1
|
Brugh A, Wang R, Therien MJ, Forbes MDE. Spinning Molecules, Spinning Spins: Modulation of an Electron Spin Exchange Interaction in a Highly Anisotropic Hyperfine Field. ACS OMEGA 2021; 6:27865-27873. [PMID: 34722986 PMCID: PMC8552362 DOI: 10.1021/acsomega.1c03490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
An investigation of spin and conformational dynamics in a series of symmetric Cu-Cu porphyrin dimer solutions is presented using electron paramagnetic resonance (EPR) spectroscopy. Previous spectral simulations focused on the isotropic exchange interaction (J avg) between the Cu centers. In this work, an additional line broadening parameter (J mod) is explored in detail via variable temperature X-band EPR in liquid solution for several different structures. The J mod phenomenon is due to fluctuations in the spin exchange interaction caused by conformational motion of the porphyrin planes. The J mod parameter scales with the inverse of the rotational barriers that determine the Boltzmann-weighted torsional angle distribution between neighboring porphyrin planes. Arrhenius plots allow for extraction of the activation energies for rotation, which are 5.77, 2.84, and 5.31 kJ/mol for ethyne-bridged (porphinato)copper(II)-(porphinato)copper(II), butadiyne-bridged (porphinato)copper(II)-(porphinato)copper(II), and ethyne-bridged (porphinato)copper(II)-(porphinato)zinc(II)-(porphinato)copper(II) complexes, respectively. DFT calculations of these torsional barriers match well with the experimental results. This is the first report of a J mod analysis within a highly anisotropic hyperfine field and demonstrates the utility of the theory for extraction of dynamic information.
Collapse
Affiliation(s)
- Alexander
M. Brugh
- Center
for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Ruobing Wang
- Department
of Chemistry, French Family Science Center, Duke University, Durham, North Carolina 27708, United States
| | - Michael J. Therien
- Department
of Chemistry, French Family Science Center, Duke University, Durham, North Carolina 27708, United States
| | - Malcolm D. E. Forbes
- Center
for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
2
|
Harvey SM, Wasielewski MR. Photogenerated Spin-Correlated Radical Pairs: From Photosynthetic Energy Transduction to Quantum Information Science. J Am Chem Soc 2021; 143:15508-15529. [PMID: 34533930 DOI: 10.1021/jacs.1c07706] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than a half century ago, the NMR spectra of diamagnetic products resulting from radical pair reactions were observed to have strongly enhanced absorptive and emissive resonances. At the same time, photogenerated radical pairs were discovered to exhibit unusual electron paramagnetic resonance spectra that also had such resonances. These non-Boltzmann, spin-polarized spectra were observed in both chemical systems as well as in photosynthetic reaction center proteins following photodriven charge separation. Subsequent studies of these phenomena led to a variety of chemical electron donor-acceptor model systems that provided a broad understanding of the spin dynamics responsible for these spectra. When the distance between the two radicals is restricted, these observations result from the formation of spin-correlated radical pairs (SCRPs) in which the spin-spin exchange and dipolar interactions between the two unpaired spins play an important role in the spin dynamics. Early on, it was recognized that SCRPs photogenerated by ultrafast electron transfer are entangled spin pairs created in a well-defined spin state. These SCRPs can serve as spin qubit pairs (SQPs), whose spin dynamics can be manipulated to study a wide variety of quantum phenomena intrinsic to the field of quantum information science. This Perspective highlights the role of SCRPs as SQPs, gives examples of possible quantum manipulations using SQPs, and provides some thoughts on future directions.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
3
|
Durantini AM, Greer A. Interparticle Delivery and Detection of Volatile Singlet Oxygen at Air/Solid Interfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3559-3567. [PMID: 33660980 DOI: 10.1021/acs.est.0c07922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An interparticle system has been devised, allowing airborne singlet oxygen to transfer between particle surfaces. Singlet oxygen is photogenerated on a sensitizer particle, where it then travels through air to a second particle bearing an oxidizable compound-a particulate-based approach with some similarities to reactive oxygen quenching in the atmosphere. In atmospheric photochemistry, singlet oxygen is generated by natural particulate matter, but its formation and quenching between particles has until now not been determined. Determining how singlet oxygen reacts on a second surface is useful and was developed by a three-phase system (particle-air-particle) interparticulate photoreaction with tunable quenching properties. We identify singlet oxygen quenching directly by near-IR phosphorescence in the airborne state and at the air/particle interface for total quenching rate constants (kT) of adsorbed anthracene trapping agents. The air/solid interface kT of singlet oxygen by anthracene-coated particles was (2.8 ± 0.8) × 107 g mol-1 s-1 for 9,10-dimethylanthracene and (2.1 ± 0.9) × 107 g mol-1 s-1 for 9,10-anthracene dipropionate dianion, and the lifetime of airborne singlet oxygen was measured to be 550 μs. These real-time interactions and particle-induced quenching steps open up new opportunities for singlet oxygen research of atmospheric and particulate processes.
Collapse
Affiliation(s)
- Andrés M Durantini
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Brugh AM, Forbes MDE. Anomalous chemically induced electron spin polarization in proton-coupled electron transfer reactions: insight into radical pair dynamics. Chem Sci 2020; 11:6268-6274. [PMID: 32953022 PMCID: PMC7480077 DOI: 10.1039/d0sc02691c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
Time-resolved electron paramagnetic resonance (TREPR) spectroscopy has been used to study the proton coupled electron transfer (PCET) reaction between a ruthenium complex (Ru(bpz)(bpy)2) and several substituted hydroquinones (HQ). After excitation at 355 nm, the HQ moiety forms a strong hydrogen bond to the exposed N atoms in the bpz heterocycle. At some point afterwards, a PCET reaction takes place in which an electron from the O atom of the hydrogen bond transfers to the metal center, and the proton forming the hydrogen bond remains on the bpz ligand N atom. The result is a semiquinone radical (HQ˙), whose TREPR spectrum is strongly polarized by the triplet mechanism (TM) of chemically induced dynamic electron spin polarization (CIDEP). Closer examination of the CIDEP pattern reveals, in some cases, a small amount of radical pair mechanism (RPM) polarization. We hypothesize that when the HQ moiety has electron donating groups (EDGs) substituted on the ring, S-T- RPM polarization is observed in HQ˙. These anomalous intensities are accounted for by spectral simulation using polarization from S-T- mixing. The generation of S-T- RPM is attributed to slow radical separation after PCET due to stabilization of the positive charge on the ring by EDGs. Results from a temperature dependence support the hypothesis.
Collapse
Affiliation(s)
- Alexander M Brugh
- Department of Chemistry , Center for Photochemical Sciences , Bowling Green State University , Bowling Green , OH 43403 , USA .
| | - Malcolm D E Forbes
- Department of Chemistry , Center for Photochemical Sciences , Bowling Green State University , Bowling Green , OH 43403 , USA .
| |
Collapse
|
5
|
Affiliation(s)
- Malcolm D E Forbes
- Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio, USA.
| |
Collapse
|
6
|
Rugg BK, Phelan BT, Horwitz NE, Young RM, Krzyaniak MD, Ratner MA, Wasielewski MR. Spin-Selective Photoreduction of a Stable Radical within a Covalent Donor–Acceptor–Radical Triad. J Am Chem Soc 2017; 139:15660-15663. [DOI: 10.1021/jacs.7b10458] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brandon K. Rugg
- Department of Chemistry and
Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T. Phelan
- Department of Chemistry and
Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Noah E. Horwitz
- Department of Chemistry and
Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and
Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry and
Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark A. Ratner
- Department of Chemistry and
Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and
Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
7
|
Wasserman AM, Motyakin MV, Barashkova II, Wasserman LA, Yasina LL. Spin probes in micellar and polymer self-associating systems. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1155-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ivanov KL, Sadovsky VM, Lukzen NN. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors. J Chem Phys 2015; 143:084110. [PMID: 26328821 DOI: 10.1063/1.4928648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090, Russia
| | - Vladimir M Sadovsky
- Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk 660036, Russia
| | - Nikita N Lukzen
- International Tomography Center, Siberian Branch, Russian Academy of Sciences, Institutskaya St. 3a, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Zarea M, Ratner MA, Wasielewski MR. Spin polarization transfer by the radical pair mechanism. J Chem Phys 2015; 143:054101. [DOI: 10.1063/1.4927589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mehdi Zarea
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Mark A. Ratner
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
10
|
Yonemura H, Forbes MDE. Electron Spin Exchange in Linked Phenothiazine-Viologen Charge Transfer Complexes Incorporated in "Through-Ring" (Rotaxane) α-Cyclodextrins. Photochem Photobiol 2015; 91:672-7. [PMID: 25682983 DOI: 10.1111/php.12436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/05/2015] [Indexed: 12/23/2022]
Abstract
A series of covalently bound phenothiazine (PHZ) donor and methylviologen (V) acceptor compounds with polymethylene chain spacers (C8 , C10 , C12 ) were incorporated in a "through-ring" (rotaxane) fashion to α-cyclodextrin (α-CD) hosts such that the alkyl chains were fully extended, with the donor and acceptor on opposite sides of the α-CD cylinder. Photoexcitation of the PHZ unit induces electron transfer from the PHZ first excited triplet state to the V moiety, forming a biradicaloid charge-separated state. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy at the X-band and Q-band microwave frequencies was used to investigate the spin exchange interaction, J, in these biradicaloids. Simulation of the spectra using a "static" model for spin-correlated radical pairs allows extraction of the J values, which are negative in sign and have absolute values range from 2 to 1000 Gauss. Comparison of the PHZn V (n = 8, 10, 12) spectra to those obtained using phenyl ether spacers indicates that π-bonds may assist the electronic coupling. The results are discussed in terms of through-bond vs through-space electronic coupling mechanisms.
Collapse
Affiliation(s)
- Hiroaki Yonemura
- Faculty of Engineering, Department of Applied Chemistry, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | |
Collapse
|
11
|
Zarea M, Carmieli R, Ratner MA, Wasielewski MR. Spin Dynamics of Radical Pairs with Restricted Geometries and Strong Exchange Coupling: The Role of Hyperfine Coupling. J Phys Chem A 2014; 118:4249-55. [DOI: 10.1021/jp5039283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mehdi Zarea
- Department of Chemistry and Argonne−Northwestern
Solar Energy Research
(ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Raanan Carmieli
- Department of Chemistry and Argonne−Northwestern
Solar Energy Research
(ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Mark A. Ratner
- Department of Chemistry and Argonne−Northwestern
Solar Energy Research
(ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne−Northwestern
Solar Energy Research
(ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|