1
|
Liu YX, Zhong H, Li XR, Bao ZL, Cheng ZP, Zhang YJ, Li CX. Fabrication of attapulgite-based dual responsive composite hydrogel and its efficient adsorption for methyl violet. ENVIRONMENTAL TECHNOLOGY 2022; 43:1480-1492. [PMID: 33070707 DOI: 10.1080/09593330.2020.1838623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In this work, attapulgite (ATP)-based dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) composite hydrogel, P(NIPAM-co-AA)/ATP, was prepared by free radical polymerization. The prepared composite hydrogel was characterized via methods of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta potential analysis and Brunauer, Emmett, and Teller (BET) etc. The composite hydrogel showed pH and temperature sensitive behaviour, with lower critical solution temperature (LCST) of 35°C and highest swelling occurred at pH 8.0. The adsorption of methyl violet (MV) can be controlled by the hydrogel responsiveness, and 95.78% of MV can be removed at pH 8.0 and 35°C. The addition of a small amount of ATP (3 Wt%) can improve the swelling ratio and adsorption capacity. Kinetic analysis demonstrated that the experimental data were best fitted to the pseudo-second order model. Isotherm analysis showed that the equilibrium data followed Langmuir model with the adsorption capacity of 168.35 mg g-1. In addition, the composite hydrogel has high adsorption selectivity for cationic dyes, and MV-loaded hydrogel is easy to regenerate, which can be used for successive adsorption cycles. These results demonstrate that the composite hydrogel has potential application in dye wastewater treatment.
Collapse
Affiliation(s)
- Yi-Xin Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Hui Zhong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Xiao-Rong Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhuan-Li Bao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhi-Peng Cheng
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Yu-Jie Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Chun-Xiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Gao M, Lu H, Song R, Ye L, Zhang A, Feng Z. Synthesis and Characterization of Polyrotaxanes Comprising γ‐CDs and Distal Azide‐Terminated PHEMA Using Propargylamine Monosubstituted β‐CDs as End Stoppers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ming Gao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Hang Lu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Rong‐Hao Song
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Lin Ye
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Ai‐Ying Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| | - Zeng‐Guo Feng
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
3
|
Gao M, Lu H, Song RH, Ye L, Zhang AY, Feng ZG. Polyrotaxanes created by end-capping polypseudorotaxanes self-assembled from β-CDs with distal azide terminated PHEMA using propargylamine monosubstituted β-CDs. Polym Chem 2020. [DOI: 10.1039/c9py01619h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When a distal azide terminated PHEMA was allowed to self-assemble with varying amounts of β-CDs in water, followed by in situ reaction with PA-β-CDs via the CuAAC, linear polyrotaxanes (PRs) and a mixture of linear and hyperbranched PRs were obtained.
Collapse
Affiliation(s)
- Ming Gao
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Hang Lu
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Rong-hao Song
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Lin Ye
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| | - Ai-ying Zhang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| | - Zeng-guo Feng
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| |
Collapse
|
4
|
Wu A, Sun P, Sun N, Zheng L. Responsive Self-Assembly of Supramolecular Hydrogel Based on Zwitterionic Liquid Asymmetric Gemini Guest. Chemistry 2018; 24:10452-10459. [DOI: 10.1002/chem.201801321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/22/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry; Shandong University; Ministry of Education; Jinan 250100 P.R. China
| | - Panpan Sun
- Key Laboratory of Colloid and Interface Chemistry; Shandong University; Ministry of Education; Jinan 250100 P.R. China
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry; Shandong University; Ministry of Education; Jinan 250100 P.R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry; Shandong University; Ministry of Education; Jinan 250100 P.R. China
| |
Collapse
|
5
|
Wagner-Wysiecka E, Łukasik N, Biernat JF, Luboch E. Azo group(s) in selected macrocyclic compounds. J INCL PHENOM MACRO 2018; 90:189-257. [PMID: 29568230 PMCID: PMC5845695 DOI: 10.1007/s10847-017-0779-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 01/15/2023]
Abstract
Azobenzene derivatives due to their photo- and electroactive properties are an important group of compounds finding applications in diverse fields. Due to the possibility of controlling the trans-cis isomerization, azo-bearing structures are ideal building blocks for development of e.g. nanomaterials, smart polymers, molecular containers, photoswitches, and sensors. Important role play also macrocyclic compounds well known for their interesting binding properties. In this article selected macrocyclic compounds bearing azo group(s) are comprehensively described. Here, the relationship between compounds' structure and their properties (as e.g. ability to guest complexation, supramolecular structure formation, switching and motion) is reviewed.
Collapse
Affiliation(s)
- Ewa Wagner-Wysiecka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Jan F Biernat
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Elżbieta Luboch
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Chen Y, Wang L, Pan X, Wu J, Zhang W, Zhang Z, Zhu X. Establishment of a molecular design to obtain visible-light-activated azoxy polymer actuators. Polym Chem 2018. [DOI: 10.1039/c8py00199e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Visible-light-activated main-chain and hyperbranched azoxy polymers were prepared directly from bis-/trinitro-functionalized monomers via photochemical reduction.
Collapse
Affiliation(s)
- Yang Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Laibing Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jin'an Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
7
|
Caddy JS, Faust TB, Walton IM, Cox JM, Benedict JB, Solomon MB, Southon PD, Kepert CJ, D'Alessandro DM. Photoactive and Physical Properties of an Azobenzene-Containing Coordination Framework. Aust J Chem 2017. [DOI: 10.1071/ch17215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new three-dimensional coordination framework, [Zn4(tbazip)3(bpe)2(OH)2]·bpe·{solvent} (where bpe = 1,2-di(4-pyridyl)ethene) containing the novel photoactive ligand tbazip (tbazip = 5-((4-tert-butyl)phenylazo)isophthalic acid) has been synthesised and crystallographically characterised. The photoactivity of discrete tbazip was investigated and compared with its photoactivity while incorporated within the framework. The effect of isomerisation of the incorporated azobenzene on the chemical and physical properties of the framework were investigated using UV-vis and Raman spectroscopies. The framework is porous only to hydrogen gas at 77 K, but displayed an appreciable uptake for CO2 at 195 K.
Collapse
|
8
|
Chen S, Wang K, Zhang W. A new thermoresponsive polymer of poly(N-acryloylsarcosine methyl ester) with a tunable LCST. Polym Chem 2017. [DOI: 10.1039/c7py00274b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A thermoresponsive polymer of the tertiary amide-based polyacrylamide, PNASME, was synthesized and its tunable thermoresponse was investigated.
Collapse
Affiliation(s)
- Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
9
|
Preparation of Well-Defined Propargyl-Terminated Tetra-Arm Poly(N-isopropylacrylamide)s and Their Click Hydrogels Crosslinked with β-cyclodextrin. Polymers (Basel) 2016; 8:polym8040093. [PMID: 30979203 PMCID: PMC6432514 DOI: 10.3390/polym8040093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 01/05/2023] Open
Abstract
As an important class of reversible deactivation radical polymerization (RDRP), reversible addition fragmentation chain transfer (RAFT) polymerization has attracted great attention attributed to its facile and flexible features to prepare well-defined polymers with different complex structures. In addition, the combination of RAFT with click chemistry provides more effective strategies to fabricate advanced functional materials. In this work, a series of temperature responsive tetra-arm telechelic poly(N-isopropylacrylamide)s (PNIPAs) with propargyl end groups were prepared for the first time through RAFT and subsequent aminolysis/Michael addition modification. The temperature sensitivities of their aqueous solutions were researched via turbidity measurement. It was found that the phase transition temperature of obtained PNIPAs increased with their molecular weights ascribed to their distinctions in the hydrophobic/hydrophilic balance. Subsequently, β-cyclodextrin (β-CD) functionalized with azide moieties was used to crosslink the prepared propargyl-terminated tetra-arm PNIPAs through click chemistry, fabricating corresponding hydrogels with thermoresponse. Similar to their precursors, the hydrogels demonstrated the same dependence of volume phase transition temperature (VPTT) on their molecular weights. In addition, the incorporation of β-CD and the residual groups besides crosslinking may provide a platform for imparting additional functions such as inclusion and adsorption as well as further functionalization.
Collapse
|
10
|
Yuan W, Chen X. Star-shaped and star-block polymers with a porphyrin core: from LCST–UCST thermoresponsive transition to tunable self-assembly behaviour and fluorescence performance. RSC Adv 2016. [DOI: 10.1039/c5ra21647h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The micelles self-assembled from star-shaped and star-block copolymers present a transition of LCST–UCST thermoresponsive properties through a facile quaternization reaction.
Collapse
Affiliation(s)
- Weizhong Yuan
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Materials of Ministry of Education
- Tongji University
- People's Republic of China
| | - Xiangnan Chen
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Materials of Ministry of Education
- Tongji University
- People's Republic of China
| |
Collapse
|
11
|
Zhao J, Zhou Y, Zhou Y, Zhou N, Pan X, Zhang Z, Zhu X. A straightforward approach for the one-pot synthesis of cyclic polymers from RAFT polymers via thiol–Michael addition. Polym Chem 2016. [DOI: 10.1039/c5py01861g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward approach for the synthesis of cyclic polymers in a one-pot reaction.
Collapse
Affiliation(s)
- Junfei Zhao
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yanyan Zhou
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yu Zhou
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Nianchen Zhou
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
12
|
Zhou F, Li Y, Jiang G, Zhang Z, Tu Y, Chen X, Zhou N, Zhu X. Biomacrocyclic side-chain liquid crystalline polymers bearing cholesterol mesogens: facile synthesis and topological effect study. Polym Chem 2015. [DOI: 10.1039/c5py01003a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biomacrocyclic side-chain liquid crystalline polymers bearing cholesterol mesogens with three different length methylene spacers were prepared. Meanwhile, the liquid crystalline phase behaviors were investigated systematically.
Collapse
Affiliation(s)
- Feng Zhou
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yiwen Li
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Ganquan Jiang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Xiaofang Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Nianchen Zhou
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
13
|
Tong ZZ, Wang RY, Huang J, Xu JT, Fan ZQ. Regulation of the self-assembly morphology of azobenzene-bearing double hydrophobic block copolymers in aqueous solution by shifting the dynamic host–guest complexation. Polym Chem 2015. [DOI: 10.1039/c5py00004a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complexation equilibrium between azo and β-CD can be shifted by various methods, thus the micellar morphology of azo-bearing block copolymers is altered.
Collapse
Affiliation(s)
- Zai-Zai Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Rui-Yang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jie Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhi-Qiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science & Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
14
|
Wang J, Kang Z, Qi B, Zhou Q, Xiao S, Shao Z. Poly(N-isopropylacrylamide) hydrogels fabricated via click chemistry: well-defined α,ω-bis propargyl linear poly(N-isopropylacrylamide)s as crosslinkers. RSC Adv 2014. [DOI: 10.1039/c4ra07987f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This work provides a facile method to regulate swelling properties and/or to impart special functions for click poly(N-isopropylacrylamide) (PNIPA) hydrogels, by adjusting the chain length of crosslinkers or by introducing other functional groups.
Collapse
Affiliation(s)
- Jianquan Wang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing, China
| | - Zeyu Kang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing, China
| | - Bin Qi
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing, China
| | - Qiushi Zhou
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing, China
| | - Shengyuan Xiao
- School of Life Science
- Beijing Institute of Technology
- Beijing, China
| | - Ziqiang Shao
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing, China
| |
Collapse
|