1
|
Banerjee A, Ghosh A, Saha B, Bhadury P, De P. Surface Charge-Switchable Antifouling Block Copolymer with Bacteriostatic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5314-5325. [PMID: 38408899 DOI: 10.1021/acs.langmuir.3c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Zwitterionic polymers are an emerging family of effective, low-fouling materials that can withstand unintended interactions with biological systems while exhibiting enhanced activity in bacterial matrix deterioration and biofilm eradication. Herein, we modularly synthesized an amphiphilic block copolymer, ZABCP, featuring potential bacteriostatic properties composed of a charge-switchable polyzwitterionic segment and a redox-sensitive pendant disulfide-labeled polymethacrylate block. The leucine-appended polyzwitterionic segment with alternatively positioned cationic amine and anionic carboxylate functionalities undergoes charge alterations (+ve → 0 → -ve) on pH variation. By introducing appropriate amphiphilicity, ZABCP forms distinct vesicles with redox-sensitive bilayer membranes and zwitterionic shielding coronas, enabling switching of surface charge. ZABCP vesicles exhibit 180 ± 20 nm hydrodynamic diameter, and its charge switching behavior in response to pH was confirmed by the change of zeta potential value from -23 to +36 mV. The binding interaction between ZABCP vesicles with lysozyme and pepsin proteins strengthens when the surface charge shifts from neutral (pH 7.4) to either anionic or cationic. This surface-charge-switchable phenomenon paves the way for implementing cationic ZABCP vesicles for bacterial cell growth inhibition, which is shown by the pronounced transition of cellular morphology, including clustering, aggregation, or elongation as well as membrane disruption for both Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative). Such enhanced bacteriostatic activity could be ascribed to a strong electrostatic interaction between cationic vesicles and negatively charged bacterial membranes, leading to cell membrane disruption. Overall, this study provides a tailor-made approach to adopt low-fouling properties and potential bacteriostatic activity using zwitterionic polymers through precise control of pH.
Collapse
Affiliation(s)
- Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
| | - Punyasloke Bhadury
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
2
|
Maity T, Paul S, De P. Side-chain amino acid-based macromolecular architectures. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tanmoy Maity
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
3
|
Dinda P, Anas M, Banerjee P, Mandal TK. Dual Thermoresponsive Boc-Lysine-Based Acryl Polymer: RAFT Kinetics and Anti-Protein-Fouling of Its Zwitterionic Form. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Mahammad Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Palash Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Tarun K. Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
4
|
Sahoo S, Gordievskaya YD, Bauri K, Gavrilov AA, Kramarenko EY, De P. Polymerization-Induced Self-Assembly (PISA) Generated Cholesterol-Based Block Copolymer Nano-Objects in a Nonpolar Solvent: Combined Experimental and Simulation Study. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subhasish Sahoo
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Yulia D. Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Purulia 723133, West Bengal, India
| | - Alexey A. Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
5
|
|
6
|
Cheng X, Miao T, Ma Y, Zhu X, Zhang W, Zhu X. Controlling the Multiple Chiroptical Inversion in Biphasic Liquid-Crystalline Polymers. Angew Chem Int Ed Engl 2021; 60:24430-24436. [PMID: 34505335 DOI: 10.1002/anie.202109084] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Indexed: 01/07/2023]
Abstract
While controlling the chirality and modulating the helicity is a challenging task, it attracts great research interest for gaining a better understanding of the origin of chirality in nature. Herein, structurally similar azobenzene (Azo) vinyl monomers were designed in which the alkyl chains comprised the chiral stereocenter with different achiral tail lengths. Combining the synchronous polymerization, supramolecular stacking and self-assembly, the multiple chiroptical inversion of the Azo-polymer supramolecular assemblies can be modulated by the tail length and DP of Azo blocks during in situ polymerization. The DP-, UV light-, temperature-, aging time-dependent chiroptical properties and liquid-crystalline (LC) characterization indicated that the amorphous-to-LC phase transition and biphasic LC interconversion allow the transcription of intra-chain π-π stacking, inter-chain H- and J-aggregation, thereby controlling the dynamic multiple reversal of supramolecular chirality.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yafei Ma
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoyan Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Cheng X, Miao T, Ma Y, Zhu X, Zhang W, Zhu X. Controlling the Multiple Chiroptical Inversion in Biphasic Liquid‐Crystalline Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yafei Ma
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiaoyan Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
8
|
Cheng X, Miao T, Ma H, Zhang J, Zhang Z, Zhang W, Zhu X. Polymerization-Induced Helicity Inversion Driven by Stacking Modes and Self-Assembly Pathway Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103177. [PMID: 34643037 DOI: 10.1002/smll.202103177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Regulating the mutual stacking arrangements is of great interest for understanding the origin of chirality at different hierarchical levels in nature. Different from molecular level chirality, the control and manipulation of hierarchical chirality in polymer systems is limited to the use of external factors as the energetically demanding switching stimulus. Herein, the first self-assembly strategy of polymerization-induced helicity inversion (PIHI), in which the controlled packing and dynamic stereomutation of azobenzene (Azo) building blocks are realized by in situ polymerization without any external stimulus, is reported. A multiple helicity inversion and intriguing helix-helix transition of polymeric supramolecular nanofibers occurs during polymerization, which is collectively confirmed to be mediated by the transition between functionality-oriented π-π stacking, H-, and J-aggregation. The studies further reveal that helicity inversion proceeds through a delicate interplay of the thermodynamically and kinetically controlled, pathway-dependent interconversion process, which should provide new insight into the origin and handedness control of helical nanostructures with desired chirality.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Pushpa Yadav, Hafeez S, Jaishankar J, Srivastava P, Nebhani L. Antimicrobial and Responsive Zwitterionic Polymer Based on Cysteine Methacrylate Synthesized via RAFT Polymerization. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21050163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kasprów M, Lipowska-Kur D, Otulakowski Ł, Dworak A, Trzebicka B. HEMA in Polymers with Thermoresponsive Properties. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1896542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maciej Kasprów
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
11
|
|
12
|
Bayat H, Raoufi M, Zamrik I, Schönherr H. Poly(diethylene glycol methylether methacrylate) Brush-Functionalized Anodic Alumina Nanopores: Curvature-Dependent Polymerization Kinetics and Nanopore Filling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2663-2672. [PMID: 32073275 DOI: 10.1021/acs.langmuir.9b03700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on the synthesis and characterization of poly(diethylene glycol methylether methacrylate) (PDEGMA) brushes by surface-initiated atom transfer radical polymerization inside ordered cylindrical nanopores of anodic aluminum oxide with different pore radii between 20 and 185 nm. In particular, the dependence of polymerization kinetics and the degree of pore filling on the interfacial curvature were analyzed. On the basis of field emission scanning electron microscopy data and thermal gravimetric analysis (TGA), it was concluded that the polymerization rate was faster at the pore orifice compared to the pore interior and also as compared to the analogous reaction carried out on flat aluminum oxide substrates. The apparent steady-state polymerization rate near the orifice increased with decreasing pore size. Likewise, the overall apparent polymerization rate estimated from TGA data indicated stronger confinement for pores with increased curvature as well as increased mass transport limitations due to the blockage of the pore orifice. Only for pores with a diameter to length ratio of ∼1, PDEGMA brushes were concluded to grow uniformly with constant thickness. However, because of mass transport limitations in longer pores, incomplete pore filling was observed, which leads presumably to a PDEGMA gradient brush. This study contributes to a better understanding of polymer brush-functionalized nanopores and the impact of confinement, in which the control of polymer brush thickness together with grafting density along the nanopores is key for applications of PDEGMA brushes confined inside nanopores.
Collapse
Affiliation(s)
- Haider Bayat
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Imad Zamrik
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| |
Collapse
|
13
|
Patra P, Patra N, Pal S. Opposite swelling characteristics through changing the connectivity in a biopolymeric hydrogel based on glycogen and glycine. Polym Chem 2020. [DOI: 10.1039/d0py00117a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycine, a biomolecule, has been functionalized through a simple condensation reaction with one of two functional groups (–COOH and –NH2) to prepare two vinylic monomers.
Collapse
Affiliation(s)
- Priyapratim Patra
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| | - Niladri Patra
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| | - Sagar Pal
- Department of Chemistry
- Indian Institute of Technology (ISM)
- Dhanbad 826004
- India
| |
Collapse
|
14
|
Kumbhakar K, Saha B, De P, Biswas R. Cloud Point Driven Dynamics in Aqueous Solutions of Thermoresponsive Copolymers: Are They Akin to Criticality Driven Solution Dynamics? J Phys Chem B 2019; 123:11042-11054. [PMID: 31794221 DOI: 10.1021/acs.jpcb.9b07840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cloud point driven interaction and relaxation dynamics of aqueous solutions of amphiphilic thermoresponsive copolymers were explored through picosecond resolved and steady state fluorescence measurements employing hydrophilic (coumarin 343, C343) and hydrophobic (coumarin 153, C153) solute probes of comparable sizes. These thermoresponsive random copolymers, with tunable cloud point temperatures (Tcp's) between 298 and 323 K, were rationally designed first and then synthesized via reversible addition-fragmentation chain transfer (RAFT) copolymerization of methyl methacrylate (MMA) and poly(ethylene glycol) monomethyl ether methacrylate (PEGMA). Subsequently, copolymers were characterized by NMR spectroscopy and size exclusion chromatography (SEC). A balance between the hydrophilic (PEGMA) and the hydrophobic (MMA) content dictates the critical aggregation concentration (CAC), with CAC ∼ 2-14 mg/L for these copolymers in aqueous media. No abrupt changes in the steady state spectral features of both C153 and C343 in the aqueous solutions of these polymers near but below the cloud point temperatures were observed. Interestingly, spectral properties of C153 in these solutions show the impact of hydrophobic/hydrophilic interaction balance but not by those of C343. More specifically, C153 reported a blue shift (relative to that in neat water) and heterogeneity in its local environment. This suggested different locations for the hydrophilic (C343) and the hydrophobic (C153) probes. In addition, the excited state fluorescence lifetime (⟨τlife⟩) of C153 increased with the increase of hydrophobic (MMA) content in these copolymers. However, C343 reported no such variations, although fluorescence anisotropy decays for both solutes were significantly slowed down in these aqueous solutions compared to neat water. Anisotropy decays indicated bimodal time-dependent friction for these solutes in aqueous solutions of these copolymers but monomodal in neat water. A linear dependence of the average rotational relaxation rates (⟨krot⟩ = ⟨τrot⟩-1) of the type ⟨krot⟩ ∝ (|T - Tcp|/Tcp)γ with negative values for the exponent γ was observed for both solutes. No slowing down of the solute rotation with temperature approaching the Tcp was detected; rather, rotation became faster upon increasing the solution temperature, suggesting domination of the local friction.
Collapse
Affiliation(s)
- Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake, Kolkata 700106 , India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , Nadia, West Bengal , India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , Nadia, West Bengal , India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake, Kolkata 700106 , India
| |
Collapse
|
15
|
Saha R, Bhayye S, Ghosh S, Saha A, Sarkar K. Supramolecular Assembly of Amino Acid Based Cationic Polymer for Efficient Gene Transfection Efficiency in Triple Negative Breast Cancer. ACS APPLIED BIO MATERIALS 2019; 2:5349-5365. [PMID: 35021535 DOI: 10.1021/acsabm.9b00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The success of gene therapy is enormously dependent on an efficient gene carrier, and in this context, cationic polymers still continue to play a major role particularly with respect to the safety issue compared to viral vectors. Developing an efficient gene carrier system having promising gene transfection efficiency with low toxicity is the foremost impediment associated with a nonviral carrier. Here, we explored amino acid based biocompatible polymers synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization where glycine (Gly), leucine (Leu), and phenyl alanine (Phe) amino acids were used as the pendent groups of the polymeric brushes. The presence of both a hydrophobic group (long chain aliphatic group associated with the RAFT agent) and hydrophilic amino groups was associated with the supramolecular assembly of the polymeric chain having hydrodynamic sizes within the range of 150-300 nm with a positive zeta potential of 30 ± 5 mV. All polymers showed very low toxicity and possessed >80% cell viability even at a very high concentration of 1000 μg/mL against both normal and cancerous cells. In addition to this, the polymers also showed excellent blood compatibility, and negligible hemolysis was observed at the concentration of 500 μg/mL. All polymers showed efficient DNA complexation capability as well as excellent protection of DNA against highly negatively charged surfactant and enzymatic digestion, although the efficiency was dependent on the N/P ratio of polymer/DNA complexes. Interestingly, the phenyl alanine moiety containing polymer brush P(HEMA-Phe-NH2) showed a hexagonal shaped nanoparticle after complexation with pDNA and consequently showed higher cellular uptake, resulting in a higher transfection efficiency in a triple negative breast cancer cell, the MDA-MB-231 cell. Therefore, the synthesized polymer containing an amino acid pendent group, especially the phenyl alanine moiety, may be a promising nonviral gene carrier system in gene therapy application in the future.
Collapse
|
16
|
Dergunov SA. Facile Synthesis of Chiral Polymers with Defined Architecture via Cooperative Assembly of Confined Templates. ACS Macro Lett 2018; 7:1322-1327. [PMID: 35651254 DOI: 10.1021/acsmacrolett.8b00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein is presented the synergistically self-assembled system as biomimetic polymerization media. This approach allows the facile synthesis of chiral amino acid-based polymers with high molecular weight and low dispersity inside of the bilayer of catanionic vesicles by using a conventional radical polymerization under moderate conditions.
Collapse
Affiliation(s)
- Sergey A. Dergunov
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
17
|
Abdelaty MSA. Poly( N-isopropylacrylamide- co-2-((diethylamino)methyl)-4-formyl-6-methoxyphenyl acrylate) Environmental Functional Copolymers: Synthesis, Characterizations, and Grafting with Amino Acids. Biomolecules 2018; 8:E138. [PMID: 30404234 PMCID: PMC6316684 DOI: 10.3390/biom8040138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
Vanillin was used to synthesize a new derivative with an active aldehyde group and response to pH. It is named 2-((diethylamino) methyl)-4-formyl-6-methoxyphenyl acrylate, abbreviated to DEAMVA. The chemical structures were evaluated by ¹H, 13C nuclear magnetic resonance (NMR), infrared (IR), and UV-Vis-spectroscopy, and all results demonstrated good statement. In order to achieve the dual responsive behavior thermo-pH with functionality, free radical polymerization of N-isopropylacrylamide with DEAMVA in different molar ratios (5, 10, 15 mol%) has been used, with azobisisobutyronitrile (AIBN) as the initiator. The chemical structure of the polymers was investigated by ¹H NMR and IR. The dual responsive functional copolymer was exposed to a grafted process with tryptophan and tyrosine, both of which were also evaluated by ¹HNMR and IR. Copolymers before and after grafting were physically investigated by size exclusion chromatography (SEC) for estimation of the molecular weight, the glass transition temperature by differential scanning calorimeter (DSC) and scanning electron microscope (SEM) for the surface morphology. The phase separation or lower critical solution temperature (LCST) (Tc) of the polymer solution was determined not only by a turbidity method using the change in the transmittance with temperature, but also by micro-DSC. The conversion to an amino acid-grafted polymer was detected through Beer's law for the absorption of the ⁻CH=N- imine group by UV-Vis-Spectroscopy.
Collapse
Affiliation(s)
- Momen S A Abdelaty
- Polymer and Biopolymer Lap, Department of Biology, Collage of Haql, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
18
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
19
|
Fang Q, Chen T, Zhong Q, Wang J. Thermoresponsive polymers based on oligo(ethylene glycol) methyl ether methacrylate and modified substrates with thermosensitivity. Macromol Res 2017. [DOI: 10.1007/s13233-017-5037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Brisson ERL, Xiao Z, Franks GV, Connal LA. Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry. Biomacromolecules 2016; 18:272-280. [DOI: 10.1021/acs.biomac.6b01618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emma R. L. Brisson
- Department of Chemical and
Biomolecular Engineering and Particulate
Fluids Processing Centre, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zeyun Xiao
- Department of Chemical and
Biomolecular Engineering and Particulate
Fluids Processing Centre, The University of Melbourne, Parkville, VIC 3010, Australia
| | - George V. Franks
- Department of Chemical and
Biomolecular Engineering and Particulate
Fluids Processing Centre, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A. Connal
- Department of Chemical and
Biomolecular Engineering and Particulate
Fluids Processing Centre, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
21
|
Aluri R, Jayakannan M. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Biomacromolecules 2016; 18:189-200. [DOI: 10.1021/acs.biomac.6b01476] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rajendra Aluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi
Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
22
|
Sutthasupa S, Sanda F. Synthesis of diblock copolymers of indomethacin/aspartic acid conjugated norbornenes and characterization of their self-assembled nanostructures as drug carriers. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bauri K, Pan A, Haldar U, Narayanan A, De P. Exploring amino acid-tethered polymethacrylates as CO2-sensitive macromolecules: A concealed property. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kamal Bauri
- Polymer Research Centre, Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia West Bengal India
| | - Abhishek Pan
- Polymer Research Centre, Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia West Bengal India
| | - Ujjal Haldar
- Polymer Research Centre, Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia West Bengal India
| | - Amal Narayanan
- Polymer Research Centre, Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia West Bengal India
| | - Priyadarsi De
- Polymer Research Centre, Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata, Mohanpur; 741246 Nadia West Bengal India
| |
Collapse
|
24
|
|
25
|
Jena SS, Roy SG, Azmeera V, De P. Solvent-dependent self-assembly behaviour of block copolymers having side-chain amino acid and fatty acid block segments. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
He M, Potuck A, Kohn JC, Fung K, Reinhart-King CA, Chu CC. Self-Assembled Cationic Biodegradable Nanoparticles from pH-Responsive Amino-Acid-Based Poly(Ester Urea Urethane)s and Their Application As a Drug Delivery Vehicle. Biomacromolecules 2016; 17:523-37. [DOI: 10.1021/acs.biomac.5b01449] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mingyu He
- Department
of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| | - Alicia Potuck
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Julie C. Kohn
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Katharina Fung
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Cynthia A. Reinhart-King
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chih-Chang Chu
- Department
of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, United States
| |
Collapse
|
27
|
Brisson ERL, Xiao Z, Connal LA. Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery. Aust J Chem 2016. [DOI: 10.1071/ch16028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amino acids are the natural building blocks for the world around us. Highly functional, these small molecules have unique catalytic properties, chirality, and biocompatibility. Imparting these properties to surfaces and other macromolecules is highly sought after and represents a fast-growing field. Polymers functionalized with amino acids in the side chains have tunable optical properties, pH responsiveness, biocompatibility, structure and self-assembly properties. Herein, we review the synthesis of amino acid functional polymers, discuss manipulation of available strategies to achieve the desired responsive materials, and summarize some exciting applications in catalysis, chiral particles, and drug delivery.
Collapse
|
28
|
Jia F, Wang S, Zhang X, Xiao C, Tao Y, Wang X. Amino-functionalized poly(N-vinylcaprolactam) derived from lysine: a sustainable polymer with thermo and pH dual stimuli response. Polym Chem 2016. [DOI: 10.1039/c6py01487a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysine, a renewable feedstock with economic feasibility, was tactfully cyclized to its corresponding cyclic lysine and then subjected to a reaction with acetylenes to yield a sustainable N-vinylcaprolactam (VCL) derivative. Well-defined PVCL with pendent amino groups was prepared via MADIX/RAFT polymerization.
Collapse
Affiliation(s)
- Fan Jia
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xiaojie Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
29
|
Tian C, Xu T, Zhang L, Cheng Z, Zhu X. RAFT copolymerization of a phosphorus-containing monomer with α-hydroxy phosphonate and methyl methacrylate. RSC Adv 2016. [DOI: 10.1039/c6ra02809h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RAFT copolymerization of a phosphorus-containing monomer with α-hydroxy phosphonate PHMA and MMA was successfully conducted and the resultant well-defined copolymer material shows good superior flame-retardant properties and hydrophilicity.
Collapse
Affiliation(s)
- Chun Tian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Tianchi Xu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
30
|
Saha B, Bauri K, Bag A, Ghorai PK, De P. Conventional fluorophore-free dual pH- and thermo-responsive luminescent alternating copolymer. Polym Chem 2016. [DOI: 10.1039/c6py01738j] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we have designed and synthesized a novel traditional fluorophore-free water-soluble fluorescent copolymer based on a poly(maleimide-alt-styrene) skeleton, which responds to both pH and temperature in aqueous medium.
Collapse
Affiliation(s)
- Biswajit Saha
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
- Department of Chemical Sciences
| | - Kamal Bauri
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
- Department of Chemical Sciences
| | - Arijit Bag
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Pradip K. Ghorai
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Priyadarsi De
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
- Department of Chemical Sciences
| |
Collapse
|
31
|
Bauri K, Roy SG, De P. Side-Chain Amino-Acid-Derived Cationic Chiral Polymers by Controlled Radical Polymerization. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kamal Bauri
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata Mohanpur; 741246 Nadia West Bengal India
| | - Saswati Ghosh Roy
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata Mohanpur; 741246 Nadia West Bengal India
| | - Priyadarsi De
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata Mohanpur; 741246 Nadia West Bengal India
| |
Collapse
|
32
|
|
33
|
Haldar U, Nandi M, Ruidas B, De P. Controlled synthesis of amino-acid based tadpole-shaped organic/inorganic hybrid polymers and their self-assembly in aqueous media. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Narayanan A, Maiti B, De P. Exploring the post-polymerization modification of side-chain amino acid containing polymers via Michael addition reactions. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Novel fast thermal-responsive poly(N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0720-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Preparation of pH-sensitive nanoparticles of poly (methacrylic acid) (PMAA)/poly (vinyl pyrrolidone) (PVP) by ATRP-template miniemulsion polymerization in the aqueous solution. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3554-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Zhang H, Yang W, Deng J. Optically active helical polymers with pendent thiourea groups: Chiral organocatalyst for asymmetric michael addition reaction. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haiyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering, Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
38
|
Vaish A, Roy SG, De P. Synthesis of amino acid based covalently cross-linked polymeric gels using tetrakis(hydroxymethyl) phosphonium chloride as a cross-linker. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Bauri K, Narayanan A, Haldar U, De P. Polymerization-induced self-assembly driving chiral nanostructured materials. Polym Chem 2015. [DOI: 10.1039/c5py00919g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amino acid coated chiral nanostructured soft materials are made by the polymerization induced self-assembly (PISA) technique, where the post-polymerization chemical group transformation leads to a morphological transition.
Collapse
Affiliation(s)
- Kamal Bauri
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| | - Amal Narayanan
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| | - Ujjal Haldar
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, Nadia
- India
| |
Collapse
|
40
|
Narayanan A, Bauri K, Ruidas B, Pradhan G, Banerjee S, De P. Specific counterion repercussions on the thermal, pH-response, and electrochemical properties of side-chain leucine based chiral polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13430-13437. [PMID: 25333268 DOI: 10.1021/la503452f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Effects of counterions of side chain amino acid based polyelectrolytes (PEs) on the solubility in aqueous medium, pH responsiveness, thermal properties, and ionic conductivities have been appraised. Deprotection of the tert-butyl carbamate (Boc) group from poly(Boc-l-leucine methacryloyloxyethyl ester) [P(Boc-l-Leu-HEMA)] was carried out to produce PE with trifluoroacetate as an associative counteranion (1a). PEs with bis(trifluoromethylsulfonyl)imide and hexafluorophosphate counteranion were prepared through anion exchange reactions of 1a. Protonation of the neutralized polymer (2) obtained from 1a, followed by anion exchange, leads to the production of miscellaneous PEs bearing different counteranions, such as tetrafluoroborate, trifluoromethanesulfonate, chloride, and nitrate. Differential scanning calorimetry traces of the PEs reveal that the comparatively larger and weakly coordinated counteranions require less thermal energy to dissociate, and thus, the glass transition temperature (Tg) of the PEs fall off with an increase in the size of the counteranion. A remarkable conductivity of 2.1 mS/cm was obtained in deionized water when Cl(-) acted as the counteranion. Steric and electronic factors of the counteranion induce a change of transition pH in different PEs, although the chiroptical nature was retained, as confirmed by circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Amal Narayanan
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur-741246, Nadia, West Bengal, India
| | | | | | | | | | | |
Collapse
|
41
|
Main-chain sulphur containing water soluble poly(N-isopropylacrylamide-co-N,N′-dimethylacrylamide sulphide) copolymers via interfacial polycondensation. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
New approach for chiral separation: from polysaccharide-based materials to chirality-responsive polymers. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5206-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Ghosh Roy S, De P. Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures. Polym Chem 2014. [DOI: 10.1039/c4py00766b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Roy SG, De P. pH responsive polymers with amino acids in the side chains and their potential applications. J Appl Polym Sci 2014. [DOI: 10.1002/app.41084] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saswati Ghosh Roy
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur-741252 Nadia, West Bengal India
| | - Priyadarsi De
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur-741252 Nadia, West Bengal India
| |
Collapse
|
45
|
Panahian P, Salami-Kalajahi M, Salami Hosseini M. Synthesis of Dual Thermosensitive and pH-Sensitive Hollow Nanospheres Based on Poly(acrylic acid-b-2-hydroxyethyl methacrylate) via an Atom Transfer Reversible Addition–Fragmentation Radical Process. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500892b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pourya Panahian
- Department
of Polymer Engineering and Institute of Polymeric
Materials, Sahand University of Technology, P.O.
Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department
of Polymer Engineering and Institute of Polymeric
Materials, Sahand University of Technology, P.O.
Box 51335-1996, Tabriz, Iran
| | - Mahdi Salami Hosseini
- Department
of Polymer Engineering and Institute of Polymeric
Materials, Sahand University of Technology, P.O.
Box 51335-1996, Tabriz, Iran
| |
Collapse
|
46
|
Roy SG, Haldar U, De P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4233-4241. [PMID: 24556036 DOI: 10.1021/am405932f] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work reports design and synthesis of side chain amino acid based cross-linked polymeric gels, able to switch over from organogel to hydrogel by a simple deprotection reaction and showing superabsorbancy in water. Amino acid based methacrylate monomers, tert-butoxycarbonyl (Boc)-l/d-alanine methacryloyloxyethyl ester (Boc-l/d-Ala-HEMA), have been polymerized in the presence of a cross-linker via conventional free radical polymerization (FRP) and the reversible addition-fragmentation chain transfer (RAFT) technique for the synthesis of cross-linked polymer gels. The swelling behaviors of these organogels are investigated in organic solvents, and they behave as superabsorbent materials for organic solvents such as dichloromethane, acetone, tetrahydrofuran, etc. Swollen cross-linked polymer gels release the absorbed organic solvent rapidly. After Boc group deprotection from the pendant alanine moiety, the organogels transform to the hydrogels due to the formation of side chain ammonium (-NH3(+)) groups, and these hydrogels showed a significantly high swelling ratio (∼560 times than their dry volumes) in water. The morphology of organogels and hydrogels is studied by field emission scanning electron microscopy (FE-SEM). Amino acid based cross-linked gels could find applications as absorbents for oil spilled on water as well as superabsorbent hydrogels.
Collapse
Affiliation(s)
- Saswati Ghosh Roy
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , PO: BCKV, Mohanpur, 741252, Nadia, West Bengal, India
| | | | | |
Collapse
|
47
|
Pal S, Ghosh Roy S, De P. Synthesis via RAFT polymerization of thermo- and pH-responsive random copolymers containing cholic acid moieties and their self-assembly in water. Polym Chem 2014. [DOI: 10.1039/c3py01317k] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Roy SG, Bauri K, Pal S, De P. Tryptophan containing covalently cross-linked polymeric gels with fluorescence and pH-induced reversible sol–gel transition properties. Polym Chem 2014. [DOI: 10.1039/c3py01691a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Kumar S, Acharya R, Chatterji U, De P. Controlled synthesis of β-sheet polymers based on side-chain amyloidogenic short peptide segments via RAFT polymerization. Polym Chem 2014. [DOI: 10.1039/c4py00620h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A strategy was developed for the controlled synthesis of side-chain peptide containing pH-responsive polymers with an antiparallel β-sheet motif, which was independent of solvent polarity, PEGylation of homopolymers, the block length of PEG or peptidic segments in the block copolymer and temperature.
Collapse
Affiliation(s)
- Sonu Kumar
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia, India
| | | | - Urmi Chatterji
- Department of Zoology
- University of Calcutta
- Kolkata – 700 019, India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia, India
| |
Collapse
|
50
|
Kumar S, Acharya R, Chatterji U, De P. Side-chain amino-acid-based pH-responsive self-assembled block copolymers for drug delivery and gene transfer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15375-15385. [PMID: 24274731 DOI: 10.1021/la403819g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Developing safe and effective nanocarriers for multitype of delivery system is advantageous for several kinds of successful biomedicinal therapy with the same carrier. In the present study, we have designed amino acid biomolecules derived hybrid block copolymers which can act as a promising vehicle for both drug delivery and gene transfer. Two representative natural chiral amino acid-containing (l-phenylalanine and l-alanine) vinyl monomers were polymerized via reversible addition-fragmentation chain transfer (RAFT) process in the presence of monomethoxy poly(ethylene glycol) based macro-chain transfer agents (mPEGn-CTA) for the synthesis of well-defined side-chain amino-acid-based amphiphilic block copolymers, monomethoxy poly(ethylene glycol)-b-poly(Boc-amino acid methacryloyloxyethyl ester) (mPEGn-b-P(Boc-AA-EMA)). The self-assembled micellar aggregation of these amphiphilic block copolymers were studied by fluorescence spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Potential applications of these hybrid polymers as drug carrier have been demonstrated in vitro by encapsulation of nile red dye or doxorubicin drug into the core of the micellar nanoaggregates. Deprotection of side-chain Boc- groups in the amphiphilic block copolymers subsequently transformed them into double hydrophilic pH-responsive cationic block copolymers having primary amino groups in the side-chain terminal. The DNA binding ability of these cationic block copolymers were further investigated by using agarose gel retardation assay and AFM. The in vitro cytotoxicity assay demonstrated their biocompatible nature and these polymers can serve as "smart" materials for promising bioapplications.
Collapse
Affiliation(s)
- Sonu Kumar
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research - Kolkata , BCKV Campus Main Office, Mohanpur 741252, Nadia, West Bengal, India
| | | | | | | |
Collapse
|