1
|
Ghosh P, Mukhopadhyay S, Kandasamy T, Mondal S, Ghosh SS, Iyer PK. Multifunctional hydroxyquinoline-derived turn-on fluorescent probe for Alzheimer's disease detection and therapy. J Mater Chem B 2025; 13:1412-1423. [PMID: 39679875 DOI: 10.1039/d4tb01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding molecular motifs that can interfere with amyloid fibrillation through non-covalent interactions is essential for addressing abnormal protein aggregation and associated human diseases. The pursuit of efficient diagnostic and treatment approaches for Alzheimer's disease (AD) has resulted in the development of M8HQ, a multifaceted small molecule turn-on probe derived from 8-hydroxyquinoline with versatile capabilities. M8HQ shows a strong affinity for amyloid beta (Aβ) fibrils, and its ability to target lysosomes enhances therapeutic precision by localizing within these organelles. This localization is essential for restoring cellular balance and maintaining LAMP1 expression, both of which are crucial for addressing AD. It also displays the ability to disaggregate Aβ fibrils and inhibit their formation, thus addressing therapeutic processes in AD progression. M8HQ further blocks reactive oxygen species (ROS)-mediated apoptosis, providing neuroprotective effects. Additionally, it chelates metal ions like Cu(II) and Fe(III), mitigating metal-induced aggregation and oxidative stress. Molecular docking and simulation studies have elucidated the interactions between M8HQ and Aβ, confirming its binding efficacy and stability. These combined properties highlight M8HQ's potential as a comprehensive diagnostic and therapeutic tool for AD.
Collapse
Affiliation(s)
- Priyam Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sayantani Mukhopadhyay
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Thirukumaran Kandasamy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Subrata Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Siddhartha Sankar Ghosh
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Abdulmalek S, Nasir A, Jabbar WA, Almuhaya MAM, Bairagi AK, Khan MAM, Kee SH. IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review. Healthcare (Basel) 2022; 10:1993. [PMID: 36292441 PMCID: PMC9601552 DOI: 10.3390/healthcare10101993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
The Internet of Things (IoT) is essential in innovative applications such as smart cities, smart homes, education, healthcare, transportation, and defense operations. IoT applications are particularly beneficial for providing healthcare because they enable secure and real-time remote patient monitoring to improve the quality of people's lives. This review paper explores the latest trends in healthcare-monitoring systems by implementing the role of the IoT. The work discusses the benefits of IoT-based healthcare systems with regard to their significance, and the benefits of IoT healthcare. We provide a systematic review on recent studies of IoT-based healthcare-monitoring systems through literature review. The literature review compares various systems' effectiveness, efficiency, data protection, privacy, security, and monitoring. The paper also explores wireless- and wearable-sensor-based IoT monitoring systems and provides a classification of healthcare-monitoring sensors. We also elaborate, in detail, on the challenges and open issues regarding healthcare security and privacy, and QoS. Finally, suggestions and recommendations for IoT healthcare applications are laid down at the end of the study along with future directions related to various recent technology trends.
Collapse
Affiliation(s)
- Suliman Abdulmalek
- Faculty of Electrical & Electronic Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia
- Faculty of Engineering and Computing, University of Science & Technology, Aden 8916162, Yemen
| | - Abdul Nasir
- Faculty of Electrical & Electronic Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia
| | - Waheb A. Jabbar
- School of Engineering and the Built Environment, Birmingham City University, Birmingham B4 7XG, UK
| | - Mukarram A. M. Almuhaya
- Faculty of Electrical & Electronic Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia
| | - Anupam Kumar Bairagi
- Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Md. Al-Masrur Khan
- Department of ICT Integrated Ocean Smart Cities Engineering, Dong-A University, Busan 49315, Korea
| | - Seong-Hoon Kee
- Department of ICT Integrated Ocean Smart Cities Engineering, Dong-A University, Busan 49315, Korea
| |
Collapse
|
3
|
A Smartphone-Based Biosensor for Non-Invasive Monitoring of Total Hemoglobin Concentration in Humans with High Accuracy. BIOSENSORS 2022; 12:bios12100781. [PMID: 36290919 PMCID: PMC9599156 DOI: 10.3390/bios12100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
In this paper, we propose a smartphone-based biosensor for detecting human total hemoglobin concentration in vivo with high accuracy. Compared to the existing biosensors used to measure hemoglobin concentration, the smartphone-based sensor utilizes the camera, memory, and computing power of the phone. Thus, the cost is largely reduced. Compared to existing smartphone-based sensors, we developed a highly integrated multi-wavelength LED module and a specially designed phone fixture to reduce spatial errors and motion artifacts, respectively. In addition, we embedded a new algorithm into our smartphone-based sensor to improve the measurement accuracy; an L*a*b* color space transformation and the “a” parameter were used to perform the final quantification. We collected 24 blood samples from normal and anemic populations. The adjusted R2 of the prediction results obtained from the multiple linear regression method reached 0.880, and the RMSE reached 9.04, which met the accuracy requirements of non-invasive detection of hemoglobin concentration.
Collapse
|
4
|
Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics. Mikrochim Acta 2022; 189:83. [PMID: 35118576 DOI: 10.1007/s00604-021-05153-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.
Collapse
|
5
|
Sahu DK, Singha D, Sahu K. Sensing of iron(III)-biomolecules by surfactant-free fluorescent copper nanoclusters. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2018.100250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
6
|
Dey N, Ali A, Kamra M, Bhattacharya S. Simultaneous sensing of ferritin and apoferritin proteins using an iron-responsive dye and evaluation of physiological parameters associated with serum iron estimation. J Mater Chem B 2019; 7:986-993. [PMID: 32255103 DOI: 10.1039/c8tb01523f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An iron-responsive optical probe has been developed for simultaneous sensing of both ferritin and apoferritin proteins at pH 7.4 in water. The compound showed an exclusive response (turn-off signal) towards ferritin among a wide range of proteins even at nanomolar concentration. In contrast, apoferritin dissociates the preformed iron complex and revives the green colored fluorescence of the native probe (turn-on signal). Subsequently, various parameters associated with the serum iron level are evaluated, which are beneficial for clinical diagnosis of many iron-related diseases, including anemia. Estimation of iron was achieved in a wide range of edible plant materials as well as pharmaceutical formulations. Subsequently, different kinds of natural water samples were screened for quantification of soluble iron contents. In addition to traditional spectroscopic tools, dye-coated paper strips were developed as an alternative strategy for onsite 'instrument-free' detection of iron. Highly specific bioimaging of Fe3+ was achieved in cervical cancer cells (HeLa).
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
7
|
Thakur N, Pandey MD, Pandey R. A uniquely fabricated Cu(ii)-metallacycle as a reusable highly sensitive dual-channel and practically functional metalloreceptor for Fe3+ and Ca2+ ions: an inorganic site of cation detection. NEW J CHEM 2018. [DOI: 10.1039/c7nj03294c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimeric Cu(ii)-complex developed from disulfane ligand, serves as dual-channel metalloreceptor for Fe3+/Ca2+ and detection of Fe3+ in real water samples.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Chemistry
- Dr. Harisingh Gour Central University
- Sagar
- India
| | | | - Rampal Pandey
- Department of Chemistry
- Dr. Harisingh Gour Central University
- Sagar
- India
| |
Collapse
|
8
|
Luo C, Liu Y, Zhang Q, Cai X. Hyperbranched conjugated polymers containing 1,3-butadiene units: metal-free catalyzed synthesis and selective chemosensors for Fe3+ ions. RSC Adv 2017. [DOI: 10.1039/c7ra00540g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hyperbranched polymers containing 1,3-butadiene units in main chain were synthesized by transition-metal-free catalysis and investigated as chemosensors for Fe3+ ions.
Collapse
Affiliation(s)
- Chuxin Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Yating Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Qi Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| | - Xuediao Cai
- Key Laboratory of Macromolecular Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- P. R. China
| |
Collapse
|
9
|
Muthuraj B, Mukherjee S, Patra CR, Iyer PK. Amplified Fluorescence from Polyfluorene Nanoparticles with Dual State Emission and Aggregation Caused Red Shifted Emission for Live Cell Imaging and Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32220-32229. [PMID: 27933822 DOI: 10.1021/acsami.6b11373] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A newly synthesized polyfluorene derivative with pendant di(2-picolyl)amine (PF-DPA) shows dual state emission and aggregation caused red shifted emission that was utilized for cell imaging and cancer theranostics. PF-DPA was nontoxic to normal cells but showed cytotoxicity against cancer cells, suggesting its utility for cancer therapy. PF-DPA exhibits a large and unique red shifted emission at 556 nm at higher water ratio of THF:H2O (10:90) due to the formation of polymer nanoparticles or PDots spontaneously by intra- and intermolecular self-assembly induced aggregation. Dual state emission and aggregation caused red shifted emission (>100 nm) in PF-DPA homopolymer nanoparticles is very unique and attributed to the combined effect of intramolecular planarization and J-type aggregate formation in the PDots (25 ± 5 nm). The PF-DPA PDots exhibit bright green and orange fluorescence with exceptional live cell imaging properties and potential applications in cancer theranostics due to their selective cytotoxic nature toward cancer cells.
Collapse
Affiliation(s)
- Balakrishnan Muthuraj
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, India
| | - Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR) , Taramani, Chennai 600 113, India
| | - Chitta Ranjan Patra
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
- Academy of Scientific and Innovative Research (AcSIR) , Taramani, Chennai 600 113, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati 781039, India
| |
Collapse
|
10
|
Ding W, Zhang H, Xu J, Wen Y, Zhang J, Liu H, Yao Y, Zhang Z. Development of solution-dispersible hyperbranched conjugated polymer nanoparticles for Fe3+fluorescent detection and their application in logic gate. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wanchuan Ding
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Hui Zhang
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Jingkun Xu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
| | - Yangping Wen
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Jie Zhang
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| | - Hongtao Liu
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
| | - Yuanyuan Yao
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
| | - Zhouxiang Zhang
- Jiangxi Key Laboratory of Organic Chemistry; Jiangxi Science and Technology Normal University; Nanchang People's Republic of China 330013
- Key Laboratory of Applied Chemistry; Jiangxi Agricultural University; Nanchang People's Republic of China 330045
| |
Collapse
|
11
|
Bag S, Chaudhury S, Pramanik D, DasGupta S, Dasgupta S. Hydrophobic tail length plays a pivotal role in amyloid beta (25-35) fibril-surfactant interactions. Proteins 2016; 84:1213-23. [DOI: 10.1002/prot.25069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sudipta Bag
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | | | - Dibyendu Pramanik
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Sunando DasGupta
- Department of Chemical Engineering; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Swagata Dasgupta
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
12
|
Chowdhury SR, Agarwal M, Meher N, Muthuraj B, Iyer PK. Modulation of Amyloid Aggregates into Nontoxic Coaggregates by Hydroxyquinoline Appended Polyfluorene. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13309-13319. [PMID: 27152771 DOI: 10.1021/acsami.6b03668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inhibitory modulation toward de novo protein aggregation is likely to be a vital and promising therapeutic strategy for understanding the molecular etiology of amyloid related diseases such as Alzheimer's disease (AD). The building up of toxic oligomeric and fibrillar amyloid aggregates in the brain plays host to a downstream of events, causing damage to axons, dendrites, synapses, signaling, transmission, and finally cell death. Herein, we introduce a novel conjugated polymer (CP), hydroxyquinoline appended polyfluorene (PF-HQ), which has a typical "amyloid like" surface motif and exhibits inhibitory modulation effect on amyloid β (Aβ) aggregation. We delineate inhibitory effects of PF-HQ based on Thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), circular dichroism (CD), and Fourier transform infrared (FTIR) studies. The amyloid-like PF-HQ forms nano coaggregates by templating with toxic amyloid intermediates and displays improved inhibitory impacts toward Aβ fibrillation and diminishes amyloid cytotoxicity. We have developed a CP based modulation strategy for the first time, which demonstrates beneficiary amyloid-like surface motif to interact efficiently with the protein, the pendant side groups to trap the toxic amyloid intermediates as well as optical signal to acquire the mechanistic insight.
Collapse
Affiliation(s)
- Sayan Roy Chowdhury
- Department of Chemistry, ‡Department of Bioscience and Bioengineering, and §Center for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, 781039 Assam, India
| | - Mahesh Agarwal
- Department of Chemistry, ‡Department of Bioscience and Bioengineering, and §Center for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, 781039 Assam, India
| | - Niranjan Meher
- Department of Chemistry, ‡Department of Bioscience and Bioengineering, and §Center for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, 781039 Assam, India
| | - Balakrishnan Muthuraj
- Department of Chemistry, ‡Department of Bioscience and Bioengineering, and §Center for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, 781039 Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, ‡Department of Bioscience and Bioengineering, and §Center for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati, 781039 Assam, India
| |
Collapse
|
13
|
Prati F, Bergamini C, Fato R, Soukup O, Korabecny J, Andrisano V, Bartolini M, Bolognesi ML. Novel 8-Hydroxyquinoline Derivatives as Multitarget Compounds for the Treatment of Alzheimer′s Disease. ChemMedChem 2016; 11:1284-95. [DOI: 10.1002/cmdc.201600014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Federica Prati
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum University of Bologna; Via Belmeloro 6/Via Irnerio 48 40126 Bologna Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum University of Bologna; Via Belmeloro 6/Via Irnerio 48 40126 Bologna Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum University of Bologna; Via Belmeloro 6/Via Irnerio 48 40126 Bologna Italy
| | - Ondrej Soukup
- Biomedical Research Center; University Hospital Hradec Kralove; Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Jan Korabecny
- Biomedical Research Center; University Hospital Hradec Kralove; Sokolska 581 500 05 Hradec Kralove Czech Republic
| | - Vincenza Andrisano
- Department for Quality Life Studies; Alma Mater Studiorum University of Bologna; Corso d'Augusto 237 47921 Rimini Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum University of Bologna; Via Belmeloro 6/Via Irnerio 48 40126 Bologna Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum University of Bologna; Via Belmeloro 6/Via Irnerio 48 40126 Bologna Italy
| |
Collapse
|
14
|
Malik AH, Hussain S, Tanwar AS, Layek S, Trivedi V, Iyer PK. An anionic conjugated polymer as a multi-action sensor for the sensitive detection of Cu(2+) and PPi, real-time ALP assaying and cell imaging. Analyst 2016; 140:4388-92. [PMID: 26040847 DOI: 10.1039/c5an00905g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A Cu(2+) ensemble polyfluorene derivative, poly[5,5'-(((9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(oxy))diisophthalate] sodium salt (PFT), displays unprecedented selectivity for PPi (LOD = 2.26 ppb) in aqueous solution as well as in random urine samples at physiological pH vis-a-vis monitoring ALP activity. Furthermore, intracellular imaging of Cu(2+) and PPi in mouse macrophage (J774A.1) and human breast cancer cells (MDA-MB231) was achieved to confirm the viability of PFT in biological systems.
Collapse
Affiliation(s)
- Akhtar H Malik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | | | | | | | | | |
Collapse
|
15
|
Meher N, Chowdhury SR, Iyer PK. Aggregation induced emission enhancement and growth of naphthalimide nanoribbons via J-aggregation: insight into disaggregation induced unfolding and detection of ferritin at the nanomolar level. J Mater Chem B 2016; 4:6023-6031. [DOI: 10.1039/c6tb01746k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A core substituted naphthalimide AIEEgen displays unusual nanoribbon growth in aqueous media with ultra-sensitivity towards non-heme protein ferritin at physiological conditions.
Collapse
Affiliation(s)
- Niranjan Meher
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Sayan Roy Chowdhury
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Parameswar Krishnan Iyer
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Center for Nanotechnology
| |
Collapse
|
16
|
Muthuraj B, Layek S, Balaji SN, Trivedi V, Iyer PK. Multiple function fluorescein probe performs metal chelation, disaggregation, and modulation of aggregated Aβ and Aβ-Cu complex. ACS Chem Neurosci 2015; 6:1880-91. [PMID: 26332658 DOI: 10.1021/acschemneuro.5b00205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An exceptional probe comprising indole-3-carboxaldehyde fluorescein hydrazone (FI) performs multiple tasks, namely, disaggregating amyloid β (Aβ) aggregates in different biomarker environments such as cerebrospinal fluid (CSF), Aβ1-40 fibrils, β-amyloid lysozyme aggregates (LA), and U87 MG human astrocyte cells. Additionally, the probe FI binds with Cu(2+) ions selectively, disrupts the Aβ aggregates that vary from few nanometers to micrometers, and prevents their reaggregation, thereby performing disaggregation and modulation of amyloid-β in the presence as well as absence of Cu(2+) ion. The excellent selectivity of probe FI for Cu(2+) was effectively utilized to modulate the assembly of metal-induced Aβ aggregates by metal chelation with the "turn-on" fluorescence via spirolactam ring opening of FI as well as the metal-free Aβ fibrils by noncovalent interactions. These results confirm that FI has exceptional ability to perform multifaceted tasks such as metal chelation in intracellular conditions using Aβ lysozyme aggregates in cellular environments by the disruption of β-sheet rich Aβ fibrils into disaggregated forms. Subsequently, it was confirmed that FI had the ability to cross the blood-brain barrier and it also modulated the metal induced Aβ fibrils in cellular environments by "turn-on" fluorescence, which are the most vital properties of a probe or a therapeutic agent. Furthermore, the morphology changes were examined by atomic force microscopy (AFM), polarizable optical microscopy (POM), fluorescence microscopy, and dynamic light scattering (DLS) studies. These results provide very valuable clues on the Aβ (CSF Aβ fibrils, Aβ1-40 fibrils, β-amyloid lysozyme aggregates) disaggregation behavior via in vitro studies, which constitute the first insights into intracellular disaggregation of Aβ by "turn-on" method thereby influencing amyloidogenesis.
Collapse
Affiliation(s)
- B. Muthuraj
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Sourav Layek
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - S. N. Balaji
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| |
Collapse
|
17
|
Fan J, Ding L, Bo Y, Fang Y. Fluorescent Ensemble Based on Bispyrene Fluorophore and Surfactant Assemblies: Sensing and Discriminating Proteins in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22487-22496. [PMID: 26414441 DOI: 10.1021/acsami.5b06604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A particular bispyrene fluorophore (1) with two pyrene moieties covalently linked via a hydrophilic spacer was synthesized. Fluorescence measurements reveal that the fluorescence emission of 1 could be well modulated by a cationic surfactant, dodecyltrimethylammonium bromide (DTAB). Protein sensing studies illustrate that the selected ensemble based on 1/DTAB assemblies exhibits ratiometric responses to nonmetalloproteins and turn-off responses to metalloproteins, which can be used to differentiate the two types of proteins. Moreover, negatively charged nonmetalloproteins can be discriminated from the positively charged ones according to the difference in ratiometric responses. Fluorescence sensing studies with control bispyrenes indicate that the polarity of the spacer connecting two pyrene moieties plays an important role in locating bispyrene fluorophore in DTAB assemblies, which further influences its sensing behaviors to noncovalent interacting proteins. This study sheds light on the influence of the probe structure on the sensing performance of a fluorescent ensemble based on probe and surfactant assemblies.
Collapse
Affiliation(s)
- Junmei Fan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Yu Bo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, P. R. China
| |
Collapse
|
18
|
Sorokina SA, Stroylova YY, Shifrina ZB, Muronetz VI. Disruption of Amyloid Prion Protein Aggregates by Cationic Pyridylphenylene Dendrimers. Macromol Biosci 2015; 16:266-75. [DOI: 10.1002/mabi.201500268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/16/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Svetlana A. Sorokina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Vavilova str., 28 119991
| | - Yulia Yu. Stroylova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Leninskye gory, 1/40, 119992 Russia
| | - Zinaida B. Shifrina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Moscow Vavilova str., 28 119991
| | - Vladimir I. Muronetz
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Leninskye gory, 1/40, 119992 Russia
| |
Collapse
|
19
|
Muthuraj B, Chowdhury SR, Iyer PK. Modulation of Amyloid-β Fibrils into Mature Microrod-Shaped Structure by Histidine Functionalized Water-Soluble Perylene Diimide. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21226-21234. [PMID: 26340532 DOI: 10.1021/acsami.5b07260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is associated with different types of amyloid peptide aggregates including senile plaques, fibrils, protofibrils, and oligomers. Due to these difficulties, a powerful strategy is needed for the disaggregation of amyloid aggregates by modulating their self-aggregation behavior. Herein, we report a unique approach toward transforming the aggregated amyloidogenic peptides using an amino acid functionalized perylene diimide as a molecular modulator, which is a different nondestructive approach as compared to inhibiting the aggregation of peptides. The histidine functionalized perylenediimide (PDI-HIS) molecule could coassemble with amyloid β (Aβ) peptides via hydrogen bonding that leads to the enhancement in the π-π interactions between Aβ and PDI-HIS moieties. The Thioflavin T (ThT) assay and various spectroscopic and microscopic techniques establish that the PDI-HIS molecules accelerate the Aβ1-40 and the amyloid aggregates in CSF into micro size coassembled structures. These results give rise to a new and unique complementary approach for modulating the biological effects of the aggregates in amyloidogenic peptides.
Collapse
Affiliation(s)
- Balakrishnan Muthuraj
- Department of Chemistry, Indian Institute of Technology , Guwahati 781039, Assam, India
| | - Sayan Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology , Guwahati 781039, Assam, India
| | - Parameswar K Iyer
- Department of Chemistry, Indian Institute of Technology , Guwahati 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology , Guwahati 781039, Assam, India
| |
Collapse
|
20
|
Suzuki Y, Nakamura Y, Yamada K, Igarashi H, Kasuga K, Yokoyama Y, Ikeuchi T, Nishizawa M, Kwee IL, Nakada T. Reduced CSF Water Influx in Alzheimer's Disease Supporting the β-Amyloid Clearance Hypothesis. PLoS One 2015; 10:e0123708. [PMID: 25946191 PMCID: PMC4422624 DOI: 10.1371/journal.pone.0123708] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate whether water influx into cerebrospinal fluid (CSF) space is reduced in Alzheimer's patients as previously shown in the transgenic mouse model for Alzheimer's disease. METHODS Ten normal young volunteers (young control, 21-30 years old), ten normal senior volunteers (senior control, 60-78 years old, MMSE ≥ 29), and ten Alzheimer's disease (AD) patients (study group, 59-84 years old, MMSE: 13-19) participated in this study. All AD patients were diagnosed by neurologists specializing in dementia based on DSM-IV criteria. CSF dynamics were analyzed using positron emission tomography (PET) following an intravenous injection of 1,000 MBq [15O]H2O synthesized on-line. RESULTS Water influx into CSF space in AD patients, expressed as influx ratio, (0.755 ± 0.089) was significantly reduced compared to young controls (1.357 ± 0.185; p < 0.001) and also compared to normal senior controls (0.981 ± 0.253, p < 0.05). Influx ratio in normal senior controls was significantly reduced compared to young controls (p < 0.01). CONCLUSION Water influx into the CSF is significantly reduced in AD patients. β-amyloid clearance has been shown to be dependent on interstitial flow and CSF production. The current study indicates that reduction in water influx into the CSF may disturb the clearance rate of β-amyloid, and therefore be linked to the pathogenesis of AD. TRIAL REGISTRATION UMIN Clinical Trials Registry UMIN000011939.
Collapse
Affiliation(s)
- Yuji Suzuki
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yukihiro Nakamura
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kenichi Yamada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Yuichi Yokoyama
- Department of Psychiatry, Faculty of Medicine, University of Niigata, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Ingrid L. Kwee
- Department of Neurology, University of California Davis, Davis, California, United States of America
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science, Brain Research Institute, University of Niigata, Niigata, Japan
- Department of Neurology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hussain S, Malik AH, Iyer PK. Highly precise detection, discrimination, and removal of anionic surfactants over the full pH range via cationic conjugated polymer: an efficient strategy to facilitate illicit-drug analysis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3189-3198. [PMID: 25588321 DOI: 10.1021/am507731t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A water-soluble cationic conjugated polyelectrolyte (CPE), poly(1,4-bis(6-(1-methylimidazolium)-hexyloxy)-benzene bromide) (PMI) displays extraordinary stability over the full pH range of 1-14 as well as in seawater, brine, urine, and other solutions and carries out efficient detection, discrimination, and removal of moderately dissimilar anionic surfactants (viz., sodium dodecyl benzenesulfonate (SDBS) and sodium dodecyl sulfate (SDS)) at very low levels (31.7 and 17.3 parts per billion (ppb), respectively). PMI formed stable hydrogels in the presence of SDS that remained unaffected by strong acids/bases, heating, ultrasonication, or exposure to light, whereas SDBS formed precipitate with PMI as a result of its different interpolymer cofacial arrangement via Columbic attraction. The complex-forming ability of PMI with SDS and SDBS facilitated their elimination from water or drug-doped urine samples without the use of any organic solvent, chromatographic technique, or solid support. This protocol, the first of its kind for the removal of anionic surfactants at very low concentrations from any type of solution and competitive environments, demonstrates an original application using a CPE. The surfactant-free sample solutions could be precisely analyzed for the presence of illicit drugs by any standard methods. Using PMI, a newly developed CPE, a rapid and practical method for the efficient detection, discrimination, and removal of SDS and SDBS at ppb levels from water and urine, under harsh conditions, and in natural chemical environments is demonstrated.
Collapse
Affiliation(s)
- Sameer Hussain
- Department of Chemistry and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati 781039, India
| | | | | |
Collapse
|
22
|
Liu X, Shi L, Zhang Z, Fan Q, Huang Y, Su S, Fan C, Wang L, Huang W. Monodispersed nanoparticles of conjugated polyelectrolyte brush with high charge density for rapid, specific and label-free detection of tumor marker. Analyst 2015; 140:1842-6. [DOI: 10.1039/c4an02384f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid and label-free detection of human α-fetoprotein (AFP) based on selective superquenching of monodispersed nanoparticles of conjugated polyelectrolyte.
Collapse
Affiliation(s)
- Xingfen Liu
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Lin Shi
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Zhiyong Zhang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Yanqin Huang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Shao Su
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Chunhai Fan
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
23
|
Muthuraj B, Chowdhury SR, Mukherjee S, Patra CR, Iyer PK. Aggregation deaggregation influenced selective and sensitive detection of Cu2+ and ATP by histidine functionalized water-soluble fluorescent perylene diimide under physiological conditions and in living cells. RSC Adv 2015. [DOI: 10.1039/c5ra00408j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel PDI-HIS probe detects Cu2+ to form aggregated nonfluorescent complex. Addition of 0.58 ppm ATP to this complex causes its rapid disaggregation thereby recovering the fluorescence by ∼99% in vitro and in A549 living cells.
Collapse
Affiliation(s)
| | - Sayan Roy Chowdhury
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Sudip Mukherjee
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Chitta Ranjan Patra
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Parameswar Krishnan Iyer
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Center for Nanotechnology
| |
Collapse
|
24
|
Muthuraj B, Deshmukh R, Trivedi V, Iyer PK. Highly selective probe detects Cu2+ and endogenous NO gas in living cell. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6562-9. [PMID: 24703409 DOI: 10.1021/am501476w] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The rapid and highly sensitive detection of extremely short-lived nitric oxide (NO) gas generated in vivo by a water-soluble fluorescein derivative is developed. This assay system comprises of indole-3-carboxaldehyde functionalized fluorescein hydrazone (FI) assay which displays a typically high absorption at 492 and 620 nm in the presence of Cu2+ and also shows FRET induced fluorescence turn-on exclusively with Cu2+. FI selectively detects Cu2+ in vivo and in vitro by the "turn-on" mechanism followed by fluorescence "turn-off" with NO gas generated by the lipopolysaccharide (LPS) action. The in vivo experiment performed in the cellular system indicates that FI loaded RAW264.7 cells showed bright fluorescence in the presence of Cu2+, while other metals did not influence the FI fluorescence. In addition, the fluorescence of FI-Cu2+ was efficiently quenched by NO generated in macrophages through LPS stimulation. FI demonstrates characteristic "turn-on" behavior in the presence of Cu2+ via spirolactom ring-opening, while other metals such as Na+, K+, Ca2+, Cr3+, Mn2+, Fe3+, Fe2+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, and Ag+ did not influence FI fluorescence even at very high concentration. Further, the FI-Cu2+ complex fluorescence was not quenched with any anions or amino acids but totally quenched by NO and the paramagnetic nature of Cu2+ ion converted into the diamagnetic nature when reduced to Cu1+. FI and the FI-Cu2+ complex are nontoxic to the cellular system and have high potential for biomedical applications.
Collapse
Affiliation(s)
- Balakrishnan Muthuraj
- Department of Chemistry, Indian Institute of Technology , Guwahati-781039, Assam, India
| | | | | | | |
Collapse
|