration of GBM and MB cells in 2D cultures and in 3D tumor spheroids. A fluorescent derivative was used to show the early cytosolic accumulation of ALK4 in tumor cells. Spontaneous homolysis of ALK4 led to the release of alkyl radicals, which triggered the generation of reactive oxygen species, fragmentation of the mitochondrial network and ultimately apoptosis. To control its homolytic process, the selected alkoxyamine was bioconjugated to a peptide selectively recognized by matrix metalloproteases. This bioconjugate, named ALK4-MMPp, successfully inhibited survival, proliferation, and invasion of GBM and MB tumor micromasses. We further developed innovative brain and cerebellum organotypic models to monitor treatment response over time. It confirmed that ALK4-MMPp significantly impaired tumor progression, while no significant damage was observed on normal brain tissue. Lastly, we showed that ALK4-MMPp was well-tolerated in vivo by zebrafish embryos. This study provides a new strategy to control the activation of alkoxyamines, and revealed the bioconjugate ALK4-MMPp bioconjugate as a good anticancer drug candidate.
Collapse
Affiliation(s)
- Patricia Piris
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Duje Buric
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Toshihide Yamasaki
- Institut de Chimie Radicalaire, CNRS UMR7273, Aix-Marseille Université - Faculté des Sciences Marseille France
| | - Paul Huchedé
- Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard Lyon France
| | - Maïlys Rossi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Mélanie Matteudi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Marie-Pierre Montero
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Anne Rodallec
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Romain Appay
- Service D'anatomie Pathologique et de Neuropathologie, Hôpital de La Timone, Assistance Publique-Hôpitaux de Marseille (APHM) Marseille France
| | - Christine Roux
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Sébastien Combes
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
- DOSynth Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Faculté de Pharmacie Marseille France
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| | - Marie Castets
- Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard Lyon France
| | - Nicolas André
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
- Service D'Hématologie & Oncologie Pédiatrique, Hôpital de La Timone, Assistance Publique-Hôpitaux de Marseille (APHM) Marseille France
| | - Paul Brémond
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
- DOSynth Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Faculté de Pharmacie Marseille France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie Marseille France
| |
Collapse
|
5
|
Qian B, Zhang L, Zhang G, Fu Y, Zhu X, Shen G. Thermodynamic Evaluation on Alkoxyamines of TEMPO Derivatives, Stable Alkoxyamines or Potential Radical Donors? ChemistrySelect 2022. [DOI: 10.1002/slct.202204144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Bao‐Chen Qian
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Lu Zhang
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Gao‐Shuai Zhang
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 P. R. China
| | - Xiao‐Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry Department of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| |
Collapse
|
6
|
Seren S, Joly JP, Voisin P, Bouchaud V, Audran G, Marque SRA, Mellet P. Neutrophil Elastase-Activatable Prodrugs Based on an Alkoxyamine Platform to Deliver Alkyl Radicals Cytotoxic to Tumor Cells. J Med Chem 2022; 65:9253-9266. [PMID: 35764297 PMCID: PMC9289877 DOI: 10.1021/acs.jmedchem.2c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Current chemotherapies
suffer low specificity and sometimes drug
resistance. Neutrophil elastase activity in cancer is associated with
poor prognosis and metastasis settlement. More generally, tumors harbor
various and persistent protease activities unseen in healthy tissues.
In an attempt to be more specific, we designed prodrugs that are activatable
by neutrophil elastase. Upon activation, these alkoxyamine-based drugs
release cytotoxic alkyl radicals that act randomly to prevent drug
resistance. As a result, U87 glioblastoma cells displayed high level
caspase 3/7 activation during the first hour of exposure in the presence
of human neutrophil elastase and the prodrug in vitro. The apoptosis
process and cell death occurred between 24 and 48 h after exposure
with a half lethal concentration of 150 μM. These prodrugs are
versatile and easy to synthetize and can be adapted to many enzymes.
Collapse
Affiliation(s)
- Seda Seren
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, Bordeaux 33076, France
| | - Jean-Patrick Joly
- Aix Marseille Univ, CNRS UMR 7273, ICR, Case 551, Marseille 13397, France
| | - Pierre Voisin
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, Bordeaux 33076, France
| | - Véronique Bouchaud
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, Bordeaux 33076, France
| | - Gérard Audran
- Aix Marseille Univ, CNRS UMR 7273, ICR, Case 551, Marseille 13397, France
| | - Sylvain R A Marque
- Aix Marseille Univ, CNRS UMR 7273, ICR, Case 551, Marseille 13397, France
| | - Philippe Mellet
- Magnetic Resonance of Biological Systems, UMR 5536 CNRS-University of Bordeaux, Bordeaux 33076, France.,INSERM, Bordeaux 33000, France
| |
Collapse
|
7
|
Wang M, Wang R, Zhang L, Si W, Song R, Yang D, Lv J. Efficient Radical C(sp3)-H α-Oxyamination of Carbonyls Adjacent to Carbon Chalcogen Bond. Org Chem Front 2022. [DOI: 10.1039/d2qo00466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient radical C(sp3)-H α-oxyamination of carbonyls adjacent to different chalcogen (e.g., S, O, and Se) at α-position is demonstrated. This radical oxyamination process conducts under solvent-free conditions without the...
Collapse
|
8
|
Audran G, Blyth MT, Coote ML, Gescheidt G, Hardy M, Havot J, Holzritter M, Jacoutot S, Joly JP, Marque SRA, Koumba TMM, Neshchadin D, Vaiedelich E. Homolysis/mesolysis of alkoxyamines activated by chemical oxidation and photochemical-triggered radical reactions at room temperature. Org Chem Front 2021. [DOI: 10.1039/d1qo01276b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Instantaneous and spontaneous room temperature C–ON bond mesolysis of alkoxyamines triggered by chemical oxidation.
Collapse
Affiliation(s)
- Gérard Audran
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, TU Graz, Stremayrgasse 9/Z2, A-8010 Graz, Austria
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jeffrey Havot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Maxence Holzritter
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Samuel Jacoutot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jean-Patrick Joly
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Sylvain R. A. Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | | | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, TU Graz, Stremayrgasse 9/Z2, A-8010 Graz, Austria
| | - Enzo Vaiedelich
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| |
Collapse
|
9
|
Abstract
In 1986, Rizzardo et al. discovered the nitroxide-mediated polymerization which relies on the reversibility of homolysis of the C-ON bond of alkoxyamine R1R2NOR3, a unique property of these molecules. This discovery has generated a tremendous endeavor in the field of polymer chemistry. Alkoxyamines have been used as initiators/controllers for nitroxide-mediated polymerization. Moreover, photoexcitable alkoxyamines that dissociate under light at different wavelengths have also been developed for polymer chemistry. Over the past few years, alkoxyamines have started to be used in materials sciences. In many cases (e.g., self-healing polymers), the development of smart materials requires the use of smart building blocks, that is, molecules or systems whose properties and/or structures change upon external stimuli. Alkoxyamines exhibit a unique property: reversible homolysis (i.e., homolysis of the C-ON bond into alkyl R3• and nitroxyl R1R2NO• radicals and reformation via the coupling of these two species). Until now, this property has been controlled only by changes in temperatures or by light irradiation. Chemical and/or biochemical control of the homolysis event would open new gates for the application of these molecules in different fields such as biology and medicine. Thus, the concept of smart alkoxyamines is discussed and exemplified via the activation of alkoxyamines using chemical or/and biochemical changes amplifying the polar, steric, and stabilization effects. In situ activation is also discussed. It is shown that (i) increasing the electron-withdrawing properties of the alkyl fragment weakens the C-ON bond and thus favors homolysis but is opposite for the nitroxyl fragment; (ii) increasing the steric hindrance on the nonactive site affords dramatic conformation changes which weaken the C-ON bond; and (iii) increasing the stabilization of the released alkyl radical weakens the C-ON bond. Solvent effects and intramolecular hydrogen bonding are also discussed. Reactions used to highlight our purpose are either reversible or nonreversible and used under conditions that are as mild as possible (temperatures below 40 °C and atmospheric pressure). For example, a several (thousands of millions of) millions of orders of magnitude enhancement of the homolysis rate constant is observed upon enzymatic hydrolysis at 37 °C, meaning that a shift from a stable alkoxyamine (t1/2 = 42 000 milleniums) to a highly labile alkoxyamine (tmax = 1500 s for 35% conversion) is achieved. Applications of this concept are discussed for safe NMP initiators and for theranostic agents.
Collapse
Affiliation(s)
- Gérard Audran
- Aix-Marseille Université, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille, Cedex
20, France
| | - Sylvain R. A. Marque
- Aix-Marseille Université, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille, Cedex
20, France
| | - Philippe Mellet
- INSERM, 33076 Bordeaux, Cedex, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Case 93, University of Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, Cedex, France
| |
Collapse
|
10
|
Cherkasov S, Parkhomenko D, Genaev A, Salnikov G, Edeleva M, Morozov D, Rybalova T, Kirilyuk I, Marque SRA, Bagryanskaya E. NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines. Molecules 2020; 25:E5080. [PMID: 33139669 PMCID: PMC7663419 DOI: 10.3390/molecules25215080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
Three alkoxyamines based on imidazoline radicals with a pyridine functional group-potential initiators of nitroxide-mediated, controlled radical polymerization-were synthesized. Electron Paramagnetic Resonance (EPR) measurements reveal biexponential kinetics for the thermolysis for diastereomeric alkoxyamines and monoexponential kinetics for an achiral alkoxyamine. For comparison, the thermolysis of all three alkoxyamines was studied by NMR in the presence of three different scavengers, namely tetramethylpiperidine-N-oxyl (TEMPO), thiophenol (PhSH), and β-mercaptoethanol (BME), and detailed analysis of products was performed. NMR differentiates between N-inversion, epimerization, and homolysis reactions. The choice of scavenger is crucial for making a reliable and accurate estimate of the true homolysis rate constant.
Collapse
Affiliation(s)
- Sergey Cherkasov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
- National Research University—Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Dmitriy Parkhomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| | - Alexander Genaev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| | - Georgii Salnikov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| | - Mariya Edeleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| | - Denis Morozov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| | - Tatyana Rybalova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| | - Igor Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| | - Sylvain R. A. Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille CEDEX 20, France;
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia; (S.C.); (D.P.); (A.G.); (G.S.); (M.E.); (D.M.); (T.R.); (I.K.)
| |
Collapse
|
11
|
Votkina DE, Petunin PV, Trusova ME, Postnikov PS, Audran G, Marque SRA. Kinetic investigation of thermal and photoinduced homolysis of alkylated verdazyls. Phys Chem Chem Phys 2020; 22:21881-21887. [PMID: 32968753 DOI: 10.1039/d0cp03151h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The on-demand generation of stable organic radicals from the precursors can be considered as an essential challenge for the plethora of applications in various fields of science. In this contribution, we prepared a range of N-(methyl)benzyl derivatives of 6-oxoverdazyl via atom transfer radical addition from moderate to high yields and studied their thermal- and photo-initiated homolysis. The kinetics of homolysis was measured, and the dissociating rate constant kd, activation energy Ea and frequency factor A were estimated. Variation of the substituent at the C3-position of the verdazyl ring was successfully applied for fine-tuning the homolysis rate: the value of kd was higher for alkylverdazyls with electron-withdrawing groups, e.g., the para nitro group afforded a 6-fold increase in kd. In contrast to thermal homolysis, the rate of photoinduced decomposition depends on both the extinction coefficient and the value of activation energy. Thus, nitro-containing alkylated verdazyls show the highest homolysis rate in both types of initiations. The achieved results afford a novel opportunity in the controlled generation of verdazyls and further application of these compounds in medicine and chemical industry.
Collapse
Affiliation(s)
- Darya E Votkina
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia.
| | | | | | | | | | | |
Collapse
|
12
|
Albalat M, Audran G, Holzritter M, Marque SRA, Mellet P, Vanthuyne N, Voisin P. An enzymatic acetal/hemiacetal conversion for the physiological temperature activation of the alkoxyamine C–ON bond homolysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00559b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzymatic trigger. Upon enzymatic hydrolysis by Subtilisin A, highly stable alkoxyamines are transformed into highly labile alkoxyamines able to homolyze spontaneously in less than 500 seconds, at 37 °C.
Collapse
Affiliation(s)
| | - Gérard Audran
- Aix-Marseille Univ
- CNRS
- 13397 Marseille Cedex 20
- France
| | | | | | - Philippe Mellet
- INSERM
- 33076 Bordeaux Cedex
- France
- Centre de Résonance Magnétique des Systèmes Biologiques
- 33076 Bordeaux Cedex
| | | | - Pierre Voisin
- Centre de Résonance Magnétique des Systèmes Biologiques
- 33076 Bordeaux Cedex
- France
| |
Collapse
|
13
|
Yamada A, Abe M, Nishimura Y, Ishizaka S, Namba M, Nakashima T, Shimoji K, Hattori N. Photochemical generation of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical from caged nitroxides by near-infrared two-photon irradiation and its cytocidal effect on lung cancer cells. Beilstein J Org Chem 2019; 15:863-873. [PMID: 31019579 PMCID: PMC6466695 DOI: 10.3762/bjoc.15.84] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022] Open
Abstract
Novel caged nitroxides (nitroxide donors) with near-infrared two-photon (TP) responsive character, 2,2,6,6-tetramethyl-1-(1-(2-(4-nitrophenyl)benzofuran-6-yl)ethoxy)piperidine (2a) and its regioisomer 2b, were designed and synthesized. The one-photon (OP) (365 ± 10 nm) and TP (710–760 nm) triggered release (i.e., uncaging) of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical under air atmosphere were discovered. The quantum yields for the release of the TEMPO radical were 2.5% (2a) and 0.8% (2b) in benzene at ≈1% conversion of 2, and 13.1% (2a) and 12.8% (2b) in DMSO at ≈1% conversion of 2. The TP uncaging efficiencies were determined to be 1.1 GM at 740 nm for 2a and 0.22 GM at 730 nm for 2b in benzene. The cytocidal effect of compound 2a on lung cancer cells under photolysis conditions was also assessed to test the efficacy as anticancer agents. In a medium containing 100 μg mL−1 of 2a exposed to light, the number of living cells decreased significantly compared to the unexposed counterparts (65.8% vs 85.5%).
Collapse
Affiliation(s)
- Ayato Yamada
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Hiroshima Research Centre for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,JST-CREST, K's Gobancho 6F, 7, Gobancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shoji Ishizaka
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Hiroshima Research Centre for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Namba
- Hiroshima Research Centre for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Taku Nakashima
- Hiroshima Research Centre for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Kiyofumi Shimoji
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| | - Noboru Hattori
- Hiroshima Research Centre for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima 734-8551, Japan
| |
Collapse
|
14
|
Yamasaki T, Buric D, Chacon C, Audran G, Braguer D, Marque SRA, Carré M, Brémond P. Chemical modifications of imidazole-containing alkoxyamines increase C-ON bond homolysis rate: Effects on their cytotoxic properties in glioblastoma cells. Bioorg Med Chem 2019; 27:1942-1951. [PMID: 30975504 DOI: 10.1016/j.bmc.2019.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/30/2023]
Abstract
Previously, we described alkoxyamines bearing a pyridine ring as new pro-drugs with low molecular weights and theranostic activity. Upon chemical stimulus, alkoxyamines undergo homolysis and release free radicals, which can, reportedly, enhance magnetic resonance imaging and trigger cancer cell death. In the present study, we describe the synthesis and the anti-cancer activity of sixteen novel alkoxyamines that contain an imidazole ring. Activation of the homolysis was conducted by protonation and/or methylation. These new molecules displayed cytotoxic activities towards human glioblastoma cell lines, including the U251-MG cells that are highly resistant to the conventional chemotherapeutic agent Temozolomide. We further showed that the biological activities of the alkoxyamines were not only related to their half-life times of homolysis. We lastly identified the alkoxyamine (RS/SR)-4a, with both a high antitumour activity and favourable logD7.4 and pKa values, which make it a robust candidate for blood-brain barrier penetrating therapeutics against brain neoplasia.
Collapse
Affiliation(s)
| | - Duje Buric
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Christine Chacon
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Diane Braguer
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France; APHM, Hôpital Timone, Marseille, France
| | - Sylvain R A Marque
- Aix Marseille Univ, CNRS, ICR, Marseille, France; N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentieva 9, Novosibirsk 630090, Russian Federation
| | - Manon Carré
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Paul Brémond
- Aix Marseille Univ, CNRS, ICR, Marseille, France; Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| |
Collapse
|
15
|
Edeleva M, Audran G, Marque S, Bagryanskaya E. Smart Control of Nitroxide-Mediated Polymerization Initiators' Reactivity by pH, Complexation with Metals, and Chemical Transformations. MATERIALS 2019; 12:ma12050688. [PMID: 30813542 PMCID: PMC6427375 DOI: 10.3390/ma12050688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
Because alkoxyamines are employed in a number of important applications, such as nitroxide-mediated polymerization, radical chemistry, redox chemistry, and catalysis, research into their reactivity is especially important. Typically, the rate of alkoxyamine homolysis is strongly dependent on temperature. Nonetheless, thermal regulation of such reactions is not always optimal. This review describes various ways to reversibly change the rate of C–ON bond homolysis of alkoxyamines at constant temperature. The major methods influencing C–ON bond homolysis without alteration of temperature are protonation of functional groups in an alkoxyamine, formation of metal–alkoxyamine complexes, and chemical transformation of alkoxyamines. Depending on the structure of an alkoxyamine, these approaches can have a significant effect on the homolysis rate constant, by a factor of up to 30, and can shorten the half-lifetime from days to seconds. These methods open new prospects for the application of alkoxyamines in biology and increase the safety of (and control over) the nitroxide-mediated polymerization method.
Collapse
Affiliation(s)
- Mariya Edeleva
- N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.
- National Research University-Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Gerard Audran
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille CEDEX 20, France.
| | - Sylvain Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille CEDEX 20, France.
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russia.
- National Research University-Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
16
|
Audran G, Bosco L, Brémond P, Jugniot N, Marque SRA, Massot P, Mellet P, Moussounda Moussounda Koumba T, Parzy E, Rivot A, Thiaudière E, Voisin P, Wedl C, Yamasaki T. Enzymatic triggering of C–ON bond homolysis of alkoxyamines. Org Chem Front 2019. [DOI: 10.1039/c9qo00899c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alkoxyamine 1 is selectively hydrolyzed by chymotrypsin and substilisin A into alkoxyamine 2H+ for which C–ON bond homolysis occurred with a 4-fold increase in rate constants compared to 1 while non-specific proteases had no effect.
Collapse
|
17
|
Audran G, Bagryanskaya E, Bagryanskaya I, Edeleva M, Joly JP, Marque SRA, Iurchenkova A, Kaletina P, Cherkasov S, Hai TT, Tretyakov E, Zhivetyeva S. How intramolecular coordination bonding (ICB) controls the homolysis of the C–ON bond in alkoxyamines. RSC Adv 2019; 9:25776-25789. [PMID: 35530086 PMCID: PMC9070044 DOI: 10.1039/c9ra05334d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 11/23/2022] Open
Abstract
Because the C–ON bond homolysis rate constant kd is an essential parameter of alkoxyamine reactivity, it is especially important to tune kd without a major alteration of the structure of the molecule. Recently, several approaches have become known, e.g., protonation of functional groups and formation of metal complexes. In this paper, coordination reactions of [Zn(hfac)2(H2O)2] with a series of new SG1-based alkoxyamines affording complexes with different structures are presented. The kd values of the complexed forms of the alkoxyamines were compared to those of free and protonated ones to reveal the contribution of the electron-withdrawing property and structure stabilization. Together with previously published data, this work provides clues to the design of alkoxyamines that can be effectively activated upon coordination with metal ions. Furthermore, our results provide insight into the mechanism underlying the influence of complexation on the reactivity of alkoxyamines. This led us to describe different types of coordination: intramolecular in nitroxyl fragment, intramolecular in alkyl fragment, intramolecular between alkyl and nitroxyl fragment, and intermolecular one. All of them exhibit different trends which are dramatically altered by changes in conformation. Because the C–ON bond homolysis rate constant kd is an essential parameter of alkoxyamine reactivity, it is especially important to tune kd without a major alteration of the structure of the molecule.![]()
Collapse
Affiliation(s)
- Gérard Audran
- Aix Marseille Univ
- CNRS
- ICR
- UMR 7273
- 13397 Marseille Cedex 20
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Irina Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Mariya Edeleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | | | | | | | - Polina Kaletina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Sergey Cherkasov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Tung To Hai
- Aix Marseille Univ
- CNRS
- ICR
- UMR 7273
- 13397 Marseille Cedex 20
| | - Evgeny Tretyakov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Svetlana Zhivetyeva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
| |
Collapse
|
18
|
Amatov T, Jangra H, Pohl R, Cisařová I, Zipse H, Jahn U. Unique Stereoselective Homolytic C-O Bond Activation in Diketopiperazine-Derived Alkoxyamines by Adjacent Amide Pyramidalization. Chemistry 2018; 24:15336-15345. [PMID: 30092124 DOI: 10.1002/chem.201803284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Simple monocyclic diketopiperazine (DKP)-derived alkoxyamines exhibit unprecedented activation of a remote C-O bond for homolysis by amide distortion. The combination of strain-release-driven amide planarization and the persistent radical effect (PRE) enables a unique, irreversible, and quantitative trans→cis isomerization under much milder conditions than typically observed for such homolysis-limited reactions. This isomerization is shown to be general and independent of the steric and electronic nature of both the amino acid side chains and the substituents at the DKP nitrogen atoms. Homolysis rate constants are determined, and they significantly differ for both the labile trans diastereomers and the stable cis diastereomers. To reveal the factors influencing this unusual process, structural features of the kinetic trans diastereomers and thermodynamic cis diastereomers are investigated in the solid state and in solution. X-ray crystallographic analysis and computational studies indicate substantial distortion of the amide bond from planarity in the trans-alkoxyamines, and this is believed to be the cause for the facile and quantitative isomerization. Thus, these amino-acid-derived alkoxyamines are the first examples that exhibit a large thermodynamic preference for one diastereomer over the other upon thermal homolysis, and this allows controlled switching of configurations and configurational cycling.
Collapse
Affiliation(s)
- Tynchtyk Amatov
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610, Prague, Czech Republic.,Ludwig Maximilian University, Department of Chemistry, Butenandstrasse 5-13, 81377, München, Germany
| | - Harish Jangra
- Ludwig Maximilian University, Department of Chemistry, Butenandstrasse 5-13, 81377, München, Germany
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Ivana Cisařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843, Prague, Czech Republic
| | - Hendrik Zipse
- Ludwig Maximilian University, Department of Chemistry, Butenandstrasse 5-13, 81377, München, Germany
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| |
Collapse
|
19
|
Audran G, Bikanga R, Brémond P, Edeleva M, Joly JP, Marque SRA, Nkolo P, Roubaud V. How intramolecular hydrogen bonding (IHB) controls the C-ON bond homolysis in alkoxyamines. Org Biomol Chem 2018; 15:8425-8439. [PMID: 28952643 DOI: 10.1039/c7ob02223a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent amazing results (Nkolo et al., Org. Biomol. Chem., 2017, 6167) on the effect of solvents and polarity on the C-ON bond homolysis rate constants kd of alkoxyamine R1R2NOR3 led us to re-investigate the antagonistic effect of intramolecular hydrogen-bonding (IHB) on kd. Here, IHB is investigated both in the nitroxyl fragment R1R2NO and in the alkyl fragment R3, as well as between fragments, that is, the donating group on the alkyl fragment and the accepting group on the nitroxyl fragment, and conversely. It appears that IHB between fragments (inter IHB) strikingly decreases the homolysis rate constant kd, whereas IHB within the fragment (intra IHB) moderately increases kd. For one alkoxyamine, the simultaneous occurrence of IHB within the nitroxyl fragment and between fragments is reported. The protonation effect is weaker in the presence than in the absence of IHB. A moderate solvent effect is also observed.
Collapse
Affiliation(s)
- Gérard Audran
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Raphael Bikanga
- Laboratoire de Substances Naturelles et de Synthèse Organométalliques Université des Sciences et Techniques de Masuku, B.P. 943 Franceville, Gabon
| | - Paul Brémond
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Mariya Edeleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia
| | - Jean-Patrick Joly
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Sylvain R A Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France. and N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia
| | - Paulin Nkolo
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Valérie Roubaud
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| |
Collapse
|
20
|
Nkolo P, Audran G, Bikanga R, Brémond P, Marque SRA, Roubaud V. C-ON bond homolysis of alkoxyamines: when too high polarity is detrimental. Org Biomol Chem 2018; 15:6167-6176. [PMID: 28692104 DOI: 10.1039/c7ob01312d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Throughout the last decade, the effect of electron withdrawing groups (EWGs) has been known to play a role - minor or moderate depending on the nitroxyl fragment R1R2NO - in the change in the homolysis rate constant (kd) for C-ON bond homolysis in alkoxyamines (R1R2NOR). It has been shown that the effect of EWGs on kd is described by a linear relationship with the electrical Hammett constant σI. Since then, linear multi-parameter relationships f(σRS,ν,σI) have been developed to account for the effects involved in the changes in kd, which are the stabilization of the released radical (σRS) and the bulkiness (ν) and polarity (σI) of the alkyl fragment. Since a decade ago, new results have been published highlighting the limits of such correlations. In this article, previous multi-parameter linear relationships are amended using a parabolic model, i.e. (σI,nitroxide - σI,alkyl)2, to describe the effect of EWGs in the alkyl fragment on kd. In contrast to previous studies, these improved linear multi-parameter relationships f(σRS,ν,ΔσI2) are able to account for the presence of several EWGs on the alkyl fragment, R. An unexpectedly strong solvent effect - a ca. 1500-fold increase in kd - from tert-butylbenzene to the water/methanol mixture is also observed for 3-((2,2,6,6-tetramethylpiperidin-1-yl)oxyl)pentane-2,4-dione 1b in comparison to a ca. 5-fold increase in kd that is generally observed.
Collapse
Affiliation(s)
- Paulin Nkolo
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Gérard Audran
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Raphael Bikanga
- Laboratoire de Substances Naturelles et de Synthèse Organométalliques Université des Sciences et Techniques de Masuku, B.P. 943, Franceville, Gabon
| | - Paul Brémond
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | - Sylvain R A Marque
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France. and N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia
| | - Valérie Roubaud
- Aix Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| |
Collapse
|
21
|
Audran G, Bikanga R, Brémond P, Joly JP, Marque SRA, Nkolo P. Normal, Leveled, and Enhanced Steric Effects in Alkoxyamines Carrying a β-Phosphorylated Nitroxyl Fragment. J Org Chem 2017; 82:5702-5709. [PMID: 28508644 DOI: 10.1021/acs.joc.7b00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The design of new R1R2NOR3 alkoxyamines for various applications relies on the accurate prediction of two kinetic parameters, the C-ON bond homolysis rate constant (kd) and its re-formation rate constant (kc). Relationships to describe the steric and polar effects of the R1R2NO fragment ruling kd have been developed. For all cyclic nitroxyl fragments, the steric effect is described as the sum of the bulkiness of the R1 and R2 groups (i.e., normal steric effect), while for the noncyclic nitroxyl fragment (except for one case), a leveled steric effect is assumed. In this work, we show that the normal steric effect also applies to noncyclic nitroxyl fragments and that for one case an enhanced steric effect is also observed, i.e., experimental kd >5-fold larger than the predicted value.
Collapse
Affiliation(s)
- Gérard Audran
- Aix Marseille Université , CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Raphael Bikanga
- Laboratoire de Substances Naturelles et des Syntheses Organometalliques, Universite des Sciences et Technique de Masuku , B.P. 493, Franceville, Gabon
| | - Paul Brémond
- Aix Marseille Université , CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jean-Patrick Joly
- Aix Marseille Université , CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Sylvain R A Marque
- Aix Marseille Université , CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia
| | - Paulin Nkolo
- Aix Marseille Université , CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| |
Collapse
|
22
|
Audran G, Bagryanskaya EG, Brémond P, Edeleva MV, Marque SRA, Parkhomenko DA, Rogozhnikova OY, Tormyshev VM, Tretyakov EV, Trukhin DV, Zhivetyeva SI. Trityl-based alkoxyamines as NMP controllers and spin-labels. Polym Chem 2016; 7:6490-6499. [PMID: 28989533 PMCID: PMC5627662 DOI: 10.1039/c6py01303a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, new applications of trityl-nitroxide biradicals were proposed. In the present study, attachment of a trityl radical to alkoxyamines was performed for the first time. The rate constants kd of C-ON bond homolysis in these alkoxyamines were measured and found to be equal to those for alkoxyamines without trityl. The electron paramagnetic resonance (EPR) spectra of the products of alkoxyamine homolysis (trityl-TEMPO and trityl-SG1 biradicals) were recorded, and the corresponding exchange interactions were estimated. The decomposition of trityl-alkoxyamine showed more than an 80% yield of biradicals, meaning that the C-ON bond homolysis is the main reaction. The suitability of these labelled initiators/controllers for polymerisation was exemplified by means of successful nitroxide-mediated polymerisation (NMP) of styrene. Thus, this is the first report of a spin-labelled alkoxyamine suitable for NMP.
Collapse
Affiliation(s)
- Gérard Audran
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Paul Brémond
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France
| | - Mariya V. Edeleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Sylvain R. A. Marque
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20 France
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Dmitriy A. Parkhomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeny V. Tretyakov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| | - Dmitry V. Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Svetlana I. Zhivetyeva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS. 9, Lavrentjev Ave, Novosibirsk 630090, Russia
| |
Collapse
|
23
|
Audran G, Brémond P, Joly JP, Marque SRA, Yamasaki T. C-ON bond homolysis in alkoxyamines. Part 12: the effect of the para-substituent in the 1-phenylethyl fragment. Org Biomol Chem 2016; 14:3574-83. [PMID: 26975717 DOI: 10.1039/c6ob00384b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The application of alkoxyamines as initiators/controllers in nitroxide mediated polymerization and as agents for theranostics requires the development of switchable (from stable one to labile one) alkoxyamines. One way to achieve this is to tune the polarity of various groups carried by either the alkyl fragment or the nitroxyl fragment. Thus, the effect of protonation/deprotonation of the para-functionalized aryl moiety carried by the alkyl fragment in diethyl(2,2-dimethyl-1-((1,1-dimethylethyl)(1-para-subsitutedphenylethoxy)amino)propyl)phosphonate is investigated. An increase in kd is observed with increasing localized electrical effect, i.e., in the presence of electron withdrawing groups at the para position of the phenyl ring. A striking effect of the intimate ion pair on kd is also observed.
Collapse
Affiliation(s)
- Gérard Audran
- Aix-Marseille Université, CNRS, ICR, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | | | | | | | | |
Collapse
|
24
|
Audran G, Brémond P, Marque SRA, Yamasaki T. C-ON Bond Homolysis of Alkoxyamines, Part 11: Activation of the Nitroxyl Fragment. J Org Chem 2016; 81:1981-8. [PMID: 26878593 DOI: 10.1021/acs.joc.5b02790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A few years ago, Bagryanskaya and colleagues (J. Org. Chem. 2011) showed that protonation of the nitroxyl fragment deactivated the alkoxyamine C-ON bond. Conversely, our group showed that protonation (Chem. Commun. 2011), as well as other chemical reactions such as oxidation or amine quaternization (Org. Lett. 2012), of the pyridyl moiety carried by the alkyl fragment was suitable to activate the homolysis of the C-ON bond. To pursue our goal of applying alkoxyamines as theranostic agents (Org. Biomol. Chem. 2014 and Mol. Pharmaceutics 2014) by activation of the C-ON bond homolysis, we turned our interest to the chemical activation of the nitroxyl fragment by oxidation/reduction of selected functions. Conversion of a hydroxyl group located close to the nitroxyl moiety successively into aldehyde, then acid, and eventually into ester, led to a successive decrease in kd.
Collapse
Affiliation(s)
- Gérard Audran
- Aix Marseille Université, CNRS, ICR, UMR 7273 , 13397 Marseille Cedex 20, France
| | - Paul Brémond
- Aix Marseille Université, CNRS, ICR, UMR 7273 , 13397 Marseille Cedex 20, France
| | - Sylvain R A Marque
- Aix Marseille Université, CNRS, ICR, UMR 7273 , 13397 Marseille Cedex 20, France.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS , Pr. Lavrentjeva 9, 630090 Novosibirsk, Russia
| | - Toshihide Yamasaki
- Aix Marseille Université, CNRS, ICR, UMR 7273 , 13397 Marseille Cedex 20, France
| |
Collapse
|
25
|
Audran G, Bagryanskaya E, Bagryanskaya I, Brémond P, Edeleva M, Marque SRA, Parkhomenko D, Tretyakov E, Zhivetyeva S. C–ON bond homolysis of alkoxyamines triggered by paramagnetic copper(ii) salts. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00277c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pyridine-based alkoxyamines were used as ligands for Cu(hfac)2 to prepare the first metallic complexes of alkoxyamines. Structures of complexes were determined by X-ray analysis and a 21-fold increase in the C–ON bond homolysis was observed.
Collapse
Affiliation(s)
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
| | - Irina Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
| | | | - Mariya Edeleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
| | | | - Dmitriy Parkhomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
| | - Evgeny Tretyakov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
| | - Svetlana Zhivetyeva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
| |
Collapse
|
26
|
Hauck S, Kuepfert M, Schoening KU. Investigation into the Chemistry of Highly Substituted [(Aminocyclopropyl)methyl]alkoxyamines (3-Azabicyclo[3.1.0]hexanes). European J Org Chem 2015. [DOI: 10.1002/ejoc.201500693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Audran G, Brémond P, Marque SRA. Labile alkoxyamines: past, present, and future. Chem Commun (Camb) 2015; 50:7921-8. [PMID: 24817073 DOI: 10.1039/c4cc01364f] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alkoxyamines--per-alkylated derivatives of hydroxylamine R(1)R(2)NO-R(3)--can undergo C-ON bond homolysis to release a persistent nitroxyl radical R(1)R(2)NO˙ and a transient alkyl radical R(3)˙. Although they were considered as an oddity when discovered in 1974, their properties have been extensively studied since the seminal work of Solomon, Rizzardo and Cacioli (Chem. Abstr., 102, 221335q), who patented the key role of alkoxyamines in nitroxide-mediated polymerization (NMP) in 1985. This feature article surveys and assesses the various applications of alkoxyamines: in tin-free radical chemistry, e.g., for the elaboration of carbo- or hetero-cycles, for the development of new reactions, for total synthesis of natural products; in polymerization under thermal conditions (NMP) or photochemical conditions (nitroxide-mediated photo-polymerization, NMP2); and in the design of smart materials. In this feature article, we also describe our recent findings concerning the chemical triggering of the C-ON bond homolysis in alkoxyamines, affording the controlled generation of alkyl radicals at room temperature. Based on these results, we describe herein some new opportunities for applications in the field of smart materials, and of course, some possible developments as new initiators for NMP as well as an entirely new field of application: the use of alkoxyamines as theranostic agents. Indeed, each of the radicals released after homolysis can play an appealing role: the nitroxide, through dynamic nuclear polarization (DNP), can be used for imagery purposes (diagnostic properties), while the alkyl radical can be used to induce cellular disorders in abnormal cells (therapeutic activity).
Collapse
Affiliation(s)
- Gérard Audran
- Aix-Marseille Université CNRS, ICR-UMR 7273, case 551, Avenue Escadrille Normandie-Niemen, 13397 Marseille cedex 20, France.
| | | | | |
Collapse
|
28
|
2,1-Benzothiazine 2,2-Dioxides. 9*. Alkylation of Methyl 4-Hydroxy-1-Methyl-2,2-Dioxo-1Н-2λ6,1-Benzothiazine-3-Carboxylate with Ethyl Iodide. Chem Heterocycl Compd (N Y) 2015. [DOI: 10.1007/s10593-015-1646-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Kavala M, Brezová V, Švorc L, Vihonská Z, Olejníková P, Moncol J, Kožíšek J, Herich P, Szolcsányi P. Synthesis, physicochemical properties and antimicrobial activity of mono-/dinitroxyl amides. Org Biomol Chem 2014; 12:4491-502. [PMID: 24849262 DOI: 10.1039/c4ob00302k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two comparative sets of mono-/dinitroxyl amides were designed and prepared. The novel TEMPO and/or PROXYL derivatives were fully characterised and their spin, redox and antimicrobial properties were determined. Cyclic voltammetry revealed (quasi)reversible redox behavior for most of the studied radicals. Moreover, the electron-withdrawing substituents increased the oxidation potential of nitroxides in comparison to electron-donating groups. While EPR spectra of monoradicals featured the typical three-line signal, the spectra of biradicals showed more complex splitting patterns. The in vitro biological assay revealed that unlike pyrrolidinyl derivatives, the piperidinyl nitroxides significantly inhibited the growth of Staphylococcus sp.
Collapse
Affiliation(s)
- Miroslav Kavala
- Department of Organic Chemistry, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Moncelet D, Voisin P, Koonjoo N, Bouchaud V, Massot P, Parzy E, Audran G, Franconi JM, Thiaudière E, Marque SRA, Brémond P, Mellet P. Alkoxyamines: Toward a New Family of Theranostic Agents against Cancer. Mol Pharm 2014; 11:2412-9. [DOI: 10.1021/mp5001394] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Damien Moncelet
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | - Pierre Voisin
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | - Neha Koonjoo
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | - Véronique Bouchaud
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | - Philippe Massot
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | - Elodie Parzy
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | - Gérard Audran
- Aix Marseille Université, CNRS, ICR UMR
7273, 13397, Marseille, France
| | - Jean-Michel Franconi
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | - Eric Thiaudière
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| | | | - Paul Brémond
- Aix Marseille Université, CNRS, ICR UMR
7273, 13397, Marseille, France
| | - Philippe Mellet
- CRMSB,
CNRS-UMR-5536, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
- INSERM, 146 rue Léo Saignat, Case
93, 33076 Bordeaux
Cedex, France
| |
Collapse
|
31
|
Bagryanskaya EG, Marque SRA. Scavenging of organic C-centered radicals by nitroxides. Chem Rev 2014; 114:5011-56. [PMID: 24571361 DOI: 10.1021/cr4000946] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Pr. Lavrentjeva 9, Novosibirsk 630090, Russia
| | | |
Collapse
|