1
|
Raj A, Chandran C S, Dua K, Kamath V, Alex AT. Targeting overexpressed surface proteins: A new strategy to manage the recalcitrant triple-negative breast cancer. Eur J Pharmacol 2024; 981:176914. [PMID: 39154820 DOI: 10.1016/j.ejphar.2024.176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous cancer that lacks all three molecular markers, Estrogen, Progesterone, and Human Epidermal Growth Factor Receptor 2 (HER2). This unique characteristic of TNBC makes it more resistant to hormonal therapy; hence, chemotherapy and surgery are preferred. Active targeting with nanoparticles is more effective in managing TNBC than a passive approach. The surface of TNBC cells overexpresses several cell-specific proteins, which can be explored for diagnostic and therapeutic purposes. Immunohistochemical analysis has revealed that TNBC cells overexpress αVβ3 integrin, Intercellular Adhesion Molecule 1 (ICAM-1), Glucose Transporter 5 (GLUT5), Transmembrane Glycoprotein Mucin 1 (MUC-1), and Epidermal Growth Factor Receptor (EGFR). These surface proteins can be targeted using ligands, such as aptamers, antibodies, and sugar molecules. Targeting the surface proteins of TNBC with ligands helps harmonize treatment and improve patient compliance. In this review, we discuss the proteins expressed, which are limited to αVβ3 integrin proteins, ICAM-1, GLUT-5, MUC1, and EGFR, on the surface of TNBC, the challenges associated with the preclinical setup of breast cancer for targeted nanoformulations, internalization techniques and their challenges, suggestions to overcome the limitations of successful translation of nanoparticles, and the possibility of ligand-conjugated nanoparticles targeting these surface receptors for a better therapeutic outcome.
Collapse
Affiliation(s)
- Alan Raj
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Sarath Chandran C
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Government Medical College Kannur, Pariyaram, Kerala, India, 670 503; Kerala University of Health Sciences, Thrissur, Kerala, India - 680 596.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, Australia-2007.
| | - Venkatesh Kamath
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka state, India, 576104.
| |
Collapse
|
2
|
Li G, Duclos C, Ricarte RG. Impact of a poly(ethylene glycol) corona block on drug encapsulation during polymerization induced self-assembly. SOFT MATTER 2024; 20:7214-7226. [PMID: 39224056 DOI: 10.1039/d4sm00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polymerization induced self-assembly (PISA) provides a facile platform for encapsulating therapeutics within block copolymer nanoparticles. Performing PISA in the presence of a hydrophobic drug alters both the nanoparticle shape and encapsulation efficiency. While previous studies primarily examined the interactions between the drug and hydrophobic core block, this work explores the impact of the hydrophilic corona block on encapsulation. Poly(ethylene glycol) (PEG) and poly(2-hydroxypropyl methacrylate) (PHPMA) are used as the model corona and core blocks, respectively, and phenylacetic acid (PA) is employed as the model drug. Attachment of a dithiobenzoate end group to the PEG homopolymer - transforming it into a macroscopic reversible addition-fragmentation chain transfer agent - causes the polymer to form a small number of nanoscopic aggregates in solution. Adding PA to the PEG solution encourages further aggregation and macroscopic phase separation. During the PISA of PEG-PHPMA block copolymers, inclusion of PA in the reaction mixture promotes faster nucleation of spherical micelles. Although increasing the targeted PA loading from 0 to 20 mg mL-1 does not affect the micelle size or shape, it alters the drug spatial distribution within the PISA microenvironment. PA partitions into either PEG-PHPMA micelles, deuterium oxide, or other polymeric species - including PEG aggregates and unimer chains. Increasing the targeted PA loading changes the fraction of drug within each encapsulation site. This work indicates that the corona block plays a critical role in dictating drug encapsulation during PISA.
Collapse
Affiliation(s)
- Guanrui Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.
| | - Cassie Duclos
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.
| | - Ralm G Ricarte
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA.
| |
Collapse
|
3
|
Yao X, Cao X, He J, Hao L, Chen H, Li X, Huang W. Controlled Fabrication of Unimolecular Micelles as Versatile Nanoplatform for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405816. [PMID: 39246207 DOI: 10.1002/smll.202405816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Unimolecular micelles (UMs) are nano-sized structures that are composed of single molecules with precise composition. Compared to self-assembled polymeric micelles, UMs possess ultra-stable property even in complex biological environment. With the development of controllable polymerization and coupling chemistry, the preparation of narrowly monodispersed UMs with precise morphology and size has been realized, which further facilitates their multifunctional applications. After brief introduction, state-of-the-art advances in the synthesis and applications of UMs are discussed with an emphasis on their bioapplications. It is believed that these UMs have great potential in future fabrication of multifunctional nanoplatforms.
Collapse
Affiliation(s)
- Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xudong Cao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jiayu He
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Linhui Hao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Haobo Chen
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
5
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Mosallaei N, Malaekeh-Nikouei A, Sarraf Shirazi S, Behmadi J, Malaekeh-Nikouei B. A comprehensive review on alpha-lipoic acid delivery by nanoparticles. BIOIMPACTS : BI 2024; 14:30136. [PMID: 39493899 PMCID: PMC11530970 DOI: 10.34172/bi.2024.30136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 11/05/2024]
Abstract
Alpha-lipoic acid (ALA) has garnered significant attention for its potential therapeutic benefits across a wide spectrum of health conditions. Despite its remarkable antioxidant properties, ALA is hindered by challenges such as low bioavailability, short half-life, and unpleasant odor. To overcome these limitations and enhance ALA's therapeutic efficacy, various nanoparticulate drug delivery systems have been explored. This comprehensive review evaluates the application of different nanoparticulate carriers, including lipid-based nanoparticles (solid lipid nanoparticles, niosomes, liposomes, nanostructured lipid carriers (NLCs), and micelles), nanoemulsions, polymeric nanoparticles (nanocapsules, PEGylated nanoparticles, and polycaprolactone nanoparticles), films, nanofibers, and gold nanoparticles, for ALA delivery. Each nanoparticulate system offers unique advantages, such as improved stability, sustained release, enhanced bioavailability, and targeted delivery. For example, ALA-loaded SLNs demonstrated benefits for skin care products and skin rejuvenation. ALA encapsulated in niosomes showed potential for treating cerebral ischemia, a condition largely linked to stroke. ALA-loaded cationic nanoemulsions showed promise for ophthalmic applications, reducing vascular injuries, and corneal disorders. Coating liposomes with chitosan further enhanced stability and performance, promoting drug absorption through the skin. This review provides a comprehensive overview of the advancements in nanoparticulate delivery systems for ALA, highlighting their potential to overcome the limitations of ALA administration and significantly enhance its therapeutic effectiveness. These innovative approaches hold promise for the development of improved ALA-based treatments across a broad spectrum of health conditions.
Collapse
Affiliation(s)
- Navid Mosallaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Setayesh Sarraf Shirazi
- Student research committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behmadi
- Student research committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Astier S, Johnson EC, Norvilaite O, Varlas S, Brotherton EE, Sanderson G, Leggett GJ, Armes SP. Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320303 PMCID: PMC10883040 DOI: 10.1021/acs.langmuir.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.
Collapse
Affiliation(s)
- Samuel Astier
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Edwin C Johnson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Oleta Norvilaite
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Spyridon Varlas
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - George Sanderson
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Graham J Leggett
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
8
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
9
|
Farmer MH, Musa OM, Haug I, Naumann S, Armes SP. Synthesis of Poly(propylene oxide)-Poly( N,N'-dimethylacrylamide) Diblock Copolymer Nanoparticles via Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2024; 57:317-327. [PMID: 38222027 PMCID: PMC10782481 DOI: 10.1021/acs.macromol.3c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Sterically-stabilized diblock copolymer nanoparticles comprising poly(propylene oxide) (PPO) cores are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous solution. N,N'-Dimethylacrylamide (DMAC) acts as a cosolvent for the weakly hydrophobic trithiocarbonate-capped PPO precursor. Reversible addition-fragmentation chain transfer (RAFT) polymerization of DMAC is initially conducted at 80% w/w solids with deoxygenated water. At 30-60% DMAC conversion, the reaction mixture is diluted to 5-25% w/w solids. The PPO chains become less solvated as the DMAC monomer is consumed, which drives in situ self-assembly to form aqueous dispersions of PPO-core nanoparticles of 120-190 nm diameter at 20 °C. Such RAFT polymerizations are well-controlled (Mw/Mn ≤ 1.31), and more than 99% DMAC conversion is achieved. The resulting nanoparticles exhibit thermoresponsive character: dynamic light scattering and transmission electron microscopy studies indicate the formation of more compact spherical nanoparticles of approximately 33 nm diameter on heating to 70 °C. Furthermore, 15-25% w/w aqueous dispersions of such nanoparticles formed micellar gels that undergo thermoreversible (de)gelation on cooling to 5 °C.
Collapse
Affiliation(s)
- Matthew
A. H. Farmer
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Iris Haug
- Institute
of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Naumann
- Institute
of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
10
|
Zhang F, Yao Q, Chen X, Zhou H, Zhou M, Li Y, Cheng H. In-depth study of anticancer drug diffusion through a cross-linked -pH-responsive polymeric vesicle membrane. Drug Deliv 2023; 30:2162626. [PMID: 36600638 PMCID: PMC9828689 DOI: 10.1080/10717544.2022.2162626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Post-encapsulation and release of the anticancer drug doxorubicin hydrochloride (DOX·HCl) through cell-like transmission functions of polymeric vesicles were studied using cross-linked pH-responsive polymeric vesicles. The vesicles were fabricated for the first time via the redox-initiated reversible addition-fragmentation chain transfer dispersion polymerization in ethanol-water mixture, using 2-(diisopropylamino)ethyl methacrylate and glycidyl methacrylate, and the vesicle membrane was modified post-cross-linking by using ethylenediamine. A phase diagram was constructed for reproducible fabrication of the polymeric vesicles, and well-shaped vesicles were formed when the target degree of polymerization of the hydrophobic polymer chains was equal to or higher than 50 with solid content in the range of 10-30 wt%. The cross-linked vesicle membrane served as a gate enabling "open" and "closed" states in response to pH stimulation. Up to 50% drug loading efficiency and 39% drug loading content could be achieved, and in vitro release of the DOX-loaded vesicles in aqueous buffer solutions showed a much faster DOX release rate at pH 5.0 than at pH 6.5. The polymeric vesicles were of very low cytotoxicity to A549 cells up to the concentration of 2 mg/mL, and the IC50 of DOX-loaded vesicles were higher than that of the free DOX. The intracellular DOX release study indicated higher cellular uptake capability for DOX-loaded vesicles than that of free DOX.
Collapse
Affiliation(s)
- Fen Zhang
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| | - Qian Yao
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Haijun Zhou
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Mengmeng Zhou
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China
| | - Yantao Li
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| | - Hua Cheng
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province, China,CONTACT Fen Zhang ; Yantao Li Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China; Hua Cheng Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei Province050081, China
| |
Collapse
|
11
|
Bowman JI, Eades CB, Vratsanos MA, Gianneschi NC, Sumerlin BS. Ultrafast Xanthate-Mediated Photoiniferter Polymerization-Induced Self-Assembly (PISA). Angew Chem Int Ed Engl 2023; 62:e202309951. [PMID: 37793989 DOI: 10.1002/anie.202309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Polymerization-induced self-assembly (PISA) is a powerful technique for preparing block copolymer nanostructures. Recently, efforts have been focused on applying photochemistry to promote PISA due to the mild reaction conditions, low cost, and spatiotemporal control that light confers. Despite these advantages, chain-end degradation and long reaction times can mar the efficacy of this process. Herein, we demonstrate the use of ultrafast photoiniferter PISA to produce polymeric nanostructures. By exploiting the rapid photolysis of xanthates, near-quantitative monomer conversion can be achieved within five minutes to prepare micelles, worms, and vesicles at various core-chain lengths, concentrations, or molar compositions.
Collapse
Affiliation(s)
- Jared I Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Cabell B Eades
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Maria A Vratsanos
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C Gianneschi
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL 60208, USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Pan W, Zhang HJ, Zhang YF, Wang M, Tsui MTK, Yang L, Miao AJ. Silica nanoparticle accumulation in plants: current state and future perspectives. NANOSCALE 2023; 15:15079-15091. [PMID: 37697950 DOI: 10.1039/d3nr02221h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
With their excellent biocompatibility, adjustable size, and high specific surface area, silica nanoparticles (SiO2 NPs) offer an alternative to traditional bulk fertilizers as a means to promote sustainable agriculture. SiO2 NPs have been shown to promote the growth of plants and to reduce the negative effects of biotic and abiotic stresses, but their bioaccumulation is a crucial factor that has been overlooked in studies of their biological effects. In this review, the techniques to quantify and visualize SiO2 NPs in plants were examined first. We then provide a summary of the current state of knowledge on the accumulation, translocation, and transformation of SiO2 NPs in plants and of the factors (e.g., the physicochemical properties of SiO2 NPs, plant species, application mode, and environmental conditions) that influence SiO2 NP bioaccumulation. The challenges in analyzing NP-plant interactions are considered as well. We conclude by identifying areas for further research that will advance our understanding of NP-plant interactions and thus contribute to more sustainable, eco-friendly, nano-enabled approaches to improving crop nutrient supplies. The information presented herein is important to improve the delivery efficiency of SiO2 NPs for precision and sustainable agriculture and to assess the safety of SiO2 NPs during their application in agriculture.
Collapse
Affiliation(s)
- Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, PR China.
| | - Hong-Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, PR China.
| | - Yu-Feng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, PR China.
| | - Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, PR China.
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, Earth and Environmental Sciences Programme, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, PR China.
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, PR China.
| |
Collapse
|
13
|
Brotherton EE, Josland D, György C, Johnson EC, Chan DH, Smallridge MJ, Armes SP. Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel. Macromol Rapid Commun 2023; 44:e2200903. [PMID: 36534428 PMCID: PMC11497266 DOI: 10.1002/marc.202200903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Daniel Josland
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Csilla György
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Edwin C. Johnson
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Derek H.H. Chan
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | | | - Steven P. Armes
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
14
|
Zhao X, Sun C, Xiong F, Wang T, Li S, Huo F, Yao X. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. RESEARCH (WASHINGTON, D.C.) 2023; 6:0113. [PMID: 37223484 PMCID: PMC10202185 DOI: 10.34133/research.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 05/25/2023]
Abstract
Amphiphilic copolymers can self-assemble into nano-objects in aqueous solution. However, the self-assembly process is usually performed in a diluted solution (<1 wt%), which greatly limits scale-up production and further biomedical applications. With recent development of controlled polymerization techniques, polymerization-induced self-assembly (PISA) has emerged as an efficient approach for facile fabrication of nano-sized structures with a high concentration as high as 50 wt%. In this review, after the introduction, various polymerization method-mediated PISAs that include nitroxide-mediated polymerization-mediated PISA (NMP-PISA), reversible addition-fragmentation chain transfer polymerization-mediated PISA (RAFT-PISA), atom transfer radical polymerization-mediated PISA (ATRP-PISA), and ring-opening polymerization-mediated PISA (ROP-PISA) are discussed carefully. Afterward, recent biomedical applications of PISA are illustrated from the following aspects, i.e., bioimaging, disease treatment, biocatalysis, and antimicrobial. In the end, current achievements and future perspectives of PISA are given. It is envisioned that PISA strategy can bring great chance for future design and construction of functional nano-vehicles.
Collapse
|
15
|
Bhattacharjee S, Srivastava S. Ordered stripes to crack patterns in dried particulates of DNA-coated gold colloids via modulating nanoparticle-substrate interactions. SOFT MATTER 2023; 19:2265-2274. [PMID: 36919352 DOI: 10.1039/d2sm01446g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The surface pattern in dried droplets of nanoparticle suspension possesses direct correlation with the evaporation profile, which apart from the bulk parameters, can also be altered by tuning the nanoscale interactions. Here, we show that, for sessile drops of DNA-coated gold nanoparticle (DNA-AuNP) solution, the alteration in evaporation pathway of TPCL (three-phase contact line) from stick-slip to mixed mode leads to a surface morphological transition from concentric rings with stripes to radial crack formation within the coffee ring deposit. A freshly cleaned silicon substrate offers hydrophilic/favorable substrate-nanoparticle interaction and produces multiple ordered stripes due to stick-slip motion of the TPCL. Using a SiO2/Si substrate with ∼200 nm of oxide layer leads to an increase in the initial water contact angle θi-w by ∼40°, due to increased hydrophobicity of the substrate. Three distinct modes of evaporation are observed - constant contact radius (CCR), constant contact angle (CCA) and mixed mode, resulting in the formation of radial cracks on a thick coffee ring structure. The critical thickness (hc), beyond which the cracks start to appear, was measured to be ∼600 nm and is in close agreement with the theoretical estimate of ∼510 nm. Through in situ contact angle and ex situ SEM measurements, we provide an understanding of the observed surface morphological transition in the dried particulate at various nanoparticle densities. Further analysis of the coffee ring width (d), linear crack density (σ) and crack spacing (λ) provides insight into the mechanism of crack formation for droplets dried on oxide-coated substrates.
Collapse
Affiliation(s)
- Suman Bhattacharjee
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai-400 076, India
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Mumbai-400 076, India.
| | - Sunita Srivastava
- Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Mumbai-400 076, India.
| |
Collapse
|
16
|
Du R, Fielding LA. Preparation of polymer nanoparticle-based complex coacervate hydrogels using polymerisation-induced self-assembly derived nanogels. SOFT MATTER 2023; 19:2074-2081. [PMID: 36857682 DOI: 10.1039/d2sm01534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper reports a generic method to prepare polymer nanoparticle-based complex coacervate (PNCC) hydrogels by employing rationally designed nanogels synthesised by reversible addition-fragmentation chain-transfer (RAFT)-mediated polymerisation-induced self-assembly (PISA). Specifically, a poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agent (macro-CTA) was synthesised via RAFT solution polymerisation followed by chain-extension with a statistical copolymer of benzyl methacrylate (BzMA) and methacrylic acid (MAA) at pH 2. Thus, pH-responsive nanoparticles (NPs) comprising a hydrophobic polyacid core-forming block and a sulfonate-functional stabiliser block were formed. With the introduction of methacrylic acid into the core of the NPs, they become swollen with increasing pH, as judged by dynamic light scattering (DLS), indicating nanogel-type behaviour. PNCC hydrogels were prepared by simply mixing the PISA-derived nanogels and cationic branched polyethyleneimine (bPEI) at 20% w/w. In the absence of MAA in the core of the NPs, gel formation was not observed. The mass ratio between the nanogels and bPEI affected resulting hydrogel strength and a mixture of bPEI and PKSPMA68-P(BzMA0.6-stat-MAA0.4)300 NPs with a mass ratio of 0.14 at pH ∼7 resulted in a hydrogel with a storage modulus of approximately 2000 Pa, as determined by oscillatory rheology. This PNCC hydrogel was shear-thinning and injectable, with recovery of gel strength occurring rapidly after the removal of shear.
Collapse
Affiliation(s)
- Ruiling Du
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Yaduvanshi N, Jaiswal S, Tewari S, Shukla S, Mohammad Wabaidur S, Dwivedi J, Sharma S. Palladium Nanoparticles and their Composites: Green Synthesis and Applications with Special Emphasis to Organic Transformations. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
18
|
In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Dhiraj HS, Ishizuka F, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose induced self‐assembly of hydrophobic boronic acid‐substituted polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harpal S. Dhiraj
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| |
Collapse
|
20
|
Dhiraj HS, Ishizuka F, Saeed M, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose responsive boronic acid-substituted amphiphilic block copolymer nanoparticles of high aspect ratio. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties. Pharmaceutics 2022; 15:pharmaceutics15010032. [PMID: 36678661 PMCID: PMC9865764 DOI: 10.3390/pharmaceutics15010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
This review aims to highlight the importance of particle shape in the design of polymeric nanocarriers for drug delivery systems, along with their size, surface chemistry, density, and rigidity. Current manufacturing methods used to obtain non-spherical polymeric nanocarriers such as filomicelles or nanoworms, nanorods and nanodisks, are firstly described. Then, their interactions with biological barriers are presented, including how shape affects nanoparticle clearance, their biodistribution and targeting. Finally, their drug delivery properties and their therapeutic efficacy, both in vitro and in vivo, are discussed and compared with the characteristics of their spherical counterparts.
Collapse
|
22
|
Shah S, Famta P, Bagasariya D, Charankumar K, Amulya E, Kumar Khatri D, Singh Raghuvanshi R, Bala Singh S, Srivastava S. Nanotechnology based drug delivery systems: Does shape really matter? Int J Pharm 2022; 625:122101. [PMID: 35961415 DOI: 10.1016/j.ijpharm.2022.122101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
As of today, the era of nanomedicine has brought numerous breakthroughs and overcome challenges in the treatment of various disorders. Various factors like size, charge and surface hydrophilicity have garnered significant attention by nanotechnologists. However, more exploration in the field of nanoparticle shape and geometry, one of the basic physical phenomenon is required. Tuning nanoparticle shape and geometry could potentially overcome pitfalls in therapeutics and biomedical fields. Thus, in this article, we unveil the importance of tuning nanoparticle shape selection across the delivery platforms. This article provides an in-depth understanding of nanoparticle shape modulation and advise the researchers on the ideal morphology selection tailored for each implication. We deliberated the importance of nanoparticle shape selection for specific implications with respect to organ targeting, cellular internalization, pharmacokinetics and bio-distribution, protein corona formation as well as RES evasion and tumor targeting. An additional section on the significance of shape transformation, a recently introduced novel avenue with applications in drug delivery was discussed. Furthermore, regulatory concerns towards nanoparticle shape which need to be addressed for harnessing their clinical translation will be explained.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
23
|
Takashima A, Maeda Y, Sugihara S. Morphology Control via RAFT Emulsion Polymerization-Induced Self-Assembly: Systematic Investigation of Core-Forming Blocks. ACS OMEGA 2022; 7:26894-26904. [PMID: 35936476 PMCID: PMC9352249 DOI: 10.1021/acsomega.2c03440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Polymerization-induced self-assembly (PISA) is a useful formulation for readily obtaining nanoparticles from block copolymers in situ. Reversible addition-fragmentation chain-transfer (RAFT) emulsion polymerization is utilized as one of the PISA formulations. Various factors have so far been investigated for obtaining nonspherical particles via RAFT emulsion polymerization, such as the steric structure of the shell, the glass-transition temperature (T g) of the core-forming block, and the water solubility of the core-forming monomer. This study focuses on core-forming blocks without changing the structure of the shell-forming block. In particular, we elucidate the balance between T g for the core-forming block and the water solubility of the core monomer. A series of alkyl methacrylates, such as methyl methacrylate (MMA), ethyl methacrylate (EMA), and n-propyl methacrylate (PrMA), are emulsion-polymerized in the presence of a poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) macromolecular chain-transfer agent via the RAFT process. The resulting in situ morphology changes to form shapes such as spheres, worms (toroids), and vesicles are systematically investigated. The properties of the core that determine whether a morphological change occurs from spheres are (i) the solubility of the core-forming monomer in water, (ii) the relationship between T g for the core-forming block and the polymerization temperature, and (iii) the hydrophobic core volume, which changes the packing parameter. These factors allow prediction of the block copolymer morphology produced during RAFT emulsion polymerization of other methacrylates such as n-butyl methacrylate (BuMA), tetrahydrofurfuryl methacrylate (THFMA) with physical properties of the homopolymer (poly(tetrahydrofurfuryl methacrylate) (PTHFMA)) between those for poly(MMA) (PMMA) and PBuMA, and 1-adamantyl methacrylate (ADMA) with low monomer solubility in water and high T g of the homopolymer (PADMA).
Collapse
Affiliation(s)
- Atsushi Takashima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui910-8507, Japan
| | - Yasushi Maeda
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui910-8507, Japan
| | - Shinji Sugihara
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui910-8507, Japan
| |
Collapse
|
24
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
25
|
Strategies for preparing hybrid nanomaterials via Polymerization-Induced Self-Assembly. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Biofunctionalized Nanomaterials: Alternative for Encapsulation Process Enhancement. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, interest in the development of nanometric materials with specific characteristics has grown; however, there are few scientific contributions that associate encapsulation methodologies and matrices with the particle objective (metabolic directions, type of administration, biological impact, and biocompatibility). This review focuses on describing the benefits and disadvantages of different techniques for designing custom particles and alternatives for the biofunctionalization nanomaterials regarding the biological impact of a nanomaterial with potential use in foods known as nutraceuticals. The study of optical properties, physicochemical factors, and characteristics such as rheological can predict its stability in the application matrix; however, not only should the characterization of a nanocomposite with applications in food be considered, but also the biological impact that it may present.
Collapse
|
27
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
28
|
Zhang Z, Chen Y, Zhang Y. Self-Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103241. [PMID: 34850560 DOI: 10.1002/smll.202103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Indexed: 05/27/2023]
Abstract
In the past few decades, significant progress of the conventional upconversion nanoparticles (UCNPs) based nanoplatform has been achieved in many fields, and with the development of nanoscience and nanotechnology, more and more complex situations need a UCNPs based nanoplatform having multifunctions for specific multimodal or multiplexed applications. Through self-assembly, different UCNPs or UCNPs with other materials could be combined together within an entity. It is more like an ideal UCNPs nanoplatform, a unique system with the properties defined by its individual components as well as by the morphology of the composite. Various designs can show their different desired properties depending on the application situation. This review provides a complete summary on the optimization of the synthesis method for the recently designed UCNPs assemblies and summarizes various applications, including dual-modality cell imaging, molecular delivery, detection, and programmed control therapy. The challenges and limitations the UCNPs assembly faces and the potential solutions in this field are also presented.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
29
|
Affiliation(s)
- Qingfu Ban
- College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Yan Li
- College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| |
Collapse
|
30
|
Shende P, Rodrigues B, Govardhane S. Diversified applications of self-assembled nanocluster delivery systems- A state-of-the- art review. Curr Pharm Des 2022; 28:1870-1884. [PMID: 35232345 DOI: 10.2174/1381612828666220301125944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Self-assembled nanoclusters arrange the components into an organized structure for the nanoparticulate system and also in the transportation of cellular elements for the fabrication of microelectronic devices. Nanoclusters reduce transcytosis and increase endocytosis in intestinal mucin to strengthen the retrograde pathway that helped in the delivery of actives to the Golgi apparatus. OBJECTIVES This review article focuses on the self-assembled nanoclusters for cellular transportation, applications of self-assembled structures in the delivery of essential elements like the use of a peptide in targeted and stimuli-responsive drug delivery systems, self-assembly of tocopherol nanoclusters that promotes vitamin E delivery across the endothelial barrier. Methods Current innovation in the self-assembly of peptides includes the formation of nanostructures like vesicles, fibers, and rod-coil in the applications of wound healing, tissue engineering, treatment of atherosclerosis, in sensing heavy metals from biological and environmental samples and advanced drug delivery. RESULTS Self-assembled biodegradable nanoclusters are used as biomimetic structures for synergistic effect. Improvement in the methods of preparation like the addition of a copolymer is used for temperature-triggered drug release nanoclusters. CONCLUSION Green synthesis of nanoclusters, nanocluster-based biosensor and artificial intelligence are the future concept in the manufacturing and the prevention of toxicity in humans.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bernice Rodrigues
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
31
|
Wen SP, Fielding LA. Pyridine-functional diblock copolymer nanoparticles synthesized via RAFT-mediated polymerization-induced self-assembly: effect of solution pH. SOFT MATTER 2022; 18:1385-1394. [PMID: 35084008 DOI: 10.1039/d1sm01793d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) polymerization has become widely recognized as a versatile and efficient strategy to prepare complex block copolymer nanoparticles with controlled morphology, size, and surface functionality. In this article, we report the preparation of cationic sterically-stabilized poly(2-vinylpyridine)-poly(benzyl methacrylate) (P2VP-PBzMA) diblock copolymer nanoparticles via RAFT-mediated PISA under aqueous emulsion polymerization conditions. It is demonstrated that the solution pH during PISA has a dramatic effect on the resulting P2VP-PBzMA nanoparticles, as judged by dynamic light scattering (DLS), disc centrifuge photosedimentometry (DCP) and transmission electron microscopy (TEM). Varying the solution pH results in the P2VP stabilizer having different solubilities due to protonation/deprotonation of the pyridine groups. This allows P2VP-PBzMA nanoparticles with tunable diameters to be prepared by altering the DP of the stabilizer (P2VP) and/or core-forming block (PBzMA), or simply by changing the solution pH for a fixed copolymer composition. For example, P2VP-PBzMA nanoparticles with larger diameters can be obtained at higher solution pH as the protonation degree of the P2VP stabilizer has a large effect on both the aggregation of polymer chains during the PISA process, and the resulting behavior of the diblock copolymer nanoparticles. Changing the dispersion pH post-polymerization has a relatively limited effect on particle diameter. Furthermore, aqueous electrophoresis studies indicate that these P2VP-PBzMA nanoparticles had good colloidal stability and high cationic charge (>30 mV) below pH 5 and can be dispersed readily over a wide pH range.
Collapse
Affiliation(s)
- Shang-Pin Wen
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
32
|
Parkatzidis K, Truong NP, Rolland M, Lutz‐Bueno V, Pilkington EH, Mezzenga R, Anastasaki A. Transformer-Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angew Chem Int Ed Engl 2022; 61:e202113424. [PMID: 35014134 PMCID: PMC9303452 DOI: 10.1002/anie.202113424] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Controlled polymerizations have enabled the production of nanostructured materials with different shapes, each exhibiting distinct properties. Despite the importance of shape, current morphological transformation strategies are limited in polymer scope, alter the chemical structure, require high temperatures, and are fairly tedious. Herein we present a rapid and versatile morphological transformation strategy that operates at room temperature and does not impair the chemical structure of the constituent polymers. By simply adding a molecular transformer to an aqueous dispersion of polymeric nanoparticles, a rapid evolution to the next higher-order morphology was observed, yielding a range of morphologies from a single starting material. Significantly, this approach can be applied to nanoparticles produced by disparate block copolymers obtained by various synthetic techniques including emulsion polymerization, polymerization-induced self-assembly and traditional solution self-assembly.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria 3052Australia
| | - Manon Rolland
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
| | - Viviane Lutz‐Bueno
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Emily H. Pilkington
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria 3052Australia
| | - Raffaele Mezzenga
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurich8092Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric MaterialsDepartment of MaterialsETH ZurichVladimir-Prelog-Weg 5Zurich8093Switzerland
| |
Collapse
|
33
|
Plucinski A, Pavlovic M, Clarke M, Bhella D, Schmidt BVKJ. Stimuli-Responsive Aggregation of High Molar Mass Poly(N,N-Diethylacrylamide)-b-Poly(4-Acryloylmorpholine) in Tetrahydrofuran. Macromol Rapid Commun 2022; 43:e2100656. [PMID: 34783099 PMCID: PMC11475301 DOI: 10.1002/marc.202100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Indexed: 02/01/2023]
Abstract
The self-assembly of block copolymers constitutes a timely research area in polymer science with implications for applications like sensing or drug-delivery. Here, the unprecedented aggregation behavior of high molar mass block copolymer poly(N,N-diethylacrylamide)-b-poly(4-acryloylmorpholine) (PDEA-b-PAM) (Mn >400 kg mol-1 ) in organic solvent tetrahydrofuran (THF) is investigated. To elucidate the aggregation, dynamic light scattering, cryo-transmission electron microscopy, and turbidimetry are employed. The aggregate formation is assigned to the unprecedented upper critical solution temperature behavior of PAM in THF at elevated concentrations (> 6 wt.%) and high molar masses. Various future directions for this new thermo-responsive block copolymer are envisioned, for example, in the areas of photonics or templating of inorganic structures.
Collapse
Affiliation(s)
| | - Marko Pavlovic
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 1Potsdam14476Germany
- BioSense InstituteUniversity of Novi SadDr Zorana Djindjica 1, III‐8Novi Sad21000Serbia
| | - Mairi Clarke
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowG61 1QHUK
| | - David Bhella
- Scottish Centre for Macromolecular ImagingUniversity of GlasgowGlasgowG61 1QHUK
| | | |
Collapse
|
34
|
Parkatzidis K, Truong NP, Rolland M, Lutz‐Bueno V, Pilkington EH, Mezzenga R, Anastasaki A. Transformer‐Induced Metamorphosis of Polymeric Nanoparticle Shape at Room Temperature. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Manon Rolland
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| | - Viviane Lutz‐Bueno
- Department of Health Sciences and Technology ETH Zurich Zurich 8092 Switzerland
| | - Emily H. Pilkington
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
| | - Raffaele Mezzenga
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
- Department of Health Sciences and Technology ETH Zurich Zurich 8092 Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials Department of Materials ETH Zurich Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland
| |
Collapse
|
35
|
Tkachenko V, Kunemann P, Malval JP, Petithory T, Pieuchot L, Vidal L, Chemtob A. Kinetically stable sub-50 nm fluorescent block copolymer nanoparticles via photomediated RAFT dispersion polymerization for cellular imaging. NANOSCALE 2022; 14:534-545. [PMID: 34935832 DOI: 10.1039/d1nr04934h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled block copolymer nanoparticles (NPs) have emerged as major potential nanoscale vehicles for fluorescence bioimaging. The preparation of NPs with high yields possessing high kinetic stability to prevent the leakage of fluorophore molecules is crucial to their practical implementation. Here, we report a photomediated RAFT polymerization-induced self-assembly (PISA) yielding uniform and nanosized poly((oligo(ethylene glycol) acrylate)-block-poly(benzyl acrylate) particles (POEGA-b-PBzA) with a concentration of 22 wt%, over 20 times more than with micellization and nanoprecipitation. The spherical diblock copolymer nanoparticles have an average size of 10-50 nm controllable through the degree of polymerization of the stabilizing POEGA block. Subsequent dialysis against water and swelling with Nile red solution led to highly stable fluorescent NPs able to withstand the changes in concentration, ionic strength, pH or temperature. A PBzA/water interfacial tension of 48.6 mN m-1 hinders the exchange between copolymer chains, resulting in the trapping of NPs in a "kinetically frozen" state responsible for high stability. A spectroscopic study combining fluorescence and UV-vis absorption agrees with a preferential distribution of fluorophores in the outer POEGEA shell despite its hydrophobic nature. Nile red-doped POEGA-b-PBzA micelles without initiator residues and unimers but with high structural stability turn out to be noncytotoxic, and can be used for the optical imaging of cells. Real-time confocal fluorescence microscopy shows a fast cellular uptake using C2C12 cell lines in minutes, and a preferential localization in the perinuclear region, in particular in the vesicles.
Collapse
Affiliation(s)
- Vitalii Tkachenko
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Philippe Kunemann
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Jean Pierre Malval
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Laurent Pieuchot
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Loïc Vidal
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| | - Abraham Chemtob
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France.
- Université de Strasbourg, France
| |
Collapse
|
36
|
Kitayama Y, Dosaka A, Harada A. Interfacial photocrosslinking of polymer particles possessing nucleobase photoreactive groups for hollow/capsule polymer fabrication. Polym Chem 2022. [DOI: 10.1039/d1py01438b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, polystyrene-based particles possessing nucleobases in polymer side chains were prepared and nucleobase groups were applied to the interfacial photocrosslinking as photoreactive groups for the first time for fabricating hollow/capsule particles.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akali Dosaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
37
|
György C, Smith T, Growney DJ, Armes SP. Synthesis and derivatization of epoxy-functional sterically-stabilized diblock copolymer spheres in non-polar media: does the spatial location of the epoxy groups matter? Polym Chem 2022. [DOI: 10.1039/d2py00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epoxy-functional sterically-stabilized diblock copolymer nanoparticles are prepared via PISA in mineral oil and then derivatized using various reagents and reaction conditions.
Collapse
Affiliation(s)
- Csilla György
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Timothy Smith
- Lubrizol Ltd, Nether Lane, Hazelwood, Derbyshire, DE56 4AN, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
38
|
Varlas S, Neal TJ, Armes SP. Polymerization-induced self-assembly and disassembly during the synthesis of thermoresponsive ABC triblock copolymer nano-objects in aqueous solution. Chem Sci 2022; 13:7295-7303. [PMID: 35799807 PMCID: PMC9214878 DOI: 10.1039/d2sc01611g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) has been widely utilized as a powerful methodology for the preparation of various self-assembled AB diblock copolymer nano-objects in aqueous media. Moreover, it is well-documented that chain extension of AB diblock copolymer vesicles using a range of hydrophobic monomers via seeded RAFT aqueous emulsion polymerization produces framboidal ABC triblock copolymer vesicles with adjustable surface roughness owing to microphase separation between the two enthalpically incompatible hydrophobic blocks located within their membranes. However, the utilization of hydrophilic monomers for the chain extension of linear diblock copolymer vesicles has yet to be thoroughly explored; this omission is addressed for aqueous PISA formulations in the present study. Herein poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (G-H) vesicles were used as seeds for the RAFT aqueous dispersion polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Interestingly, this led to polymerization-induced disassembly (PIDA), with the initial precursor vesicles being converted into lower-order worms or spheres depending on the target mean degree of polymerization (DP) for the corona-forming POEGMA block. Moreover, construction of a pseudo-phase diagram revealed an unexpected copolymer concentration dependence for this PIDA formulation. Previously, we reported that PHPMA-based diblock copolymer nano-objects only exhibit thermoresponsive behavior over a relatively narrow range of compositions and DPs (see Warren et al., Macromolecules, 2018, 51, 8357–8371). However, introduction of the POEGMA coronal block produced thermoresponsive ABC triblock nano-objects even when the precursor G-H diblock copolymer vesicles proved to be thermally unresponsive. Thus, this new approach is expected to enable the rational design of new nano-objects with tunable composition, copolymer architectures and stimulus-responsive behavior. Chain extension of linear AB diblock copolymer vesicles by seeded RAFT aqueous dispersion polymerization using a hydrophilic monomer C leads to polymerization-induced disassembly to form lower-order thermoresponsive ABC triblock copolymer nano-objects.![]()
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Thomas J. Neal
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
39
|
Li N, Wang Y, Guo Y, Ji Z, Zhang Z, Yu J, Zhang L. Surface modified cellulose nanocrystalline hybrids actualizing efficient and precise delivery of doxorubicin into nucleus with: In vitro and in vivo evaluation. J Appl Polym Sci 2021. [DOI: 10.1002/app.51536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Na Li
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
- Institute of Medical and Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| | - Yiwei Wang
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
| | - Yuqi Guo
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
- Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine Henan Provincial People's Hospital; People's Hospital of Zhengzhou University Zhengzhou China
| | - Zhenyu Ji
- Institute of Medical and Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| | - Zhuangli Zhang
- Institute of Medical and Pharmaceutical Sciences Zhengzhou University Zhengzhou China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering, East China Normal University Shanghai China
| | - Lianzhong Zhang
- Henan Provincial People's Hospital People's Hospital of Zhengzhou University Zhengzhou China
- Henan Provincial People's Hospital People's Hospital of Henan University Zhengzhou China
| |
Collapse
|
40
|
Brotherton EE, Smallridge MJ, Armes SP. Aldehyde-Functional Diblock Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization. Biomacromolecules 2021; 22:5382-5389. [PMID: 34814688 DOI: 10.1021/acs.biomac.1c01327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the rational design of aldehyde-functional sterically stabilized diblock copolymer nano-objects in aqueous solution via polymerization-induced self-assembly. More specifically, reversible addition-fragmentation chain transfer aqueous dispersion polymerization of 2-hydroxypropyl methacrylate is conducted using a water-soluble precursor block in which every methacrylic repeat unit contains a pendent oligo(ethylene glycol) side chain capped with a cis-diol unit. Systematic variation of the reaction conditions enables the construction of a pseudo-phase diagram, which ensures the reproducible targeting of pure spheres, worms, or vesicles. Selective oxidation of the pendent cis-diol groups using aqueous sodium periodate under mild conditions introduces geminal diols (i.e., the hydrated form of an aldehyde obtained in the presence of water) into the steric stabilizer chains without loss of colloidal stability. In the case of diblock copolymer vesicles, such derivatization leads to the formation of a worm population, indicating partial loss of the original morphology. However, this problem can be circumvented by cross-linking the membrane-forming block prior to periodate oxidation. Moreover, such covalently stabilized aldehyde-functionalized vesicles can be subsequently reacted with either glycine or histidine in aqueous solution, followed by reductive amination to prevent hydrolysis of the labile imine bond. ζ potential measurements confirm that this derivatization significantly affects the electrophoretic behavior of these vesicles. Similarly, the membrane-crosslinked aldehyde-functionalized vesicles can be reacted with a model globular protein, bovine serum albumin, to produce "stealthy" protein-decorated vesicles.
Collapse
Affiliation(s)
- Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark J Smallridge
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
41
|
Amani A, Dustparast M, Noruzpour M, Zakaria RA, Ebrahimi HA. Design and Invitro Characterization of Green Synthesized Magnetic Nanoparticles Conjugated with Multitargeted Poly Lactic Acid Copolymers for Co-delivery of siRNA and Paclitaxel. Eur J Pharm Sci 2021; 167:106007. [PMID: 34520835 DOI: 10.1016/j.ejps.2021.106007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The self-assembling of various amphipathic copolymers is a simple method that allows the preparation of complex nanoparticles with several useful properties. In the present study, the polylactic acid-polyethylene glycol-folate (PLA-PEG-FA) (PPF), PLA-PEG-T7 peptide (PPT) and PLA-Chitosan-Spermine (PCS) copolymers were synthesized separately. METHODS These copolymers combined with Fe3O4 magnetic core and loaded with paclitaxel (PTX)/siRNA-FAM to form magnetic PCS/PPF/PPT/PTX/siRNA micelles (MPCSFT/PTX/siRNA) and were characterized using physicochemical and biological analysis. RESULTS The results revealed that the MPCSPFT/PTX/siRNA had spherical morphology with particle size and zeta potential about 197 nm and -7.8 mV, respectively. Release assay was determined under neutral (pH=7.4) and acidic pH (pH=6) conditions to simulate PTX and siRNA release profile from MPCSPFT/PTX/siRNA micelles in normal and cancerous tissues. The ability of MPCSPFT for co-delivery of PTX and siRNA into MCF-7 cells was determined by MTT and flow cytometry tests, respectively. The results revealed that the release rate of siRNA and PTX from MPCSPFT/PTX/siRNA nanoparticles under an acidic environment (pH=6) was significantly higher than that of their release rate in a neutral medium (pH=7.4). CONCLUSION Conjugation of both folic acid and T7-peptide on the surface of micelles compared to separate conjugation of one of these ligands, increased the efficiency of drug and siRNA delivery to breast cancer cells.
Collapse
Affiliation(s)
- Amin Amani
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Dustparast
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
42
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
43
|
Kim S, Jana B, Go EM, Lee JE, Jin S, An EK, Hwang J, Sim Y, Son S, Kim D, Kim C, Jin JO, Kwak SK, Ryu JH. Intramitochondrial Disulfide Polymerization Controls Cancer Cell Fate. ACS NANO 2021; 15:14492-14508. [PMID: 34478266 DOI: 10.1021/acsnano.1c04015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent advances in supramolecular chemistry research have led to the development of artificial chemical systems that can form self-assembled structures that imitate proteins involved in the regulation of cellular function. However, intracellular polymerization systems that operate inside living cells have been seldom reported. In this study, we developed an intramitochondrial polymerization-induced self-assembly system for regulating the cellular fate of cancer cells. It showed that polymeric disulfide formation inside cells occurred due to the high reactive oxygen species (ROS) concentration of cancer mitochondria. This polymerization barely occurs elsewhere in the cell owing to the reductive intracellular environment. The polymerization of the thiol-containing monomers further increases the ROS level inside the mitochondria, thereby autocatalyzing the polymerization process and creating fibrous polymeric structures. This process induces dysfunction of the mitochondria, which in turn activates cell necroptosis. Thus, this in situ polymerization system shows great potential for cancer treatment, including that of drug-resistant cancers.
Collapse
Affiliation(s)
- Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji Eun Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Youjung Sim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sehee Son
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chaekyu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
44
|
Raphael E, Derry MJ, Hippler M, Armes SP. Tuning the properties of hydrogen-bonded block copolymer worm gels prepared via polymerization-induced self-assembly. Chem Sci 2021; 12:12082-12091. [PMID: 34667573 PMCID: PMC8457373 DOI: 10.1039/d1sc03156b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) is exploited to design hydrogen-bonded poly(stearyl methacrylate)-poly(benzyl methacrylate) [PSMA-PBzMA] worm gels in n-dodecane. Using a carboxylic acid-based RAFT agent facilitates hydrogen bonding between neighboring worms to produce much stronger physical gels than those prepared using the analogous methyl ester-based RAFT agent. Moreover, tuning the proportion of these two types of end-groups on the PSMA chains enables the storage modulus (G') of a 20% w/w worm gel to be tuned from ∼4.5 kPa up to ∼114 kPa. This is achieved via two complementary routes: (i) an in situ approach using binary mixtures of acid- and ester-capped PSMA stabilizer chains during PISA or (ii) a post-polymerization processing strategy using a thermally-induced worm-to-sphere transition to mix acid- and ester-functionalized spheres at 110 °C that fuse to form worms on cooling to 20 °C. SAXS and rheology studies of these hydrogen-bonded worm gels provide detailed insights into their inter-worm interactions and physical behavior, respectively. In the case of the carboxylic acid-functionalized worms, SAXS provides direct evidence for additional inter-worm interactions, while rheological studies confirm both a significant reduction in critical gelation concentration (from approximately 10% w/w to 2-3% w/w) and a substantial increase in critical gelation temperature (from 41 °C to 92 °C). It is remarkable that a rather subtle change in the chemical structure results in such improvements in gel strength, gelation efficiency and gel cohesion.
Collapse
Affiliation(s)
- Eleanor Raphael
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Matthew J Derry
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Michael Hippler
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Steven P Armes
- Chemistry Department, University of Sheffield Dainton Building, Brook Hill Sheffield South Yorkshire S3 7HF UK
| |
Collapse
|
45
|
Noy JM, Chen F, Stenzel M. Post-functionalization of drug-loaded nanoparticles prepared by polymerization-induced self-assembly (PISA) with mitochondria targeting ligands. Beilstein J Org Chem 2021; 17:2302-2314. [PMID: 34621393 PMCID: PMC8450966 DOI: 10.3762/bjoc.17.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Herein, the postfunctionalization of different non-fouling PISA particles, prepared from either poly(oligo ethylene glycol methyl ether methacrylate) (pPEGMA) and the anticancer drug PENAO (4-(N-(S-penicillaminylacetyl)amino)phenylarsenonous acid) or zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and PENAO were reported. Both PISA particles were reacted with triphenylphosphonium (TPP) as mitochondria targeting units in order to evaluate the changes in cellular uptake or the toxicity of the conjugated arsenic drug. Attachment of TPP onto the PISA particles however was found not to enhance the mitochondrial accumulation, but it did influence overall the biological activity of pMPC-based particles in 2D and 3D cultured sarcoma SW982 cells. When TPP was conjugated to the pMPC PISA particles more cellular uptake as well as better spheroid penetration were observed, while TPP on PEG-based PISA had only little effect. It was hypothesized that TPP on the micelle surface may not be accessible enough to allow mitochondria targeting, but more structural investigations are required to elucidate this.
Collapse
Affiliation(s)
- Janina-Miriam Noy
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Fan Chen
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Martina Stenzel
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
46
|
Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2543-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
48
|
Korpusik AB, Tan Y, Garrison JB, Tan W, Sumerlin BS. Aptamer-Conjugated Micelles for Targeted Photodynamic Therapy Via Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Angie B. Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yan Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
49
|
The self-assembly and thermoresponsivity of poly(isoprene-b-methyl methacrylate) copolymers in non-polar solvents. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Dong Z, Qiu H, Han M, Wang R, Guo Y, Wang X. Honokiol-Based Nanomedicine Decorated with Ethylene Glycols Derivatives Promotes Antitumor Efficacy. J Biomed Nanotechnol 2021; 17:1564-1573. [PMID: 34544534 DOI: 10.1166/jbn.2021.3126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Honokiol-loaded nanoparticles (HK-loaded NPs) exhibit potential antitumor activity; however, the factors affecting their antitumor efficacy are still unclear and need to be explored. This research was aimed to systematically estimate the influence of feed weight ratio (FWR) and nanocarrier structure on antitumor activity. Accordingly, three types of ethylene glycol derivatives, including linear poly(ethylene glycol) with molar mass of 2000 (PEG45), first and second generation oligo(ethylene glycol) dendrons (G1 and G2) were used as nanocarriers, and a series of HK-loaded NPs with different FWR were prepared successfully using the evaporation-ultrasonication method. These NPs showed similar stability but demonstrated differences with respect to particle size, morphology, cumulative profile, and antitumor efficacy. The influence of the FWR was studied using G1 dendrons as nanocarriers; the results indicated that the particle size and morphology of G1 NPs were significantly affected, and G1 NPs (8/1), with the FWR of 8/1 for HK versus G1 dendron, exhibited the highest antitumor activity among all G1 NPs. Furthermore, the influence of nanocarrier structure was investigated at the FWR of 4/1; the findings revealed reduction in the particle diameter from 280 nm to 109 nm and change in morphology from sphere to flower-like structure with an increase in the branch degree from linear to dendron. Moreover, G2 NPs (4/1), with the FWR of 4/1 for HK versus G2 dendron, carrying the highest branch degree exhibited the greatest antitumor efficacy among all. These results are suggestive of influence of particle size and morphology on antitumor efficacy of HK-loaded NPs. Conclusively, this study demonstrated nanocarrier structure and the FWR significantly affect the antitumor efficacy of NPs, which should be optimized for designing nanoscale delivery systems.
Collapse
Affiliation(s)
- Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, P. R. China
| | - Hanhong Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Rui Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Xiangfang District, Harbin 150040, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| |
Collapse
|