1
|
Maurya DS, Malik A, Feng X, Bensabeh N, Lligadas G, Percec V. Me6-TREN/TREN Mixed-Ligand Effect During SET-LRP in the Catalytically Active DMSO Revitalizes TREN into an Excellent Ligand. Biomacromolecules 2020; 21:1902-1919. [DOI: 10.1021/acs.biomac.9b01765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Devendra S. Maurya
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ayesha Malik
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xiaojing Feng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Gerard Lligadas
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
2
|
Feng X, Maurya DS, Bensabeh N, Moreno A, Oh T, Luo Y, Lejnieks J, Galià M, Miura Y, Monteiro MJ, Lligadas G, Percec V. Replacing Cu(II)Br2 with Me6-TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect. Biomacromolecules 2019; 21:250-261. [DOI: 10.1021/acs.biomac.9b01282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojing Feng
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Devendra S. Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Takahiro Oh
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yuqing Luo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ja̅nis Lejnieks
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Moreno A, Galià M, Lligadas G, Percec V. SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules 2018; 19:4480-4491. [DOI: 10.1021/acs.biomac.8b01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
4
|
Moreno A, Lejnieks J, Galià M, Lligadas G, Percec V. Acetone: a solvent or a reagent depending on the addition order in SET-LRP. Polym Chem 2018. [DOI: 10.1039/c8py01331d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of reagent order in biphasic SET-LRP in acetone/water mixtures is shown.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
5
|
Surface modification and drug delivery applications of MoS2 nanosheets with polymers through the combination of mussel inspired chemistry and SET-LRP. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.08.025] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Moreno A, Garcia D, Galià M, Ronda JC, Cádiz V, Lligadas G, Percec V. SET-LRP in the Neoteric Ethyl Lactate Alcohol. Biomacromolecules 2017; 18:3447-3456. [DOI: 10.1021/acs.biomac.7b01130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adrian Moreno
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Diego Garcia
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
7
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Lligadas G, Enayati M, Grama S, Smail R, Sherman SE, Percec V. Ultrafast SET-LRP with Peptoid Cytostatic Drugs as Monofunctional and Bifunctional Initiators. Biomacromolecules 2017; 18:2610-2622. [DOI: 10.1021/acs.biomac.7b00722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gerard Lligadas
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Mojtaba Enayati
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Silvia Grama
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rauan Smail
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
10
|
Smail RB, Jezorek RL, Lejnieks J, Enayati M, Grama S, Monteiro MJ, Percec V. Acetone–water biphasic mixtures as solvents for ultrafast SET-LRP of hydrophobic acrylates. Polym Chem 2017. [DOI: 10.1039/c7py00557a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of SET-LRP catalyzed with Cu(0) wire from single phase (acetone/water = 9/1, v/v) into biphase (acetone/water = 8/2, v/v).
Collapse
Affiliation(s)
- Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
11
|
Ding A, Lu G, Guo H, Huang X. PDMAEMA-b-PPOA-b-PDMAEMA double-bond-containing amphiphilic triblock copolymer: synthesis, characterization, and pH-responsive self-assembly. Polym Chem 2017. [DOI: 10.1039/c7py01640a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article reports a new pH-responsive double-bond-containing ABA triblock copolymer synthesized via a combination of free radical polymerization and SET-LRP.
Collapse
Affiliation(s)
- Aishun Ding
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Hao Guo
- Department of Chemistry
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
12
|
Moreno A, Grama S, Liu T, Galià M, Lligadas G, Percec V. SET-LRP mediated by TREN in biphasic water–organic solvent mixtures provides the most economical and efficient process. Polym Chem 2017. [DOI: 10.1039/c7py01841j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Screening ligands and solvents for economical and efficient biphasic SET-LRP.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
13
|
Jezorek RL, Enayati M, Smail RB, Lejnieks J, Grama S, Monteiro MJ, Percec V. The stirring rate provides a dramatic acceleration of the ultrafast interfacial SET-LRP in biphasic acetonitrile–water mixtures. Polym Chem 2017. [DOI: 10.1039/c7py00659d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rate of interfacial SET-LRP in biphasic acetonitrile–water mixtures is stirring rate dependent.
Collapse
Affiliation(s)
- Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
14
|
Li X, Mastan E, Wang WJ, Li BG, Zhu S. Progress in reactor engineering of controlled radical polymerization: a comprehensive review. REACT CHEM ENG 2016. [DOI: 10.1039/c5re00044k] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Controlled radical polymerization (CRP) represents an important advancement in polymer chemistry. It allows synthesis of polymers with well-controlled chain microstructures.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
- Department of Chemical Engineering
| | - Erlita Mastan
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| | - Wen-Jun Wang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| | - Bo-Geng Li
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| | - Shiping Zhu
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
15
|
Cui Y, Jiang X, Feng C, Gu G, Xu J, Huang X. First double hydrophilic graft copolymer bearing a poly(2-hydroxylethyl acrylate) backbone synthesized by sequential RAFT polymerization and SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00489j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reports the first synthesis of well-defined double hydrophilic graft copolymers with a PHEA backbone, by the combination of RAFT polymerization, SET-LRP, and a grafting-from strategy.
Collapse
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiuyu Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guangxin Gu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Jie Xu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
16
|
Enayati M, Jezorek RL, Percec V. A multiple-stage activation of the catalytically inhomogeneous Cu(0) wire used in SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00888g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The surface of a Cu(0) wire used as a catalyst in SET-LRP is inhomogeneous since it contains a combination of Cu(111) and Cu(100) faces of the FCC unit cell whose ratio is dependent on the fabrication method. A method to activate this inhomogeneous Cu(0) wire for SET-LRP is reported.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
17
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
18
|
Alsubaie F, Anastasaki A, Nikolaou V, Simula A, Nurumbetov G, Wilson P, Kempe K, Haddleton DM. Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Aqueous Media. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01208] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fehaid Alsubaie
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
| | - Athina Anastasaki
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
| | - Alexandre Simula
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library road, CV4 7AL, Coventry United Kingdom
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
19
|
Alsubaie F, Anastasaki A, Nikolaou V, Simula A, Nurumbetov G, Wilson P, Kempe K, Haddleton DM. Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Organic Media. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01197] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fehaid Alsubaie
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
| | - Athina Anastasaki
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Vasiliki Nikolaou
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
| | - Alexandre Simula
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
| | - Gabit Nurumbetov
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
| | - Paul Wilson
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David M. Haddleton
- Chemistry Department, University of Warwick, Library road, CV4 7AL, Coventry U.K
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
20
|
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem Rev 2015; 116:835-77. [DOI: 10.1021/acs.chemrev.5b00191] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P. Davis
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Michael R. Whittaker
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
21
|
Abstract
This article reviews the preparation of polymers using iron-catalyzed atom transfer radical polymerization.
Collapse
Affiliation(s)
- Zhigang Xue
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering
- Jianghan University
- Wuhan 430056
- China
| | - Xiaolin Xie
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
22
|
Gao Y, Zhao T, Zhou D, Greiser U, Wang W. Insights into relevant mechanistic aspects about the induction period of Cu0/Me6TREN-mediated reversible-deactivation radical polymerization. Chem Commun (Camb) 2015; 51:14435-8. [DOI: 10.1039/c5cc05189d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The induction period and subsequent autoaccelerated polymerization of a Cu0/Me6TREN-catalyzed system originate from the accumulation of soluble copper species.
Collapse
Affiliation(s)
- Yongsheng Gao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Udo Greiser
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
23
|
Samanta SR, Nikolaou V, Keller S, Monteiro MJ, Wilson DA, Haddleton DM, Percec V. Aqueous SET-LRP catalyzed with “in situ” generated Cu(0) demonstrates surface mediated activation and bimolecular termination. Polym Chem 2015. [DOI: 10.1039/c4py01748j] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ultrafast, inversely temperature dependent aqueous SET-LRP with “in situ” generated Cu(0) yields quantitative chain-ends demonstrating surface mediated activation and termination.
Collapse
Affiliation(s)
- Shampa R. Samanta
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | | | - Shauni Keller
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- University of Queensland
- Brisbane QLD 4072
- Australia
| | - Daniela A. Wilson
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | | | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
24
|
Samanta SR, Cai R, Percec V. A rational approach to activated polyacrylates and polymethacrylates by using a combination of model reactions and SET-LRP of hexafluoroisopropyl acrylate and methacrylate. Polym Chem 2015. [DOI: 10.1039/c5py00082c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new class of activated polyacrylates was elaborated by a combination of model reactions and SET-LRP of hexafluoroisopropyl acrylate and methacrylate.
Collapse
Affiliation(s)
- Shampa R. Samanta
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ruilong Cai
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
25
|
Zhang T, Du Y, Müller F, Amin I, Jordan R. Surface-initiated Cu(0) mediated controlled radical polymerization (SI-CuCRP) using a copper plate. Polym Chem 2015. [DOI: 10.1039/c5py00093a] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a new, extremely fast, very simple and versatile method to produce polymer brushes by surface-initiated controlled/living radical polymerization.
Collapse
Affiliation(s)
- Tao Zhang
- Professur für Makromolekulare Chemie
- Department Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Yunhao Du
- Professur für Makromolekulare Chemie
- Department Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Felix Müller
- Professur für Makromolekulare Chemie
- Department Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Ihsan Amin
- Professur für Makromolekulare Chemie
- Department Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Rainer Jordan
- Professur für Makromolekulare Chemie
- Department Chemie
- Technische Universität Dresden
- 01069 Dresden
- Germany
| |
Collapse
|
26
|
Ambient temperature living radical copolymerization of styrene and methyl methacrylate with sodium hypophosphite as reducing agent. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-015-1584-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Samanta SR, Cai R, Percec V. Synthesis of amphiphilic homopolymers with high chain end functionality by SET-LRP. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shampa R. Samanta
- Roy & Diana Vagelos Laboratories, Department of Chemistry; University of Pennsylvania; Philadelphia Pennsylvania 19104-6323
| | - Ruilong Cai
- Roy & Diana Vagelos Laboratories, Department of Chemistry; University of Pennsylvania; Philadelphia Pennsylvania 19104-6323
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry; University of Pennsylvania; Philadelphia Pennsylvania 19104-6323
| |
Collapse
|
28
|
Harrisson S, Nicolas J. In the (Very) Long Run We Are All Dead: Activation and Termination in SET-LRP/SARA-ATRP. ACS Macro Lett 2014; 3:643-647. [PMID: 35590761 DOI: 10.1021/mz500305j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The rate constants of activation and termination were determined for SET-LRP/SARA-ATRP polymerizations of methyl acrylate. Measurement of the rate of generation of CuBr2 throughout the reaction (using data from Levere et al., Macromolecules 2012, 45, 8267-8274) allowed evaluation of the chain length dependence of the two rate constants, which were found to be 1.25(9) × 10-4DPn-0.51(3) cm·s-1 (activation) and 3.1(1) × 109DPn-0.49(2) L·mol-1·s-1 (termination). Addition of the CuBr2 deactivator at the beginning of the reaction is found to result in a higher proportion of dead chains due to rapid termination of short chains.
Collapse
Affiliation(s)
- Simon Harrisson
- IMRCP,
UMR CNRS 5623, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| |
Collapse
|
29
|
Anastasaki A, Nikolaou V, Simula A, Godfrey J, Li M, Nurumbetov G, Wilson P, Haddleton DM. Expanding the Scope of the Photoinduced Living Radical Polymerization of Acrylates in the Presence of CuBr2 and Me6-Tren. Macromolecules 2014. [DOI: 10.1021/ma500787d] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Athina Anastasaki
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Vasiliki Nikolaou
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alexandre Simula
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Jamie Godfrey
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Muxiu Li
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Gabit Nurumbetov
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
30
|
Boyer C, Zetterlund PB, Whittaker MR. Synthesis of complex macromolecules using iterative copper(0)-mediated radical polymerization. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales; Sydney 2052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales; Sydney 2052 Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Nano-Bio Science & Technology, Monash University; Parkville Melbourne 3052 Australia
| |
Collapse
|
31
|
Xu Y, Hao Z, Chen H, Sun J, Wang D. Preparation of Polyacrylonitrile Initiated by Modified Corn Starch and Adsorption for Mercury after Modification. Ind Eng Chem Res 2014. [DOI: 10.1021/ie404365h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuanyaun Xu
- School of Chemistry and Materials
Science, Ludong University, Yantai 264025, China
| | - Zhihai Hao
- School of Chemistry and Materials
Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials
Science, Ludong University, Yantai 264025, China
| | - Jinming Sun
- School of Chemistry and Materials
Science, Ludong University, Yantai 264025, China
| | - Dongju Wang
- School of Chemistry and Materials
Science, Ludong University, Yantai 264025, China
| |
Collapse
|
32
|
Anastasaki A, Haddleton AJ, Zhang Q, Simula A, Droesbeke M, Wilson P, Haddleton DM. Aqueous Copper-Mediated Living Radical Polymerisation ofN-Acryloylmorpholine, SET-LRP in Water. Macromol Rapid Commun 2014; 35:965-70. [DOI: 10.1002/marc.201400024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/07/2014] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Qiang Zhang
- Department of Chemistry; University of Warwick; CV4 7AL Coventry UK
| | - Alexandre Simula
- Department of Chemistry; University of Warwick; CV4 7AL Coventry UK
| | | | - Paul Wilson
- Department of Chemistry; University of Warwick; CV4 7AL Coventry UK
| | | |
Collapse
|
33
|
Hao Z, Wang D, Chen H, Sun J, Xu Y. Sweet potato starch residue as starting material to prepare polyacrylonitrile adsorbent via SI-SET-LRP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1765-1770. [PMID: 24512626 DOI: 10.1021/jf4048397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sweet potato starch residue (SPSR) was used as starting material to prepare an eco-friendly adsorbent. SPSR was modified by bromoacetyl bromide to obtain a macroinitiator for surface-initiated single electron transfer-living radical polymerization (SI-SET-LRP) of acrylonitrile (AN) catalyzed by La(0)/hexamethylenetetramine (HMTA) in N,N-dimethylformamide (DMF) in the presence of ascorbic acid (VC). The amidoxime (AO) adsorbent was prepared by the reaction of the graft copolymer bromoactylated sweet potato starch (BSPS)/polyacrylonitrile (BSPS-g-PAN) with hydroxylamine. The maximum adsorption capacity for Hg(II) was 4.03 mmol·g(-1). This simple method provided a novel approach to recycle and reuse agricultural residues for controlling heavy metal pollution.
Collapse
Affiliation(s)
- Zhihai Hao
- School of Chemistry and Materials Science, Ludong University , Yantai 264025, China
| | | | | | | | | |
Collapse
|
34
|
Anastasaki A, Nikolaou V, Zhang Q, Burns J, Samanta SR, Waldron C, Haddleton AJ, McHale R, Fox D, Percec V, Wilson P, Haddleton DM. Copper(II)/Tertiary Amine Synergy in Photoinduced Living Radical Polymerization: Accelerated Synthesis of ω-Functional and α,ω-Heterofunctional Poly(acrylates). J Am Chem Soc 2014; 136:1141-9. [DOI: 10.1021/ja411780m] [Citation(s) in RCA: 297] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Athina Anastasaki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vasiliki Nikolaou
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Qiang Zhang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - James Burns
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Shampa R. Samanta
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Christopher Waldron
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alice J. Haddleton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ronan McHale
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Fox
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paul Wilson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
35
|
Samanta SR, Sun HJ, Anastasaki A, Haddleton DM, Percec V. Self-activation and activation of Cu(0) wire for SET-LRP mediated by fluorinated alcohols. Polym Chem 2014. [DOI: 10.1039/c3py01007d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein we report the self-activation and activation of Cu(0) wire used to form a catalyst in single-electron transfer living radical polymerization (SET-LRP) in two fluorinated alcohols employed as solvents, 2,2,2-trifluoroethanol (TFE) and 2,2,3,3-tetrafluoropropanol (TFP).
Collapse
Affiliation(s)
- Shampa R. Samanta
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Hao-Jan Sun
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Athina Anastasaki
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | | | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
36
|
Samanta SR, Percec V. Synthesis of high molar mass poly(n-butyl acrylate) and poly(2-ethylhexyl acrylate) by SET-LRP in mixtures of fluorinated alcohols with DMSO. Polym Chem 2014. [DOI: 10.1039/c3py01008b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SET-LRP of n-butyl acrylate (nBA) and 2-ethylhexyl acrylate (EHA) initiated with bis(2-bromopropionyl)ethane (BPE) to synthesize high molar mass poly(nBA) and poly(EHA) was carried out in binary mixtures of 2,2,2-trifluoroethanol (TFE) or 2,2,3,3-tetrafluoropropanol (TFP) with DMSO at 50 °C.
Collapse
Affiliation(s)
- Shampa R. Samanta
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
37
|
Konkolewicz D, Wang Y, Krys P, Zhong M, Isse AA, Gennaro A, Matyjaszewski K. SARA ATRP or SET-LRP. End of controversy? Polym Chem 2014. [DOI: 10.1039/c4py00149d] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Abstract
For the first time SET-LRP of 1H,1H,2H,2H-perfluorooctyl acrylate, 2,2,3,3,4,4,4-heptafluorobutyl acrylate, 1H,1H,5H-octafluoropentyl acrylate and 1H,1H,5H-octafluoropentyl methacrylate in 2,2,2-trifluoroethanol as the solvent at 25 °C for acrylates and at 50 °C for methacrylate was accomplished.
Collapse
Affiliation(s)
- Shampa R. Samanta
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia, USA
| | - Ruilong Cai
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia, USA
| |
Collapse
|
39
|
Wang W, Zhao J, Zhou N, Zhu J, Zhang W, Pan X, Zhang Z, Zhu X. Reversible deactivation radical polymerization in the presence of zero-valent metals: from components to precise polymerization. Polym Chem 2014. [DOI: 10.1039/c3py01398g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We highlight recent work from the advent of zero-valent metal-mediated RDRP looking at advances in its components and the synthesis of well-defined polymers.
Collapse
Affiliation(s)
- Wenxiang Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Junfei Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Nianchen Zhou
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
40
|
Gao Y, Zhao T, Wang W. Is it ATRP or SET-LRP? part I: Cu0&CuII/PMDETA – mediated reversible – deactivation radical polymerization. RSC Adv 2014. [DOI: 10.1039/c4ra11477a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of Cu0&CuII/PMDETA catalyzed polymerization is attributed to the competition and equilibrium of the traditional ATRP and SET-LRP models.
Collapse
Affiliation(s)
- Yongsheng Gao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4, Ireland
- Department of Mechanical and Biomedical Engineering
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4, Ireland
| |
Collapse
|
41
|
Wang G, Huang J. Versatility of radical coupling in construction of topological polymers. Polym Chem 2014. [DOI: 10.1039/c3py00872j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Konkolewicz D, Wang Y, Zhong M, Krys P, Isse AA, Gennaro A, Matyjaszewski K. Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms. Macromolecules 2013. [DOI: 10.1021/ma401243k] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Konkolewicz
- Center
for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yu Wang
- Center
for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mingjiang Zhong
- Center
for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Pawel Krys
- Center
for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Abdirisak A. Isse
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Armando Gennaro
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Center
for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
43
|
Hu X, Li J, Li H, Zhang Z. Cu(0)/2,6-bis
(imino)pyridines catalyzed single-electron transfer-living radical polymerization of methyl methacrylate initiated with poly(vinylidene fluoride-co
-chlorotrifluoroethylene). ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Hu
- Department of Applied Chemistry; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; School of Science; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Junjie Li
- Department of Applied Chemistry; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; School of Science; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Huayi Li
- Beijing National Laboratory for Molecular Sciences; Joint Laboratory of Polymer Science and Materials; Key Laboratory of Engineering Plastics; Institute of Chemistry; The Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Zhicheng Zhang
- Department of Applied Chemistry; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; School of Science; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| |
Collapse
|
44
|
Hao Z, Zhang J, Chen H, Liu D, Wang D, Qu H, Lang J. Preparation of polyacrylonitrile via SET-LRP catalyzed by lanthanum powder in the presence of VC. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhihai Hao
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Jiang Zhang
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Hou Chen
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Delong Liu
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Dongju Wang
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Huanying Qu
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Jimei Lang
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| |
Collapse
|
45
|
Chen H, Lv G, Liang Y, Sun J. Synthesis of high performance polyacrylonitrile by RASA SET-LRP in the presence of Mg powder. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hou Chen
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Gaojian Lv
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Ying Liang
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| | - Jinming Sun
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 China
| |
Collapse
|
46
|
Wang Y, Zhong M, Zhu W, Peng CH, Zhang Y, Konkolewicz D, Bortolamei N, Isse AA, Gennaro A, Matyjaszewski K. Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation–Disproportionation Equilibria and Kinetics. Macromolecules 2013. [DOI: 10.1021/ma400149t] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yu Wang
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mingjiang Zhong
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Weipu Zhu
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- MOE Key Laboratory of Macromolecular
Synthesis and Functionalization, Department of Polymer Science and
Engineering, Zhejiang University, Hangzhou
310027, China
| | - Chi-How Peng
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yaozhong Zhang
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dominik Konkolewicz
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nicola Bortolamei
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova,
Italy
| | - Abdirisak A. Isse
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova,
Italy
| | - Armando Gennaro
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova,
Italy
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
47
|
Nguyen NH, Leng X, Sun HJ, Percec V. Single-electron transfer-living radical polymerization of oligo(ethylene oxide) methyl ether methacrylate in the absence and presence of air. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nga H. Nguyen
- Roy & Diana Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; Philadelphia Pennsylvania 19104-6323
| | - Xuefei Leng
- Roy & Diana Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; Philadelphia Pennsylvania 19104-6323
| | - Hao-Jan Sun
- Roy & Diana Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; Philadelphia Pennsylvania 19104-6323
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories; Department of Chemistry; University of Pennsylvania; Philadelphia Pennsylvania 19104-6323
| |
Collapse
|
48
|
Zhang Q, Wilson P, Li Z, McHale R, Godfrey J, Anastasaki A, Waldron C, Haddleton DM. Aqueous Copper-Mediated Living Polymerization: Exploiting Rapid Disproportionation of CuBr with Me6TREN. J Am Chem Soc 2013; 135:7355-63. [DOI: 10.1021/ja4026402] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Zaidong Li
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ronan McHale
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jamie Godfrey
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Athina Anastasaki
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher Waldron
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
49
|
Chan N, Cunningham MF, Hutchinson RA. Copper-mediated controlled radical polymerization in continuous flow processes: Synergy between polymer reaction engineering and innovative chemistry. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26711] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicky Chan
- Department of Chemical Engineering; Queen's University; Kingston Ontario Canada K7L 3N6
| | - Michael F. Cunningham
- Department of Chemical Engineering; Queen's University; Kingston Ontario Canada K7L 3N6
| | - Robin A. Hutchinson
- Department of Chemical Engineering; Queen's University; Kingston Ontario Canada K7L 3N6
| |
Collapse
|
50
|
Hao Y, He J, Zhang M, Tao Y, Liu J, Ni P. Synthesis and characterization of novel brush copolymers with biodegradable polyphosphoester side chains for gene delivery. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|