Wu J, Weng LT, Qin W, Liang G, Tang BZ. Crystallization-Induced Redox-Active Nanoribbons of Organometallic Polymers.
ACS Macro Lett 2015;
4:593-597. [PMID:
35596298 DOI:
10.1021/acsmacrolett.5b00180]
[Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymer/inorganic functional nanostructures are essential for the fabrication of high-performance nanodevices in the future. The synthesis of hybrid nanostructures is hindered by complicated synthetic protocols or harsh conditions. Herein, we report a facile and scalable method for the synthesis of organometallic polymer nanoribbons through crystallization of polymers capped with a ferrate complex. Nanoribbons consisted of a single crystalline polymer lamella coated with a redox-active ferrate complex on both sides. The nanoribbons had a width of approximately 70 nm and a thickness of 10 nm. With the merit of highly ordered crystalline structures of polymers and functional coating layers, as well as a highly anisotropic nature, the nanoribbons are useful in nanodevices and biosensors.
Collapse