1
|
Therapeutic in vivo synthetic chemistry using an artificial metalloenzyme with glycosylated human serum albumin. Adv Carbohydr Chem Biochem 2022; 82:11-34. [PMID: 36470648 DOI: 10.1016/bs.accb.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The concept of "therapeutic in vivo synthetic chemistry" refers to chemical synthesis in living systems using new-to-nature reactions for the treatment or diagnosis of diseases. This review summarizes our development of therapeutic in vivo synthetic chemistry using glycan-modified human serum albumin (glycoHSA) and utilizing the selective glycan-targeting and metal protective effects of metal catalysts. The four artificial metalloenzymes with glycoHSA provided good cancer treatment results based on on-site drug synthesis and selective cell-tagging strategies. Thus, we propose that therapeutic in vivo synthetic chemistry using glycoHSA as a new modality of therapy or diagnosis is applicable to a wide range of diseases.
Collapse
|
2
|
Tanaka K, Vong K. The Journey to In Vivo Synthetic Chemistry: From Azaelectrocyclization to Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Ogura A, Tanaka K. Next-generation Glycocluster for Achieving Pattern Recognition in Living System. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research
| |
Collapse
|
4
|
Lin Y, Vong K, Matsuoka K, Tanaka K. 2-Benzoylpyridine Ligand Complexation with Gold Critical for Propargyl Ester-Based Protein Labeling. Chemistry 2018; 24:10595-10600. [PMID: 29791049 DOI: 10.1002/chem.201802058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/18/2018] [Indexed: 01/07/2023]
Abstract
In previously reported work, AuIII complexes coordinated with 2-benzoylpyridine ligand, BPy-Au, were prebound to a protein and used to discover a novel protein-directed labeling approach with propargyl ester functional groups. In this work, further examination discovered that gold catalysts devoid of the 2-benzoylpyridine ligand (e.g., NaAuCl4) had significantly reduced levels of protein labeling. Mechanistic investigations then revealed that BPy-Au and propargyl esters undergo a rare example of C(sp2 )-C(sp) aryl-alkynyl cross-coupling, likely through spontaneous reductive elimination. Overall, these observations appear to suggest that BPy-Au-mediated, propargyl ester-based protein labeling acts via an activated ester intermediate, which contributes to our understanding of this process and will aid the expansion/optimization of gold-catalyst usage in future bioconjugation applications, especially in vivo.
Collapse
Affiliation(s)
- Yixuan Lin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russia.,JST-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
5
|
A One-Pot Three-Component Double-Click Method for Synthesis of [ 67Cu]-Labeled Biomolecular Radiotherapeutics. Sci Rep 2017; 7:1912. [PMID: 28507297 PMCID: PMC5432496 DOI: 10.1038/s41598-017-02123-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
A one-pot three-component double-click process for preparing tumor-targeting agents for cancer radiotherapy is described here. By utilizing DOTA (or NOTA) containing tetrazines and the TCO-substituted aldehyde, the two click reactions, the tetrazine ligation (an inverse electron-demand Diels-Alder cycloaddition) and the RIKEN click (a rapid 6π-azaelectrocyclization), could simultaneously proceed under mild conditions to afford covalent attachment of the metal chelator DOTA or NOTA to biomolecules such as to albumin and anti-IGSF4 antibody without altering their activities. Subsequently, radiolabeling of DOTA- or NOTA-attached albumin and anti-IGSF4 antibody (an anti-tumor-targeting antibody) with [67Cu], a β−-emitting radionuclide, could be achieved in a highly efficient manner via a simple chelation with DOTA proving to be a more superior chelator than NOTA. Our work provides a new and operationally simple method for introducing the [67Cu] isotope even in large quantities to biomolecules, thereby representing an important process for preparations of clinically relevant tumor-targeting agents for radiotherapy.
Collapse
|
6
|
Latypova L, Sibgatullina R, Ogura A, Fujiki K, Khabibrakhmanova A, Tahara T, Nozaki S, Urano S, Tsubokura K, Onoe H, Watanabe Y, Kurbangalieva A, Tanaka K. Sequential Double "Clicks" toward Structurally Well-Defined Heterogeneous N-Glycoclusters: The Importance of Cluster Heterogeneity on Pattern Recognition In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600394. [PMID: 28251056 PMCID: PMC5323863 DOI: 10.1002/advs.201600394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 05/27/2023]
Abstract
Structurally well-defined heterogeneous N-glycoclusters are prepared on albumin via a double click procedure. The number of glycan molecules present, in addition to the spatial arrangement of glycans in the heterogeneous glycoclusters, plays an important role in the in vivo kinetics and organ-selective accumulation through glycan pattern recognition mechanisms.
Collapse
Affiliation(s)
- Liliya Latypova
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Regina Sibgatullina
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Akihiro Ogura
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Katsumasa Fujiki
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Alsu Khabibrakhmanova
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Tsuyoshi Tahara
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Satoshi Nozaki
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Hirotaka Onoe
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Yasuyoshi Watanabe
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
- JST‐PRESTO, HirosawaWako‐shi, Saitama351‐0198Japan
| |
Collapse
|
7
|
Ogura A, Tahara T, Nozaki S, Morimoto K, Kizuka Y, Kitazume S, Hara M, Kojima S, Onoe H, Kurbangalieva A, Taniguchi N, Watanabe Y, Tanaka K. Visualizing Trimming Dependence of Biodistribution and Kinetics with Homo- and Heterogeneous N-Glycoclusters on Fluorescent Albumin. Sci Rep 2016; 6:21797. [PMID: 26902314 PMCID: PMC4763176 DOI: 10.1038/srep21797] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
A series of N-glycans, each sequentially trimmed from biantennary sialoglycans, were homo- or heterogeneously clustered efficiently on fluorescent albumin using a method that combined strain-promoted alkyne-azide cyclization and 6π-azaelectrocyclization. Noninvasive in vivo kinetics and dissection analysis revealed, for the first time, a glycan-dependent shift from urinary to gall bladder excretion mediated by sequential trimming of non-reducing end sialic acids. N-glycoalbumins that were trimmed further, in particular, GlcNAc- and hybrid biantennary-terminated congeners, were selectively taken up by sinusoidal endothelial and stellate cells in the liver, which are critical for diagnosis and treatment of liver fibrillation. Our glycocluster strategy can not only reveal the previously unexplored extracellular functions of N-glycan trimming, but will be classified as the newly emerging glycoprobes for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tsuyoshi Tahara
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satoshi Nozaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Koji Morimoto
- Osaka Women's Junior College, 3-8-1 Kasugaoka, Fujiidera-shi, Osaka, 583-8558, Japan
| | - Yasuhiko Kizuka
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Mitsuko Hara
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako-shi, Saitama, 351-0198, Japan
| | - Soichi Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako-shi, Saitama, 351-0198, Japan
| | - Hirotaka Onoe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia.,Japan Science and Technology Agency-PRESTO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Ogura A, Tanaka K. Azaelectrocyclization on cell surface: convenient and general approach to chemical biology research. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
McKay CS, Finn MG. Click chemistry in complex mixtures: bioorthogonal bioconjugation. CHEMISTRY & BIOLOGY 2014; 21:1075-101. [PMID: 25237856 PMCID: PMC4331201 DOI: 10.1016/j.chembiol.2014.09.002] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/18/2023]
Abstract
The selective chemical modification of biological molecules drives a good portion of modern drug development and fundamental biological research. While a few early examples of reactions that engage amine and thiol groups on proteins helped establish the value of such processes, the development of reactions that avoid most biological molecules so as to achieve selectivity in desired bond-forming events has revolutionized the field. We provide an update on recent developments in bioorthogonal chemistry that highlights key advances in reaction rates, biocompatibility, and applications. While not exhaustive, we hope this summary allows the reader to appreciate the rich continuing development of good chemistry that operates in the biological setting.
Collapse
Affiliation(s)
- Craig S McKay
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M G Finn
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Tsukiji S, Hamachi I. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications. Curr Opin Chem Biol 2014; 21:136-43. [DOI: 10.1016/j.cbpa.2014.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/17/2022]
|