1
|
Hales LT, Thompson PE. Solid-Phase Synthesis of PROTACs and SNIPERs on Backbone Amide Linked (BAL) Resin. Chemistry 2023; 29:e202301975. [PMID: 37526498 DOI: 10.1002/chem.202301975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
Developing straightforward but flexible approaches to PROTAC synthesis that can incorporate the structural elements of emerging designs can improve the quality and efficiency of PROTAC development. Solid-phase approaches could offer many advantages over conventional PROTAC synthesis if diverse chemistries and topographies can be incorporated. We have exploited the backbone-amide-linked (BAL) resin to employ an array of solid-phase organic reactions, providing access to VHL- and IAP-targeting degraders using the BRD4-targeting JQ1 conjugates as examples.
Collapse
Affiliation(s)
- Liam Thomas Hales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| | - Philip Evan Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| |
Collapse
|
2
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
3
|
Conibear AC, Muttenthaler M. Advancing the Frontiers of Chemical Protein Synthesis-The 7 th CPS Meeting, Haifa, Israel. Cell Chem Biol 2019; 25:247-254. [PMID: 29547714 DOI: 10.1016/j.chembiol.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 7th Chemical Protein Synthesis Meeting took place in September 2017 in Haifa, Israel, bringing together 100 scientists from 11 countries. The cutting-edge scientific program included new synthetic strategies and ligation auxiliaries, novel insights into protein signaling and post-translational modifications, and a range of promising therapeutic applications.
Collapse
Affiliation(s)
- Anne C Conibear
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
4
|
Reimann O, Seitz O, Sarma D, Zitterbart R. A traceless catch-and-release method for rapid peptide purification. J Pept Sci 2018; 25:e3136. [PMID: 30479039 DOI: 10.1002/psc.3136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Oliver Reimann
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany.,Belyntic GmbH, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dominik Sarma
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany.,Belyntic GmbH, Berlin, Germany
| | - Robert Zitterbart
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany.,Belyntic GmbH, Berlin, Germany
| |
Collapse
|
5
|
Lang K. Building Peptide Bonds in Haifa: The Seventh Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2018; 19:115-120. [PMID: 29251813 DOI: 10.1002/cbic.201700606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 01/24/2023]
Abstract
The power of CPS, live! More than 90 attendees from around the world came together in Haifa to present and hear about cutting-edge science in protein chemistry, from advances in synthetic methods to applications in biology and medicine. The meeting was a powerful demonstration that chemical protein synthesis can provide otherwise unattainable insights into protein structure and function.
Collapse
Affiliation(s)
- Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
6
|
Chandra K, Das P, Mamidi S, Hurevich M, Iosub-Amir A, Metanis N, Reches M, Friedler A. Covalent Inhibition of HIV-1 Integrase by N-Succinimidyl Peptides. ChemMedChem 2016; 11:1987-94. [PMID: 27331774 DOI: 10.1002/cmdc.201600190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/24/2016] [Indexed: 11/08/2022]
Abstract
We present a new approach for the covalent inhibition of HIV-1 integrase (IN) by an LEDGF/p75-derived peptide modified with an N-terminal succinimide group. The covalent inhibition is mediated by direct binding of the succinimide to the amine group of a lysine residue in IN. The peptide serves as a specific recognition sequence for the target protein, while the succinimide serves as the binding moiety. The combination of a readily synthesizable peptide precursor with easy and efficient binding to the target protein makes this approach a promising new strategy for designing lead compounds.
Collapse
Affiliation(s)
- Koushik Chandra
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.,Department of Chemistry, Midnapore College (Autonomous), Raja Bazar Main Road, Medinipur, 721101, West Bengal, India
| | - Priyadip Das
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Samarasimhareddy Mamidi
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Anat Iosub-Amir
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
7
|
Zheng L, Tang M, Wang Y, Guo X, Wei D, Qiao Y. A DFT study on PBu3-catalyzed intramolecular cyclizations of N-allylic substituted α-amino nitriles for the formation of functionalized pyrrolidines: mechanisms, selectivities, and the role of catalysts. Org Biomol Chem 2016; 14:3130-41. [DOI: 10.1039/c6ob00150e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detailed mechanisms and stereoselectivities of PBu3-catalyzed intramolecular cyclizations for the formation of functionalized pyrrolidines have been investigated using a DFT method.
Collapse
Affiliation(s)
- Linjie Zheng
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
- The College of Chemistry and Molecular Engineering
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yang Wang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xiaokang Guo
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yan Qiao
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
8
|
Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Med Chem 2015; 7:1055-77. [DOI: 10.4155/fmc.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein–protein interactions (PPI) are essential in every step of the HIV replication cycle. Mapping the interactions between viral and host proteins is a fundamental target for the design and development of new therapeutics. In this review, we focus on rational development of anti-HIV-1 peptides based on mapping viral–host and viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the mechanism of action, specificity and stability of these peptides, which are designed to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that modulate PPI.
Collapse
|
9
|
Chandra K, Naoum JN, Roy TK, Gilon C, Gerber RB, Friedler A. Mechanistic studies of malonic acid-mediated in situ acylation. Biopolymers 2015; 104:495-505. [PMID: 25846609 DOI: 10.1002/bip.22654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/13/2015] [Accepted: 03/30/2015] [Indexed: 11/05/2022]
Abstract
We have previously introduced an easy to perform, cost-effective and highly efficient acetylation technique for solid phase synthesis (SPPS). Malonic acid is used as a precursor and the reaction proceeds via a reactive ketene that acetylates the target amine. Here we present a detailed mechanistic study of the malonic acid-mediated acylation. The influence of reaction conditions, peptide sequence and reagents was systematically studied. Our results show that the methodology can be successfully applied to different types of peptides and nonpeptidic molecules irrespective of their structure, sequence, or conformation. Using alkyl, phenyl, and benzyl malonic acid, we synthesized various acyl peptides with almost quantitative yields. The ketenes obtained from the different malonic acid derived precursors were characterized by in situ (1) H-NMR. The reaction proceeded in short reaction times and resulted in excellent yields when using uronium-based coupling agents, DIPEA as a base, DMF/DMSO/NMP as solvents, Rink amide/Wang/Merrifield resins, temperature of 20°C, pH 8-12 and 5 min preactivation at inert atmosphere. The reaction was unaffected by Lewis acids, transition metal ions, surfactants, or salt. DFT studies support the kinetically favorable concerted mechanism for CO2 and ketene formation that leads to the thermodynamically stable acylated products. We conclude that the malonic acid-mediated acylation is a general method applicable to various target molecules.
Collapse
Affiliation(s)
- Koushik Chandra
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Johnny N Naoum
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Tapta Kanchan Roy
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel.,The Fritz Haber Research Center, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Chaim Gilon
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - R Benny Gerber
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel.,The Fritz Haber Research Center, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel.,Department of Chemistry, University of California, Irvine, California, 92697
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Wang Y, Wei D, Zhang W, Wang Y, Zhu Y, Jia Y, Tang M. A theoretical study on the mechanisms of the reactions between 1,3-dialkynes and ammonia derivatives for the formation of five-membered N-heterocycles. Org Biomol Chem 2014; 12:7503-14. [DOI: 10.1039/c4ob01015a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Allen AD, Tidwell TT. Structure and Mechanism in Ketene Chemistry. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800256-8.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|