1
|
Gao P, Kasama T, Shin J, Huang Y, Miyake R. A Mediated Enzymatic Electrochemical Sensor Using Paper-Based Laser-Induced Graphene. BIOSENSORS 2022; 12:995. [PMID: 36354502 PMCID: PMC9688852 DOI: 10.3390/bios12110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Laser-induced graphene (LIG) has been applied in many different sensing devices, from mechanical sensors to biochemical sensors. In particular, LIG fabricated on paper (PaperLIG) shows great promise for preparing cheap, flexible, and disposable biosensors. Distinct from the fabrication of LIG on polyimide, a two-step process is used for the fabrication of PaperLIG. In this study, firstly, a highly conductive PaperLIG is fabricated. Further characterization of PaperLIG confirmed that it was suitable for developing biosensors. Subsequently, the PaperLIG was used to construct a biosensor by immobilizing glucose oxidase, aminoferrocene, and Nafion on the surface. The developed glucose biosensor could be operated at a low applied potential (-90 mV) for amperometric measurements. The as-prepared biosensor demonstrated a limit of detection of (50-75 µM) and a linear range from 100 µM to 3 mM. The influence of the concentration of the Nafion casting solution on the performance of the developed biosensor was also investigated. Potential interfering species in saliva did not have a noticeable effect on the detection of glucose. Based on the experimental results, the simple-to-prepare PaperLIG-based saliva glucose biosensor shows great promise for application in future diabetes management.
Collapse
Affiliation(s)
- Panpan Gao
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Toshihiro Kasama
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Jungchan Shin
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yixuan Huang
- Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ryo Miyake
- Microfluidic Integrated Circuits Research Laboratory, Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Bezerra LS, Mooste M, Fortunato GV, S. F. Cardoso E, R. V. Lanza M, Tammeveski K, Maia G. Tuning NiCo2O4 bifunctionality with nitrogen-doped graphene nanoribbons in oxygen electrocatalysis for zinc-air battery application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Chen CC, Lo SC, Wei PK. Combination of Capped Gold Nanoslit Array and Electrochemistry for Sensitive Aqueous Mercuric Ions Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:88. [PMID: 35010038 PMCID: PMC8746490 DOI: 10.3390/nano12010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Label-free surface plasmon resonance (SPR) detection of mercuric ions in various aqueous solutions, using capped gold nanoslit arrays combined with electrochemical (EC) sensing technique, is demonstrated. The nanoslit arrays are fabricated on flexible cyclo-olefin polymer substrates by a nanoimprinting lithography method. The EC and SPR signals for the investigation of current responses and transmission SPR spectra are simultaneously measured during metal ions electrodeposition. Glycerol-water solution is studied to evaluate the resonant peak wavelength sensitivity (480.3 nm RIU-1) with a FOM of 40.0 RIU-1 and the obtained intensity sensitivity is 1819.9%. The ferrocyanide/ferricyanide redox couple performs the diffusion controlled electrochemical processes (R2 = 0.99). By investigating the SPR intensity changes and wavelength shifts of various mercuric ion concentrations, the optical properties are evaluated under chronoamperometric conditions. The sensors are evaluated in the detection range between 100 μM and 10 nM with a detection limit of 1 μM. The time dependence of SPR signals and the selectivity of 10 μM Hg2+ in the presence of 10 μM interfering metal ion species from Ca2+, Co2+, Ni2+, Na+, Cu2+, Pb2 + and Mn2+ are determined. The capped gold nanoslit arrays show the selectivity of Hg2+ and the EC sensing method is effectively utilized to aqueous Hg2+ detection. This study provides a label-free detection technique of mercuric ions and this developed system is potentially applicable to detecting chemicals and biomolecules.
Collapse
Affiliation(s)
- Cheng-Chuan Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (C.-C.C.); (S.-C.L.)
| | - Shu-Cheng Lo
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (C.-C.C.); (S.-C.L.)
- Institute of Applied Mechanics, National Taiwan University, Taipei 11529, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; (C.-C.C.); (S.-C.L.)
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
4
|
Gurbani N, Choudhary RJ, Phase DM, Marumoto K, Liu RS, Chouhan N. Graphene oxide @ nickel phosphate nanocomposites for photocatalytic hydrogen production. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
5
|
Cardoso ES, Fortunato GV, Palm I, Kibena-Põldsepp E, Greco AS, Júnior JL, Kikas A, Merisalu M, Kisand V, Sammelselg V, Tammeveski K, Maia G. Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Cardoso ESF, Fortunato GV, Maia G. Use of Rotating Ring-Disk Electrodes to Investigate Graphene Nanoribbon Loadings for the Oxygen Reduction Reaction in Alkaline Medium. ChemElectroChem 2018. [DOI: 10.1002/celc.201800331] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eduardo S. F. Cardoso
- Institute of Chemistry; Universidade Federal de Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande MS 79074-460 Brazil
| | - Guilherme V. Fortunato
- Institute of Chemistry; Universidade Federal de Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande MS 79074-460 Brazil
| | - Gilberto Maia
- Institute of Chemistry; Universidade Federal de Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande MS 79074-460 Brazil
| |
Collapse
|
7
|
Pt–Pd and Pt–Pd–(Cu or Fe or Co)/graphene nanoribbon nanocomposites as efficient catalysts toward the oxygen reduction reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.160] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Flexible Three-Dimensional Graphene Hydrogels with Superior Conductivity and Excellent Electrochemical Performance for Supercapacitor Electrodes. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Teles R, Arenillas A, da Silva GC, Fernández PS, Cardoso ESF, Maia G, Martins CA. Understanding the Influence of the Biomass-Derived Alcohols on the Activity and Stability of Pt Nanoparticles Supported on Graphene Nanoribbons. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-016-0349-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Mooste M, Kibena-Põldsepp E, Matisen L, Tammeveski K. Oxygen Reduction on Anthraquinone Diazonium Compound Derivatised Multi-walled Carbon Nanotube and Graphene Based Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marek Mooste
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | | | - Leonard Matisen
- Institute of Physics; University of Tartu; W. Ostwald Str. 1 50411 Tartu Estonia
| | - Kaido Tammeveski
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
11
|
|
12
|
Kar T, Devivaraprasad R, Bera B, Ramesh R, Neergat M. Investigation on the reduction of the oxides of Pd and graphite in alkaline medium and the simultaneous evolution of oxygen reduction reaction and peroxide generation features. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Lopes JH, Ye S, Gostick JT, Barralet JE, Merle G. Electrocatalytic Oxygen Reduction Performance of Silver Nanoparticle Decorated Electrochemically Exfoliated Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9718-9727. [PMID: 26038977 DOI: 10.1021/acs.langmuir.5b00559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have developed a potentiostatic double-pulse technique for silver nanoparticle (Ag NP) deposition on graphene (GRn) with superior electronic and ionic conductivity. This approach yielded a two-dimensional electrocatalyst with a homogeneous Ag NP spatial distribution having remarkable performance in the oxygen reduction reaction (ORR). GRn sheets were reproducibly prepared by the electrochemical exfoliation of graphite (GRp) at high yield and purity with a low degree of oxidation. Polystyrenesulfonate added during exfoliation enhanced the stability of the GRn solution by preventing the restacking of the graphene sheets and increased its ionic conductivity. The potentiostatic double-pulse technique is generally used to electrodeposit Pt nanoparticles and remains challenging for silver metal that exhibits nucleation and growth potentials relatively close to each other. We judiciously exploited this narrow margin of potential, and for the first time we report Ag NP electrodeposited onto graphene with the subsequent ability to control both the density and the size of metallic nanoparticles. Considering the high activity along with the lower cost of Ag compared to Pt, these findings are highly relevant to the successful commercialization of fuel cells and other electrochemical energy devices.
Collapse
Affiliation(s)
| | - Siyu Ye
- Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, V5J 5J8 Canada
| | - Jeff T Gostick
- Department of Chemical Engineering, McGill University , Montreal, H3A 0C5, Canada
| | | | | |
Collapse
|
14
|
Kaare K, Kruusenberg I, Merisalu M, Matisen L, Sammelselg V, Tammeveski K. Electrocatalysis of oxygen reduction on multi-walled carbon nanotube supported copper and manganese phthalocyanines in alkaline media. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Lucca BG, de Lima F, Coltro WKT, Ferreira VS. Electrodeposition of reduced graphene oxide on a Pt electrode and its use as amperometric sensor in microchip electrophoresis. Electrophoresis 2015; 36:1886-93. [PMID: 25884327 DOI: 10.1002/elps.201500092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 02/01/2023]
Abstract
This report describes the development and application of a novel graphene-modified electrode to be used as amperometric sensor in microchip electrophoresis (ME) devices. The modified electrode was achieved based on electroreduction of graphene oxide on an integrated Pt working electrode of a commercial ME device. The surface modification was characterized by SEM and cyclic voltammetry techniques. The results indicated that graphene sheets were successfully deposited exhibiting higher surface conductivity and greater electrode sensitivity. The performance of the modified electrode for the amperometric detection on ME devices has been demonstrated by the separation and detection of an anionic mixture containing iodide and ascorbate. The graphene-modified electrode provided significantly higher sensitivity (896.7 vs. 210.9 pA/μM for iodide and 217.8 vs. 127.8 pA/μM for ascorbate), better separation efficiencies (3400 vs. 700 plates/m for iodide and 10 000 vs. 2400 plates/m for ascorbate), enhanced peak resolutions (1.6 vs. 1.0), and LODs (1.5 vs. 5.3 μM for iodide and 3.1 vs. 7.3 μM for ascorbate) in comparison with the unmodified Pt electrode. The proposed amperometric sensor was successfully applied for the analysis of ascorbic acid (through its anionic form) in a commercial medicine sample, and the results achieved were in agreement with the value provided by the supplier. Based on the data here presented, the modified graphene electrode shows great promise for ME applications.
Collapse
Affiliation(s)
- Bruno Gabriel Lucca
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Fábio de Lima
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Valdir Souza Ferreira
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
16
|
de Lima F, Maia G. Oxidized/reduced graphene nanoribbons facilitate charge transfer to the Fe(CN)₆³⁻/Fe(CN)₆⁴⁻ redox couple and towards oxygen reduction. NANOSCALE 2015; 7:6193-6207. [PMID: 25776857 DOI: 10.1039/c5nr01123j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study investigated the synthesis of graphene oxide nanoribbons (GONRs) and graphene nanoribbons (GNRs) from multiwalled carbon nanotubes (MWCNTs), and the behavior of thin films of MWCNTs, GONRs, and GNRs on a glassy carbon surface in the presence of two redox probes (Fe(CN)6(3-)/Fe(CN)6(4-) and O2) employing cyclic voltammetry, electrochemical impedance spectroscopy, and hydrodynamic voltammetry (HV) as a simple procedure for characterizing these films. The feasibility of using these electrochemical techniques for this purpose opens up the possibility of applying them to biosensors and electrocatalysts using surface-supported MWCNT, GONR, and GNR materials. GNR1 resembles an internodal segment of bamboo cut lengthwise, with a shallow troughing at its center, while GNR2 resembles stacked ribbons, each ∼16 nm wide, with points of structural damage and points of four-ribbon connection measuring 60 nm or wider, sufficiently catalytic for the oxygen reduction reaction to occur, unlike the other modified electrodes investigated in acidic, 0.1 M KH2PO4 (pH 7.0), and 0.1 M KOH solutions (HV results). Transmission electron microscopy and thermogravimetric analysis were employed to characterize the MWCNTs, GONRs, and GNRs.
Collapse
Affiliation(s)
- Fábio de Lima
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, Campo Grande, MS 79074-460, Brazil.
| | | |
Collapse
|
17
|
Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.116] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Siara L, de Lima F, Cardoso C, Arruda G. Electrochemically pretreated zeolite-modified carbon-paste electrodes for determination of linuron in an agricultural formulation and water. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Kibena E, Marandi M, Sammelselg V, Tammeveski K, Jensen BBE, Mortensen AB, Lillethorup M, Kongsfelt M, Pedersen SU, Daasbjerg K. Electrochemical Behaviour of HOPG and CVD-Grown Graphene Electrodes Modified with Thick Anthraquinone Films by Diazonium Reduction. ELECTROANAL 2014. [DOI: 10.1002/elan.201400290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Fast electron transfer kinetics on electrodes composed of graphene oxide ‘patched’ with direct exfoliated pristine graphene nanosheets. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Kar T, Devivaraprasad R, Singh RK, Bera B, Neergat M. Reduction of graphene oxide – a comprehensive electrochemical investigation in alkaline and acidic electrolytes. RSC Adv 2014. [DOI: 10.1039/c4ra10794b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical characterization to investigate the extent of reduction and the nature of reminiscent oxygen moieties in GO-based materials.
Collapse
Affiliation(s)
- Tathagata Kar
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076, India
| | - Ruttala Devivaraprasad
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076, India
| | - Ramesh Kumar Singh
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076, India
| | - Bapi Bera
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076, India
| | - Manoj Neergat
- Department of Energy Science and Engineering
- Indian Institute of Technology Bombay (IITB)
- Mumbai-400076, India
| |
Collapse
|
22
|
|
23
|
Fortunato GV, Venarusso LB, Maia G. Large Platinum Structures as Promising Catalysts for the Oxygen-Reduction Reaction. ChemElectroChem 2013. [DOI: 10.1002/celc.201300100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Kibena E, Mooste M, Kozlova J, Marandi M, Sammelselg V, Tammeveski K. Surface and electrochemical characterisation of CVD grown graphene sheets. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|