1
|
McCann C, Gilpin V, Scott C, Pourshahidi LK, Gill CIR, Davis J. Moving towards in pouch diagnostics for ostomy patients: exploiting the versatility of laser induced graphene sensors. JOURNAL OF MATERIALS SCIENCE 2023; 58:14207-14219. [PMID: 37745186 PMCID: PMC10511578 DOI: 10.1007/s10853-023-08881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
The development of a 3D printed sensor for direct incorporation within stoma pouches is described. Laser induced graphene scribed on either side of polyimide film served as the basis of a 2 electrode configuration that could be integrated within a disposable pouch sensor for the periodic monitoring of ileostomy fluid pH. The graphene sensors were characterised using electron microscopy, Raman spectroscopy, DekTak profilometry with the electrochemical properties investigated using both cyclic and square wave voltammetry. Adsorbed riboflavin was employed as a biocompatible redox probe for the voltammetric measurement of pH. The variation in peak position with pH was found to be linear over pH 3-8 with a sub Nernstian response (43 mV/pH). The adsorbed probe was found to be reversible and exhibited minimal leaching through repeated scanning. The performance of the system was assessed in a heterogeneous bacterial fermentation mixture simulating ileostomy fluid with the pH recorded before and after 96 h incubation. The peak profile in the bacterial medium provided an unambiguous signal free from interference with the calculated pH before and after incubation (pH 5.3 to 3.66) in good agreement with that obtained with commercial pH probes. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10853-023-08881-x.
Collapse
Affiliation(s)
- Conor McCann
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | - Victoria Gilpin
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | - Cameron Scott
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | | | - Chris. I. R. Gill
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - James Davis
- School of Engineering, Ulster University, Belfast, Northern Ireland
| |
Collapse
|
2
|
Islam NU, Umar MN, Khan E, Al-Joufi FA, Abed SN, Said M, Ullah H, Iftikhar M, Zahoor M, Khan FA. Levofloxacin Cocrystal/Salt with Phthalimide and Caffeic Acid as Promising Solid-State Approach to Improve Antimicrobial Efficiency. Antibiotics (Basel) 2022; 11:797. [PMID: 35740203 PMCID: PMC9220774 DOI: 10.3390/antibiotics11060797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
To overcome the issue of multidrug resistant (MDR) microbes, the exploration of ways to improve the antimicrobial efficiency of existing antibiotics is one of the promising approaches. In search of synthons with higher efficiency, in current investigations, cocrystal and amorphous salt of levofloxacin hemihydrate (LEV) were developed with phthalimide (PTH) and caffeic acid (CFA). New materials were characterized with the help of FT-IR, Raman spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Shifting, attenuation, appearance/disappearance and broadening of bands were observed in the FT-IR and Raman spectra of the materials as evidence of the required product. The PXRD diffraction pattern observed for LEV-PTH indicated cocrystal while halo diffractogram of LEV-CFA revealed amorphous nature. DSC/TG analysis confirmed the hydrated nature of the cocrystal/salt. The dissolution rate and antimicrobial activity against selected strains, K.pneumonia, E. coli and S. typhi of parent drug and the new material were compared. The zone of inhibition (ZI) observed for 5 µg LEV-PTH was 30.4 + 0.36 (K. pneumonia), 26.33 + 0.35 (E. coli) and 30.03 + 0.25 mm (S. typhi) while LEV-CFA salt (5 µg) against the same strains inhibited 33.96 ± 0.25, 31.66 ± 0.35 and 27.93 ± 0.40 mm, respectively. These novel formulations enhance the dissolution rate as well as antibacterial efficiency and are expected to be potent against MDR bacterial strains.
Collapse
Affiliation(s)
- Noor Ul Islam
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia;
| | - Shaymaa Najm Abed
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakaka 72311, Saudi Arabia;
| | - Muhammad Said
- Department of Chemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan; (N.U.I.); (M.N.U.); (E.K.); (M.S.)
| | - Habib Ullah
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Muhammad Iftikhar
- Department of Biochemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Farhat Ali Khan
- Department of Pharmacy, Shaheed Benazir Bhuto University, Sheringal, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan;
| |
Collapse
|
3
|
Srinivas S, Ashokkumar K, Sriraghavan K, Senthil Kumar A. A prototype device of microliter volume voltammetric pH sensor based on carbazole-quinone redox-probe tethered MWCNT modified three-in-one screen-printed electrode. Sci Rep 2021; 11:13905. [PMID: 34230547 PMCID: PMC8260652 DOI: 10.1038/s41598-021-93368-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
As an alternate for the conventional glass-based pH sensor which is associated with problems like fragile nature, alkaline error, and potential drift, the development of a new redox-sensitive pH probe-modified electrode that could show potential, current-drift and surface-fouling free voltammetric pH sensing is a demanding research interest, recently. Herein, we report a substituted carbazole-quinone (Car-HQ) based new redox-active pH-sensitive probe that contains benzyl and bromo-substituents, immobilized multiwalled carbon nanotube modified glassy carbon (GCE/MWCNT@Car-HQ) and screen-printed three-in-one (SPE/MWCNT@Car-HQ) electrodes for selective, surface-fouling free pH sensor application. This new system showed a well-defined surface-confined redox peak at an apparent standard electrode potential, Eo' = - 0.160 V versus Ag/AgCl with surface-excess value, Γ = 47 n mol cm-2 in pH 7 phosphate buffer solution. When tested with various electroactive chemicals and biochemicals such as cysteine, hydrazine, NADH, uric acid, and ascorbic acid, MWCNT@Car-HQ showed an unaltered redox-peak potential and current values without mediated oxidation/reduction behavior unlike the conventional hydroquinone, anthraquinone and other redox mediators based voltammetry sensors with serious electrocatalytic effects and in turn potential and current drifts. A strong π-π interaction, nitrogen-atom assisted surface orientation and C-C bond formation on the graphitic structure of MWCNT are the plausible reasons for stable and selective voltammetric pH sensing application of MWCNT@Car-HQ system. Using a programed/in-built three-in-one screen printed compatible potentiostat system, voltammetric pH sensing of 3 μL sample of urine, saliva, and orange juice samples with pH values comparable to that of milliliter volume-based pH-glass electrode measurements has been demonstrated.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore, 632 014, India
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Krishnan Ashokkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Kamaraj Sriraghavan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India.
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore, 632 014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
4
|
Rajan TS, Read TL, Abdalla A, Patel BA, Macpherson JV. Ex Vivo Electrochemical pH Mapping of the Gastrointestinal Tract in the Absence and Presence of Pharmacological Agents. ACS Sens 2020; 5:2858-2865. [PMID: 32633120 DOI: 10.1021/acssensors.0c01020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ex vivo pH profiling of the upper gastrointestinal (GI) tract (of a mouse), using an electrochemical pH probe, in both the absence and presence of pharmacological agents aimed at altering acid/bicarbonate production, is reported. Three pH electrodes were first assessed for suitability using a GI tract biological mimic buffer solution containing 0.5% mucin. These include a traditional glass pH probe, an iridium oxide (IrOx)-coated electrode (both operated potentiometrically), and a quinone (Q) surface-integrated boron-doped diamond (BDD-Q) electrode (voltammetric). In mucin, the time scale for both IrOx and glass to provide a representative pH reading was in the ∼100's of s, most likely due to mucin adsorption, in contrast to 6 s with the BDD-Q electrode. Both the glass and IrOx pH electrodes were also compromised on robustness due to fragility and delamination (IrOx) issues; contact with the GI tissue was an experimental requirement. BDD-Q was deemed the most appropriate. Ten measurements were made along the GI tract, esophagus (1), stomach (5), and duodenum (4). Under buffer only conditions, the BDD-Q probe tracked the pH from neutral in the esophagus to acidic in the stomach and rising to more alkaline in the duodenum. In the presence of omeprazole, a proton pump inhibitor, the body regions of the stomach exhibited elevated pH levels. Under melatonin treatment (a bicarbonate agonist and acid inhibitor), both the body of the stomach and the duodenum showed elevated pH levels. This study demonstrates the versatility of the BDD-Q pH electrode for real-time ex vivo biological tissue measurements.
Collapse
Affiliation(s)
- Teena S. Rajan
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
- Diamond Science and Technology CDT, University of Warwick, Coventry CV4 7AL, U.K
| | - Tania L. Read
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Aya Abdalla
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4AT, U.K
| | - Bhavik A. Patel
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4AT, U.K
| | - Julie V. Macpherson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
5
|
Dharmaraj K, Román Silva JI, Kahlert H, Lendeckel U, Scholz F. The acid-base and redox properties of menaquinone MK-4, MK-7, and MK-9 (vitamin K 2) in DMPC monolayers on mercury. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:279-288. [PMID: 32372117 PMCID: PMC7244470 DOI: 10.1007/s00249-020-01433-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Abstract The acid–base and redox properties of the menaquinones MK-4, MK-7, and MK-9 (vitamin K2) have been studied in DMPC monolayers on mercury electrodes. The monolayers were prepared by adhesion-spreading of menaquinone-spiked DMPC liposomes on a stationary mercury drop electrode. All three menaquinones possess \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{p}}K_{{\text{a}}}$$\end{document}pKa constants outside the experimentally accessible range, i.e., they are higher than about 12. The standard potentials of MK-4, MK-7, and MK-9 in the DMPC monolayers are very similar, i.e., 0.351, 0.326, and 0.330 V (corresponding to the biochemical standard potentials − 0.063, − 0.088, and − 0.085 V). Graphic abstract ![]()
Collapse
Affiliation(s)
- Karuppasamy Dharmaraj
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | | | - Heike Kahlert
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Fritz Scholz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany.
| |
Collapse
|
6
|
Xia T, Gao Y, Zhang L, Wang X, Pan G, Wang Z, Han S, Ma X, Zhao W, Zhang J. Sensitive Detection of Caffeic Acid and Rutin via the Enhanced Anodic Electrochemiluminescence Signal of Luminol. ANAL SCI 2020; 36:311-316. [PMID: 31611473 DOI: 10.2116/analsci.19p274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The electrooxidation of phenolic groups of caffeic acid and rutin promote anodic electrochemiluminescence (ECL) luminol substantially. A sensitive, and cost-effective ECL method has thus been developed to detect caffeic acid, ranging from 0.1 to 5.0 μM, with a detection limit of 0.1 μM and rutin ranging from 0.2 to 25 μM with a detection limit of 0.12 μM. Contrarily, phenolic compounds quench the weak cathodic ECL of luminol. Both of anodic and cathodic ECL mechanisms of luminol in the presence of phenolic compounds are analyzed. The method based on the boomed anodic ECL of luminol is comparable to those based on Ru(bpy)32+ and S2O82-/O2 systems. A lower onset potential and price than the other ECL reagents would realize its widely applications in the detection of phenolic compounds in food and medicine.
Collapse
Affiliation(s)
- Tianlai Xia
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Yuan Gao
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology.,College of Applied Chemistry, Shenyang University of Chemical Technology
| | - Ling Zhang
- School of Science, Harbin Institute of Technology
| | - Xinyu Wang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Guangxing Pan
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Zhenyuan Wang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Shuang Han
- College of Applied Chemistry, Shenyang University of Chemical Technology
| | - Xing Ma
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Weiwei Zhao
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| | - Jiaheng Zhang
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology
| |
Collapse
|
7
|
A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
El Idrissi M, Molina Bacca AE, Frascari D, Corvini PFX, Shahgaldian P. Cyclodextrin-based polymeric materials for the specific recovery of polyphenolic compounds through supramolecular host–guest interactions. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0708-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Gusmão R, Cunha E, Paiva C, Geraldo D, Proença F, Bento F. Role of Carbonaceous Fragments on the Functionalization and Electrochemistry of Carbon Materials. ChemElectroChem 2016. [DOI: 10.1002/celc.201600399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rui Gusmão
- Instituto de Polímeros e Compósitos/I3N; Universidade do Minho; Campus de Azurem 4800-058 Guimarães Portugal
- Centro de Química; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Eunice Cunha
- Instituto de Polímeros e Compósitos/I3N; Universidade do Minho; Campus de Azurem 4800-058 Guimarães Portugal
| | - Conceição Paiva
- Instituto de Polímeros e Compósitos/I3N; Universidade do Minho; Campus de Azurem 4800-058 Guimarães Portugal
| | - Dulce Geraldo
- Centro de Química; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Fernanda Proença
- Centro de Química; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Fátima Bento
- Centro de Química; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
10
|
Galdino FE, Smith JP, Kwamou SI, Kampouris DK, Iniesta J, Smith GC, Bonacin JA, Banks CE. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH. Anal Chem 2015; 87:11666-72. [PMID: 26561992 DOI: 10.1021/acs.analchem.5b01236] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.
Collapse
Affiliation(s)
- Flávia E Galdino
- Institute of Chemistry, University of Campinas-UNICAMP , P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil.,Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University , Chester Street, Manchester M1 5GD, U.K
| | - Jamie P Smith
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University , Chester Street, Manchester M1 5GD, U.K
| | - Sophie I Kwamou
- Université Paris-Est Créteil-Val de Marne , Faculté des Sciences et Technologie, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex France
| | - Dimitrios K Kampouris
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University , Chester Street, Manchester M1 5GD, U.K
| | - Jesus Iniesta
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante ,03690, San Vicente del Raspeig, Alicante Spain
| | - Graham C Smith
- Faculty of Science and Engineering, Department of Natural Sciences, University of Chester Thornton Science Park, Pool Lane, Ince, Chester CH2 4NU, U.K
| | - Juliano A Bonacin
- Institute of Chemistry, University of Campinas-UNICAMP , P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University , Chester Street, Manchester M1 5GD, U.K
| |
Collapse
|
11
|
Lu M, Compton RG. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG. Analyst 2015; 139:4599-605. [PMID: 25046424 DOI: 10.1039/c4an00866a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | | |
Collapse
|
12
|
Lu M, Compton RG. Voltammetric pH sensor based on an edge plane pyrolytic graphite electrode. Analyst 2015; 139:2397-403. [PMID: 24671261 DOI: 10.1039/c4an00147h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple sensor for pH determination is reported using unmodified edge plane pyrolytic graphite (EPPG) electrodes. The analysis is based on the electro-reduction of surface quinone groups on the EPPG which was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV). Under optimised conditions, a linear response is observed between the peak potential and pH with a gradient of ∼59 mV per pH (at 25 °C), which corresponds well with Nernstian behaviour based on a 2 proton, 2 electron system over the aqueous pH range 1.0 to 13.0. As such, an EPPG is suggested as a reagent free and robust pH sensing material.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK.
| | | |
Collapse
|
13
|
Li X, Liu T, Liu L, Li F. Dependence of the electron transfer capacity on the kinetics of quinone-mediated Fe(iii) reduction by two iron/humic reducing bacteria. RSC Adv 2014. [DOI: 10.1039/c3ra45458d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|